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Abstract

Purpose The analysis of longitudinal health-related

quality of life measures (HRQOL) can be seriously ham-

pered due to informative drop-out. Random effects models

assume Missing At Random and do not take into account

informative drop-out. We therefore aim to correct the bias

due to informative drop-out.

Methods Analyses of data from a trial comparing stan-

dard-dose and high-dose chemotherapy for patients with

breast cancer with respect to long-term impact on HRQOL

will serve as illustration. The subscale Physical Function

(PF) of the SF36 will be used. A pattern mixture approach

is proposed to account for informative drop-out. Patterns

are defined based on events related to HRQOL, such as

death and relapse. The results of this pattern mixture

approach are compared to the results of the commonly used

random effects model.

Results The findings of the pattern mixture approach are

well interpretable, and different courses over time in

different patterns are distinguished. In terms of estimated

differences between standard dose and high dose, the

results of both approaches are slightly different, but have

no consequences for the clinical evaluation of both doses.

Conclusion Under the assumption that drop-out is at

random within the patterns, the pattern mixture approach

adjusts the estimates to a certain degree. This approach

accounts in a relatively simple way for informative drop-

out.
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Introduction

Treatment for cancer can affect patient quality of life [1, 2].

Therefore, health-related quality of life (HRQOL) mea-

sures are frequently included in randomized clinical trials

in oncology. The interpretation of results for HRQOL

within these randomized trials can be seriously hampered

by drop-out due to relapse and death, especially because

these events do affect HRQOL.

In longitudinal studies, observations of patients can be

missed at a certain time point because they miss visits or do

not fill in certain questionnaires, although they still partici-

pate in the study. Consequently, these patients have

responses on a subset of outcome measures at different time

points. Alternatively patients can drop-out, i.e., not partici-

pating in the study after a certain moment. These patients are

lost to follow-up, and no information is available. In our

study, we define drop-out as not filling in the HRQOL

questionnaire after a certain time point, while there could be

information about the survival status after that time.
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There exist different reasons for drop-out. Except for

drop-out caused by relapse or death, drop-out occurs due to

censoring, administrative, or person-related reasons. The

reasons for drop-out are often referred to as the drop-out

mechanism [3]. It is important to distinguish different types

of drop-out mechanisms, because each drop-out mechanism

requires different analyses to get valid results. A common

classification of drop-out mechanisms has been introduced

by Rubin and can be summarized as follows: Missing

Completely At Random (MCAR), Missing At Random

(MAR), and Missing Not At Random (MNAR) [4].

Drop-out can be considered MCAR if the probability that

a patient drops out is independent of the observed (past)

response measurements and of current and future response

measurements. Or, to put in other words: patients drop-out

due to completely unrelated reasons. For example, when

HRQOL data are lost due to administrative failure, the drop-

out can be considered MCAR: the drop-out is unrelated to

HRQOL scores, and therefore does not depend on the

observed nor on unobserved HRQOL scores. Under the

assumption of MCAR, complete case analysis (including

only those patients with complete data) will give valid

results.

Drop-out can be considered MAR, if the probability of

drop-out depends on previously observed response mea-

sures, but not on the current and future measures. However,

given the observed response measures, drop-out is assumed

to be independent of the unobserved (current and future)

response measures. For example, when a patient drops out

because the HRQOL score is lower at earlier measure-

ments, the drop-out can be considered MAR. In this situ-

ation, one is able to predict the measurement after drop-out

based on past measurements, and random effects models

(mixed models) would provide unbiased results if the

model is correctly specified. In many situations, this drop-

out mechanism will be present in the data.

Drop-out is missing not at random (MNAR) if the prob-

ability of drop-out is also dependent on the unobserved

(current and future) response measures. In this situation, the

missing measurement itself is informative. For example,

when a patient has a sudden decrease in HRQOL and decides

not to fill in the questionnaire, the drop-out is MNAR. In this

situation, we can not predict the missing HRQOL of this

patient without making further (untestable) assumptions.

The reason of a sudden decrease could be the occurrence of

tumor relapse, or the fact that a patient is dying. So, drop-out

due to tumor relapse and death might be informative.

