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Abstract

Purpose The Oxford Knee Score (OKS) is a validated

12-item measure of knee replacement outcomes. An algo-

rithm to estimate EQ-5D utilities from OKS would facili-

tate cost-utility analysis on studies analyses using OKS but

not generic health state preference measures. We estimate

mapping (or cross-walking) models that predict EQ-5D

utilities and/or responses based on OKS. We also compare

different model specifications and assess whether different

datasets yield different mapping algorithms.

Methods Models were estimated using data from the

Knee Arthroplasty Trial and the UK Patient Reported

Outcome Measures dataset, giving a combined estimation

dataset of 134,269 questionnaires from 81,213 knee

replacement patients and an internal validation dataset of

45,213 questionnaires from 27,397 patients. The best

model was externally validated on registry data (10,002

observations from 4,505 patients) from the South West

London Elective Orthopaedic Centre. Eight models of the

relationship between OKS and EQ-5D were evaluated,

including ordinary least squares, generalized linear models,

two-part models, three-part models and response mapping.

Results A multinomial response mapping model using

OKS responses to predict EQ-5D response levels had best

prediction accuracy, with two-part and three-part models

also performing well. In the external validation sample, this

model had a mean squared error of 0.033 and a mean

absolute error of 0.129. Relative model performance,

coefficients and predictions differed slightly but signifi-

cantly between the two estimation datasets.

Conclusions The resulting response mapping algorithm

can be used to predict EQ-5D utilities and responses from

OKS responses. Response mapping appears to perform

particularly well in large datasets.

Keywords Mapping � Cross-walking � Health-related

quality of life � Joint replacement � Health state preference

values

Abbreviations

EOC Elective Orthopaedics Centre [dataset]

GLM Generalized linear model

HRQoL Health-related quality of life

KAT Knee Arthroplasty Trial

MAE Mean absolute error

MSE Mean squared error

OLS Ordinary least squares

OKS Oxford Knee Score

PROMs Patient Reported Outcome Measures [initiative]

QALY Quality-adjusted life-year

Introduction

Although condition-specific health-related quality-of-life

(HRQoL) measures may be more sensitive and [1, 2]
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sufficient to assess efficacy, comparing incremental cost-

effectiveness between conditions requires generic mea-

sures, such as the EQ-5D [3–5], that give health state

preferences or utilities [1, 2]. Utilities are needed for cal-

culation of quality-adjusted life-years (QALYs) and are

scaled such that one equals perfect health, zero indicates

death and negative values represent health states worse

than death.

EQ-5D, the most widely used utility scale [6], includes

five questions on mobility, self-care, pain, usual activities

and anxiety/depression, each with three response levels [3–

5]. Utility valuations for all 243 EQ-5D health states are

based on time-trade-off valuations by 3,395 members of

the UK general public [3, 4]. Alternative tariffs have been

developed for other countries [7].

There is growing interest in algorithms that map one

HRQoL measure onto another, thereby enabling estima-

tion of QALYs from trials that include condition-specific

measures but not utility instruments [8–10]. Most map-

ping studies use regression methods to directly predict

utilities from responses or scores on condition-specific

measures [8, 9]. However, response mapping models

predicting patients’ responses to a multiattribute utility

measure provide an alternative approach [9, 11–15].

Response mapping may provide better utility predictions

as well as giving richer insights into the relationship

between the two instruments, predicting the domains most

affected by disease or treatment and calculating utilities

for any tariff [11].

The Oxford Knee Score (OKS) is a widely used HRQoL

measure that was developed and validated for the assess-

ment of outcomes following knee replacement in compar-

ative trials and cohort studies [16–18]. OKS is also

increasingly used to assess eligibility for primary [19] or

revision surgery [20], although it was not designed or

validated for this purpose. It is also administered routinely

to assess the performance of hospitals or surgeons in the

UK and New Zealand Patient Reported Outcome Measures

(PROMs) initiatives [21–24]. OKS includes 12 questions

on knee symptoms and function, each with five levels.

Scores on each question, which range from 4 (no problems)

to 0 (severe problems), are summed without weighting to

produce total scores ranging from 0 to 48 [18].

Since its development in 1998, OKS has been used in

many large trials and cohort studies assessing the long-term

durability of knee components that did not include utility

measures [17]. A mapping algorithm predicting utilities

from OKS would enable long-term data from these studies

to inform cost-utility analyses.

This study estimates mapping models to predict utilities

and/or responses to the three-level EQ-5D questionnaire

based on responses and scores on the OKS. We also

compare the performance of different mapping models and

assess whether different datasets yield different mapping

algorithms.

Methods

Data

Estimation datasets

Data from the Knee Arthroplasty Trial (KAT) and the UK

PROMs initiative were combined to provide a large,

diverse sample of knee replacement patients on which to

develop a robust mapping algorithm and to test whether

mapping models are sensitive to the dataset used. Fol-

lowing best practice [10] and to avoid over-fitting during

model selection, 25 % of patients were allocated to the

internal validation sample using computer-generated ran-

dom numbers. All questionnaires from these patients were

excluded from estimation models and were instead used to

assess the prediction accuracy of each model and select the

final model specification. The estimation sample and

internal validation sample were then combined to estimate

the final model, which was externally validated on a third

dataset.

KAT comprised a randomized trial comparing different

types of knee prosthesis, in which 2,352 patients underwent

total knee replacement in the UK between 1999 and 2003.

Patients completed OKS and EQ-5D pre-operatively, three

and 12 months after knee replacement and annually

thereafter for 8–11 years to date. All questionnaires

received by 4 May 2011 that had complete responses to

OKS and EQ-5D were included in mapping analyses,

giving an estimation dataset of 12,961 questionnaires from

1,690 patients.

Within PROMs, all patients undergoing knee replace-

ment in England are sent OKS and EQ-5D questionnaires

pre-operatively and 6 months afterwards [22, 23]. We

analyzed PROMs data on admissions for knee replacement

up to 31 December 2010 that included 162,066 question-

naires with complete OKS and EQ-5D data from 106,320

patients. All questionnaires with complete data on EQ-5D

and OKS were included in mapping analyses regardless of

whether pre- and post-operative data were linked. This

provided an estimation sample of 121,308 observations

from 79,523 patients.

External validation dataset

The external validity of the best mapping algorithm was

tested using a dataset from the Elective Orthopaedics

Centre (EOC) that was not made available to the authors

until after the final model was selected. This comprised a
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large observational cohort of patients undergoing hip or

knee replacement at an NHS treatment centre serving four

NHS trusts in South-West London from January 2004

onwards [25]. Patients completed EQ-5D and OKS pre-

operatively and 6, 12 and/or 24 months afterwards.

Although recruitment is ongoing, our analysis included

only patients undergoing primary or revision knee

replacement before 31 March 2009 to avoid overlap with

PROMs. After excluding patients with incomplete data on

OKS and/or EQ-5D, this external validation dataset

included 10,002 observations from 4,505 patients.

Statistical methods

Model estimation

We first estimated direct utility mapping models by

regressing responses to individual OKS questions directly

onto EQ-5D utility using four functional forms:

• Ordinary least squares (OLS) regression.

• Generalized linear models (GLM) with log link or

gamma family predicting EQ-5D disutility (where

disutility = 1 - utility), which allow for the skewed

distribution of utility values and prevent prediction of

utilities [1.

• Fractional logistic models, which constrain predictions

to lie within the range determined by the EQ-5D tariff

(1 to -0.594 [4]). These were implemented by using

GLM with binomial family and logit link to predict

utility0–1, where utility0–1 = (utility ? 0.594)/1.594.

Two-part models were used to allow for the 9.6 %

(17,184/179,482) of observations reporting perfect health

(utility of one) on EQ-5D. For such models, the first part

comprised a logistic regression model estimated on the

entire estimation sample to predict which patients had

perfect health, while the second part comprised an OLS

model predicting EQ-5D utilities for those patients with

utility \1.

We also developed and evaluated three-part models

since 45.9 % (48,318/105,235) of pre-operative question-

naires indicated severe problems on C1 EQ-5D domain and

therefore had substantially lower utility due to the N3 term

in the EQ-5D tariff [4]. The first part of this model com-

prised multinomial logistic regression (mlogit) to predict

whether patients had perfect health, severe problems on C1

EQ-5D domain or only mild–moderate problems. The

second and third parts comprised OLS models to predict

EQ-5D utility for the subset of patients with severe prob-

lems on C1 EQ-5D domain and for those with only mild–

moderate problems, respectively.

We also used response mapping to predict the response

level that patients selected for each of the five EQ-5D

domains. These were estimated by fitting a separate mlogit

or ordinal logistic regression (ologit) model for each EQ-

5D domain, as described previously [11].

The explanatory variables for all models comprised 48

dummy variables indicating whether or not patients had a

particular response level on each OKS question; response

level 4 (no problems) comprised the comparison group.

However, all models were also evaluated using two alter-

native sets of explanatory variables: 12 OKS question

scores (rankings from 0 to 4); and total OKS (measured

from 0 to 48 [18] based on unweighted summation of

question scores). We also investigated whether adding sex

into the best performing model improved prediction accu-

racy; to ensure that the mapping algorithm can be applied

to all datasets, no other patient characteristics were added.

All models were estimated in Stata version 11 (Stata-

Corp, College Station, TX). For all models, the cluster

option within Stata was used to adjust standard errors to

allow for clustering of observations within patients. Stan-

dard errors from two-part, three-part and response mapping

models were also adjusted using seemingly unrelated

regression to allow for correlations between EQ-5D

domains [26].

Assessing model performance

Predicted EQ-5D utilities were estimated for each mapping

model. Predictions from direct mapping models were esti-

mated using the predict post-estimation command, with

direct back-transformations applied to predictions from GLM

and fractional logit models. For OLS models, any utilities

predicted to be[1 were set to one. For two-part models, the

expected utility for each patient was estimated as

Utility = PrðUtility ¼ 1Þ þ ð1� PrðUtility ¼ 1ÞÞU ð1Þ

where U equals the predicted utility conditional on

imperfect health and Pr(Utility = 1) the predicted proba-

bility of having perfect health.

Similarly, for three-part models,

Utility ¼ PrðUtility ¼ 1Þ þ PrðN3ÞUN3

þ ð1� PrðUtility ¼ 1Þ � PrðN3ÞÞUmild�moderate

ð2Þ

where Pr(N3) indicates the probability of having severe

problems on C1 domain, UN3 the predicted utility condi-

tional on this and Umild-moderate the predicted utility con-

ditional on mild–moderate problems.

For response mapping models, the highest probability

method (assuming that patients have the EQ-5D response

level for which the predicted probability from multinomial/

ordinal logistic regression is highest) has been shown to

give biased predictions, and, in particular, underestimates
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the probability that patients will have severe problems [11,

14]. Instead, we generated predictions from response

mapping models using the expected value method [14].

This is equivalent to the Monte Carlo method [11] given a

large number of repeated Monte Carlo draws [14].

Models were selected based on the mean squared

error (MSE) in the combined internal validation sample,

where MSE equals the mean of squared differences

between observed and predicted EQ-5D utility. Mean

absolute error (MAE, the mean of absolute differences

between observed and predicted EQ-5D utility) was also

calculated.

Two further analyses assessed whether different datasets

produced significantly different mapping models. Firstly,

mapping models were estimated on the combined estima-

tion dataset with a full set of interaction terms capturing the

effect of data coming from KAT rather than PROMs on the

coefficients for each OKS response. Secondly, each map-

ping model was re-estimated separately using each dataset

to assess whether the model giving best predictions

differed between datasets.

Results

Exploratory data analysis

Across both KAT and PROMs, patients had poor pre-

operative HRQoL, with mean OKS of 18.6 (SD: 7.9; range:

0, 48; Table 1) and mean utility of 0.39 (SD: 0.32, range:

-0.594, 1), which is lower than those reported for many

forms of cancer or cardiovascular disease [27]. In partic-

ular, 87.5 % (92,124/105,235) of patients had problems

with mobility, usual activities and pain pre-operatively.

HRQoL improved substantially following knee replace-

ment to a mean OKS of 33.8 (SD: 10.2; range: 0, 48) and

mean utility of 0.70 (SD: 0.27; range: -0.594, 1). Like

some previous mapping datasets [10], post-operative

EQ-5D utilities followed a trimodal distribution (Fig. 1).

Total OKS was highly correlated with EQ-5D utility

(R2 = 0.61; p \ 0.001). All OKS items showed significant

Spearman’s rank correlations with all EQ-5D domains

(p \ 0.0001), and all OKS and EQ-5D questions loaded

strongly onto a single component explaining 40 % of the

variance in pre-operative scores and 54 % post-operatively.

Plotting mean utility against OKS question ranking sug-

gested that response levels were approximately linear with

respect to utility for all OKS items other than pain (which

showed a larger drop in utility between levels 0 and 1 than

between other levels) and washing/drying, walking, shop-

ping and going downstairs (which showed a much smaller

drop between levels 0 and 1).

Comparison of mapping model specifications

Eight mapping functions were evaluated using the com-

bined estimation dataset (Table 2), which comprised

134,269 observations of 81,213 patients drawn from both

the KAT and PROMs datasets.

Across all functional forms, models using dummies

indicating responses to OKS questions as explanatory

variables produced better predictions than those using

question or total scores (data not shown). However, all

models using OKS responses as explanatory variables

showed some logical inconsistencies in coefficient values

that contradicted the implicit ordering whereby OKS

response level 4 is unambiguously best, followed by level

3, 2, 1 and then 0.

Based on MSE, the primary measure of prediction accu-

racy, a response mapping algorithm using mlogit gave best

predictions (MSE: 0.0356; Table 2), followed by the three-

part model (MSE: 0.0358). However, the three-part model had

lower MAE than mlogit (0.1338 vs 0.1341). The ologit

response mapping (MSE: 0.0359), two-part model (MSE:

0.0360) and OLS (MSE: 0.0363) also performed reasonably

well. However, fractional logit and GLM models gave

relatively poor predictions (MSE: 0.0367–0.0397) and

systematically underestimated utilities by an average of

0.00063–0.0025. The mlogit model also overestimated utili-

ties for those with utility\0.5 by less than any other model

(mean residual: 0.160, vs 0.162–0.170) but underestimated

utilities for patients with utility C0.5 by a larger amount than

any model other than ologit or GLM with gamma link (mean

residual: -0.078, vs -0.075 to -0.076).

Impact of dataset on results

The relative performance of different model specifications

differed between datasets (Fig. 2). When models were

estimated using KAT data, a two-part model performed

best in the KAT internal validation sample (MSE =

0.0331). However, mlogit performed best (MSE = 0.0356)

among the models estimated on PROMs. Models estimated

using the PROMs dataset gave more accurate predictions

than those fitted on KAT for both pre-operative and post-

operative observations. Models fitted on the PROMs or

combined datasets also had up to 20 % fewer OKS items

with counter-intuitive signs or rankings and converged

more easily than those estimated using KAT.

We then fitted the best five models to the combined

dataset with a full set of interaction terms capturing the

effect of dataset on coefficient values. This suggested that

15–27 % of coefficients differed significantly between

datasets (p \ 0.05). Notably, all coefficients for the work

OKS item were significantly higher and those for washing/

drying were significantly lower for KAT than PROMs
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Table 1 Health-related quality-of-life scores for validation and estimation datasets

Question/score KAT PROMs Combined

estimation sample

(N = 134,269)

Combined internal

validation sample

(N = 45,213)

External validation

sample (EOC)

(N = 10,002)Pre-op

(N = 2,115)

Post-op

(N = 15,301)

Pre-op

(N = 103,120)

Post-op

(N = 59,946)

Proportion of patients at level 2 or level 3 on EQ-5D items

Mobility

L2: 96.2 % 57.2 % 93.4 % 52.6 % 76.9 % 77.2 % 64.2 %

L3: 0.5 % 0.1 % 0.4 % 0.1 % 0.3 % 0.3 % 0.43 %

Self-care

L2: 29.7 % 24.3 % 32.8 % 21.0 % 28.1 % 28.3 % 26.7 %

L3: 0.2 % 0.5 % 1.0 % 0.5 % 0.8 % 0.8 % 1.2 %

Usual activities

L2: 76.9 % 56.1 % 76.2 % 52.8 % 66.8 % 66.8 % 59.4 %

L3: 8.9 % 5.2 % 15.2 % 5.4 % 11.0 % 11.1 % 8.2 %

Pain and discomfort

L2: 54.9 % 58.8 % 58.4 % 61.3 % 59.4 % 59.0 % 58.1 %

L3: 44.2 % 7.4 % 40.6 % 6.3 % 26.3 % 27.1 % 16.6 %

Anxiety/depression

L2: 38.3 % 24.6 % 35.2 % 21.3 % 29.7 % 30.1 % 28.5 %

L3: 2.9 % 1.7 % 4.6 % 2.6 % 3.6 % 3.8 % 3.6 %

Mean (SD) HRQoL score

EQ-5D utility 0.38 (0.31) 0.69 (0.27) 0.39 (0.32) 0.7 (0.27) 0.51 (0.34) 0.52 (0.34) 0.61 (0.32)

Total OKS 18.01 (7.57) 33.79 (10.43) 18.59 (7.95) 33.79 (10.2) 24.76 (11.67) 24.86 (11.68) 29.11 (11.70)

Usual level of

pain

0.57 (0.67) 2.57 (1.25) 0.55 (0.66) 2.46 (1.18) 1.34 (1.32) 1.35 (1.32) 1.79 (1.42)

Trouble with

washing and

drying

2.76 (1.02) 3.35 (0.88) 2.79 (1.03) 3.43 (0.84) 3.04 (1.01) 3.05 (1.01) 3.13 (0.98)

Trouble with

transport

1.93 (0.84) 2.74 (0.97) 2.06 (0.86) 2.88 (0.93) 2.38 (0.98) 2.38 (0.98) 2.52 (1.02)

Walking time

before

severe pain

1.79 (1.07) 3.1 (1.17) 1.99 (1.14) 3.17 (1.09) 2.46 (1.26) 2.47 (1.26) 2.79 (1.20)

Pain on

standing up

from sitting

1.59 (0.85) 3.01 (0.97) 1.64 (0.82) 2.94 (0.94) 2.17 (1.09) 2.18 (1.09) 2.6 (1.10)

Limping 0.81 (1.02) 2.98 (1.21) 0.88 (0.99) 2.88 (1.2) 1.7 (1.47) 1.71 (1.47) 2.29 (1.47)

Difficulty

kneeling

0.70 (0.87) 1.23 (1.31) 0.79 (0.89) 1.4 (1.33) 1.02 (1.13) 1.02 (1.13) 1.40 (1.24)

Pain at night 1.34 (1.22) 2.94 (1.23) 1.26 (1.19) 2.64 (1.31) 1.85 (1.42) 1.86 (1.42) 2.33 (1.40)

Pain

interferes

with work

1.54 (0.88) 2.99 (1.05) 1.39 (0.88) 2.87 (1.07) 2 (1.21) 2.01 (1.21) 2.41 (1.23)

Sense of knee

instability

1.89 (1.23) 3.43 (0.9) 1.85 (1.18) 3.37 (0.92) 2.48 (1.32) 2.48 (1.32) 2.86 (1.26)

Can do

household

shopping

alone

1.52 (1.19) 2.82 (1.34) 1.67 (1.23) 2.89 (1.32) 2.16 (1.40) 2.17 (1.40) 2.53 (1.40)

Trouble

walking

down stairs

1.57 (0.91) 2.64 (1.16) 1.71 (0.92) 2.85 (1.08) 2.15 (1.13) 2.16 (1.13) 2.48 (1.11)

Patient observations with missing data on one or more questions in EQ-5D or OKS were omitted

HRQoL health-related quality of life, KAT Knee Arthroplasty Trial, L2 Level 2 on EQ-5D, L3 Level 3 on EQ-5D, OKS Oxford Knee Score, PROMs Patient

Reported Outcome Measures [dataset], SD standard deviation, EOC Elective Orthopaedics Centre [dataset]
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unless questionnaires more than 6 months post-operation

were excluded, probably due to the effect of ageing and

retirement during the longer KAT follow-up.

However, cross-validation prediction accuracy was

good, with a two-part model fitted using KAT data having

an MSE of 0.0361 in the PROMs validation sample and the

mlogit PROMs model having an MSE of 0.0338 in KAT.

The predictions from models estimated on the two datasets

were also very similar: the mean absolute difference in

predictions between the two-part model estimated on

KAT data and the mlogit PROMs model was 0.031

(p \ 0.0001), while the difference in predicted change

from baseline at 3–6 months was 0.0042 (p = 0.003). Both

models accurately predicted the mean utility in the other

dataset: the mlogit PROMs model predicted the mean

utility in KAT to be 0.665, vs an observed value of 0.654,

while the two-part KAT model predicted the mean PROMs

utility to be 0.496 vs an observed value of 0.503. Coeffi-

cient values and choice of model also differed between pre-

and post-operative observations, although models of

pre-operative utilities predicted post-operative utilities well

(MSE: 0.0277) and vice versa (MSE: 0.0446).

0
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-.5 0 .5 1

Observed EQ-5D utility

0
2

4
6

8

D
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a b

Fig. 1 Distribution of a pre-operative and b post-operative EQ-5D utilities

Table 2 Comparison of performance across models investigated using combined dataset

Functional form Dependent variable(s) MSE MAE

Internal

validation

Estimation

sample

Internal

validation

Estimation

sample

Direct utility mapping models

OLS EQ-5D utility 0.0363 0.0362 0.1398 0.1399

GLM (gamma family; identity link) 1 - EQ-5D utility 0.0397 0.0393 0.1467 0.1466

GLM (Gaussian family; log link) 1 - EQ-5D utility 0.0370 0.0368 0.1415 0.1415

Fractional logit (EQ-5D utility ? 0.594)/1.594 0.0367 0.0365 0.1403 0.1403

2-part models: 0.0360 0.0359 0.1384 0.1384

Part 1: logistic regression predicting perfect healtha

Part 2: OLS predicting utility given imperfect health

3-part models: 0.0358 0.0357 0.1338 0.1341

Part 1: mlogit on perfect health, N3 or neitherb

Part 2: OLS on utility for pts with neither N3 nor perfect health

Part 3: OLS on utility for N3 pts

Response mapping models

ologit response mapping EQ-5D responses for each domain in turn 0.0359 0.0358 0.1361 0.1363

mlogit response mapping EQ-5D responses for each domain in turn 0.0356 0.0354 0.1341 0.1343

GLM generalized linear model, MAE mean absolute error, MSE mean squared error, OKS Oxford Knee Score, OLS ordinary least squares
a Problems with perfect prediction arose when all response levels for washing/drying question were included; results are shown for a model

merging levels 0 and 1 for this question
b Problems with non-symmetric or highly singular variance matrix arose when all response levels for washing/drying and work questions were

included; results are shown for a model merging levels 0 and 1 for these questions
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Performance of best model

Although the relationship between OKS and EQ-5D dif-

fered significantly between datasets and following knee

replacement, the magnitude of such differences was very

small. Furthermore, mapping models fitted on a heteroge-

neous population including both baseline and post-treat-

ment observations and those from trials and routine clinical

practice are likely to be useful for most practical applica-

tions. The mlogit response mapping model fitted on the

combined estimation dataset was therefore selected as the

best model since it gave the lowest MSE overall for both

pre- and post-operative observations.

Adding patient sex into this model reduced MSE by only

0.0000073, to 0.03554. The final model (Table 3; Appendix 1:

Electronic supplementary material) therefore included only

OKS responses and was fitted on the entire KAT and PROMs

dataset (including the internal validation sample).

The final model accurately predicted EQ-5D utility in

the combined KAT/PROMs sample (MSE: 0.0355; MAE:

0.134) and the external EOC sample (MSE: 0.0330; MAE:

0.129). Within EOC, 18 % of predictions were within 0.05

and 42 % within 0.10 of the observed utility value; pre-

dicted and observed utilities were strongly correlated (R2:

0.69; Fig. 3a). The predicted proportions of patients with

different response levels on each domain were very similar,

but were significantly different from the observed propor-

tions (p \ 0.0001, based on chi-squared test in Microsoft

Excel 2003): for example, the model predicted that 26 %

of EOC questionnaires indicated some anxiety and

depression, compared with the 28.5 % (2,848/10,002)

observed. The model also accurately predicted mean utility

(observed: 0.607; predicted: 0.597) in EOC. Like most

mapping models [10], ceiling and floor effects produced

heteroskedastic residuals, causing our model to slightly

underestimate utilities for patients with high EQ-5D utility

and overestimate utility for patients with low utility

(Fig. 3b). Predicted utilities also had a smaller range

(-0.29 to 0.95 vs -0.594 to 1) and standard deviation

(0.26 vs 0.32) than observed values.

For all models, prediction accuracy was better for post-

operative observations (Fig. 2) and observations with high

utility (Fig. 3d) and markedly worse for patients with OKS

between 11 and 20 than for those with better or worse knee

function (Fig. 3c). Within the KAT baseline sample, pre-

dictions were also less accurate (MSE: 0.043) for those

with poor pre-operative general health (ASA grade 3–4)

and those with arthritis in other joints. The final model also

accurately predicted change in utility following knee

replacement (MSE: 0.0656; MAE: 0.192).

Discussion

We have developed a mapping algorithm that accurately

predicts EQ-5D utility based on OKS responses; model

performance was similar to previous mapping models,

which have obtained MAEs between 0.0011 and 0.19 [8].

The mapping model shown in Table 3 can be used to

predict responses to the EQ-5D questionnaire and EQ-5D

utilities in situations where only OKS has been adminis-

tered. In particular, this will facilitate cost-utility analyses

of the numerous trials and registries that used OKS but no

utility measure. Excel and Stata code developed to estimate

predictions are available at http://www.herc.ox.ac.uk/down

loads, and methods to estimate standard errors around pre-

dictions from the variance–covariance matrices of response

mapping models (Appendix 1) are under development.

The models described require patient-level data on OKS
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Fig. 2 Mean squared error

(MSE) for models fitted on each
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their respective internal
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models estimated using KAT
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responses, although a simpler model for secondary data is

available at http://www.herc.ox.ac.uk/downloads. How-

ever, mapping is no substitute for including a utility mea-

sure in future studies and does not overcome the limitations

of either instrument [10].

In addition to producing more accurate predictions in

this study, response mapping models naturally deal with

non-Gaussian utility distributions and mirror the way util-

ities are calculated. Furthermore, while direct mapping

models must be developed for specific tariffs, response

mapping algorithms can be applied to any three-level EQ-

5D tariff available now or in the future [11]. Although

prediction accuracy varied with tariff, our algorithm gave

accurate predictions of utilities in the external valida-

tion sample using the EQ-5D tariffs for Spain, Germany,

Netherlands, Denmark, Japan, Zimbabwe and USA (MSE B

0.055). Response mapping also gives richer insights into the

relationship between the two instruments, for instance pre-

dicting the proportion of patients with different response

levels on each domain. However, such models appear to

perform much better when estimated on very large datasets.

The three-part model specification we developed to deal

with the N3 term in the UK EQ-5D tariff also performed

very well; this specification may be particularly useful for

other mapping applications where severe problems on EQ-

5D domains are common.

Our dataset is (to our knowledge) the largest sample

used for mapping analyses to date and covers the full range

of EQ-5D and OKS scores. In particular, our large sample

size appears to have overcome previously cited difficulties

with mapping between Oxford Hip Score and EQ-5D, such

as lack of overlap between pre- and post-operative scores

and poor prediction of anxiety and depression [28].

Although the model performed well overall, predictions

were less accurate for patients with OKS between 11 and

20, which appears to be due to uncertainty about which

54.3 % of such patients have severe problems on C1

domain, since MSE did not vary markedly with OKS when

observed and predicted utilities were recalculated without

the N3 term. The N3 term may also explain the general

finding of higher accuracy for healthier patients [8].

However, the performance of our mapping algorithm in

populations dissimilar to ours (e.g. patients with early

arthritis) or for studies using non-English language ques-

tionnaires is unknown.

Although OKS includes questions directly relating to

mobility, self-care, usual activities and pain, no OKS

questions directly ask about psychological symptoms or

strongly predict responses to the EQ-5D anxiety/depres-

sion question (mlogit pseudo-R2: 0.14 for anxiety/

depression, vs 0.36–0.55 for other domains). Nonetheless,

we found that OKS predicts anxiety/depression responses

reasonably accurately, probably as pain and poor knee

function explain much of the anxiety/depression observed

in this population. Nonetheless, any mapping algorithm

between OKS and EQ-5D is likely to perform poorly in

subgroups of patients who have psychological conditions

that unrelated to their knee problems. Our mapping

algorithm was also less accurate in patients with comor-

bidities or arthritis in other joints, probably due to OKS’

focus on knee problems.

Models using dummies indicating OKS response level

as the explanatory variable gave better predictions than

those modelling total or question scores. This demonstrates

the advantages of modelling response levels for each

question whenever the estimation dataset is large enough to

estimate coefficients reliably. Regression analyses also

indicate that some items (e.g. pain or impact on work) have

more effect on utility than others (Table 3). OKS total

score was nonetheless a strong predictor of EQ-5D, sug-

gesting that the OKS scoring system (which assigns equal

weight to all questions and assumes levels are equally

spaced given the wording of questions and response levels)

is a good measure of HRQoL.

However, coefficients for some OKS response levels

had counter-intuitive signs or rankings (Table 3): for

example, the coefficients showing the effect of being

unable to walk at all without severe pain (0.35) or being

able to walk only around the house (0.86) on having level 2

mobility were lower than the coefficient for walking

5–15 min (0.99). Such inconsistencies were less common

in mapping models fitted on the larger PROMs dataset than

on KAT, although 57 % of OKS items were inconsistent in

the final model (Table 3). Similar inconsistencies have

been observed previously [8, 11, 29]. These inconsistencies

could cause the mapping algorithm to predict that a

patient’s utility had fallen when their OKS profile was

unambiguously improved. In principle, items could be

omitted or levels merged to give a fully consistent mapping

algorithm with higher face validity: particularly as the

specific inconsistencies observed appeared to vary between

datasets, suggesting that many such inconsistencies

occurred by chance. However, we feel that it is more

appropriate to use the mapping model giving highest pre-

diction accuracy in the validation sample regardless of

inconsistencies, rather than applying ad hoc methods that

could give many different ‘‘consistent’’ algorithms. Fur-

thermore, we found that omitting/merging OKS levels

reduced prediction accuracy, suggesting that inconsisten-

cies may reflect patients’ interpretation of the questions or

genuine opposition between items.

Model choice and coefficient values were sensitive to

the dataset used to estimate mapping models. However,

while the predictions and coefficients differed significantly

between datasets, such differences are unlikely to be large

enough to affect the results of an economic evaluation:

690 Qual Life Res (2013) 22:683–694
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particularly as differences in change from baseline

were smaller than those for absolute values. Longer

post-operative follow-up in KAT may explain many of

these differences, although differences could also arise

from slight differences in methods of questionnaire

administration/wording or secular trends between operation

dates (1999–2003 for KAT and 2009–2010 for PROMs).

Other explanations, such as differing patient characteristics

or questionnaire translations, are unlikely in this case as

cohorts were similar and all questionnaires were completed

in English. Although the relationship between OKS and

EQ-5D appears to differ slightly between pre- and post-

operative observations, using different mapping algorithms

for different timepoints could bias cost-effectiveness esti-

mates. Furthermore, adding observations from trial data

with long follow-up (KAT) to those from routine data

(PROMs) is likely to increase the range of applications to

which mapping algorithms can be applied.

Nonetheless, differences between datasets highlight the

importance of external validation. Selecting models based

on performance in an internal validation dataset not used in

model estimation helps prevent over-fitting, while external

validation provides a more rigorous test of predictive

accuracy by assessing performance in a separate,

independently collected dataset that was not used for model

estimation or selection [10, 30]. Our model gave accurate

predictions in both internal and external validation data-

sets, demonstrating that it is likely to perform well in other

comparable populations.
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