In trials, it is quite common to analyze longitudinal data

with random effects models. This type of models can

handle missing data and give valid results if MAR can be

assumed. In these models, the patients’ courses over time

are specified using regression equations per patient, taking

the correlation between the different measurements within

patients into account. Therefore, a random effects model

helps understanding about how individual patients change

across time [5]. However, without modeling, the drop-out

mechanism informative drop-out is not taken into account.

In the analysis of a trial, this might lead to serious bias, and

therefore to wrong conclusions about HRQOL. To under-

stand this, suppose that in a clinical trial, the experimental

arm reduces or postpones an event as tumor relapse. Sup-

pose, additionally, that the experimental arm has a larger

(negative) impact on HRQOL than the other arm. If

patients are less inclined to fill in HRQOL questionnaires

after a relapse, then patients in the experimental arm are

more likely to fill in the HRQOL questionnaires than

patients in the control arm. So, more patients with lower

HRQOL will remain in the experimental arm compared to

the control arm. In this case, complete case analysis will

yield biased results in favor of the standard arm, because

patients with missing observations after relapse are not

taken into account. A similar argument holds when using

last observation carried forward, since the high HRQOL

values before relapse are imputed for the missing HRQOL

values after death and relapse. It is therefore important to

model implicitly or explicitly the drop-out mechanism.

There are several approaches for the analysis of infor-

mative drop-out. They are rather complicated. Therefore,

their complexity may be the reason why these approaches

are not routinely employed in the analysis of randomized

clinical trials.

Historically, there are two different likelihood-based

approaches for analyses of informative drop-out that differ

with respect to the way the joint distribution of responses

and drop-out process is factorized (Curran et al. [6];

Michiels et al. [7]). These approaches are the pattern

mixture model approach (Hedeker and Gibbons [8], Pauler

et al. [9]) and the selection model approach (Diggle and

Kenward [10], Little [11], and Curran et al. [12]). In the

present paper, we will focus on the pattern mixture

approach, because this is a relatively simple extension of

the commonly used random effects model assuming MAR.

Another class of models is based on the joint modeling

of response measures (e.g., HRQOL) and times to events

(e.g., relapse and death). These models estimate the

HRQOL measures given that a person is in a certain state at

a certain time point. Examples are the models of Kurland

and Heagerty [13], and of Diggle et al. [14]. These models

take the ordering of event times explicitly into account and

regard drop-out as a consequence of events in the past. In

this sense, these models can be used for prediction. This is

in contrast to the pattern mixture approach where the drop-

out process is reflected in patterns and where these patterns

are determined retrospectively. This approach is therefore

primary appropriate for adjusting the estimates for the

missing data mechanism.
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In this paper, we will use data of a Dutch multi-center

randomized clinical trial in patients with breast cancer as

illustration for the use of the pattern mixture approach. In

this trial, the long-term impact of two different chemother-

apy schedules (high dose vs. standard dose) on HRQOL was

compared. The results of the study with respect to the pri-

mary outcomes, relapse-free survival, and overall survival

have been published by Rodenhuis et al. [15, 16]. Buijs et al.

[17] analyzed the HRQOL data comparing both treatment

arms assuming that patients remained disease free.

We aimed in this paper to correct the HRQOL estima-

tion for informative drop-out in order to get a valid com-

parison between schedules, taking events as death and

relapse into account. Since we expect that drop-out due to

relapse and death are the two main sources of informative

drop-out, we propose a pattern mixture approach in which

patterns are defined based on the different disease states a

person can have at the end of the study period. The dif-

ferent states we use for the patterns are quality of life

related such as ‘death’, ‘alive with tumor relapse’, and

‘disease free’. We start considering the ‘usual’ random

effects model analysis assuming MAR. Then, we will

analyse the data with the pattern mixture approach with

HRQOL-related patterns. Thereafter, outcomes of both

approaches will be compared.

Methods

Dutch multi-center randomized clinical

breast cancer trial

From August 1993 to July 1999, 804 patients from 10

Dutch centers were randomized in the HRQL part of the

trial comparing two different chemotherapy schedules. The

standard chemotherapy arm consisted of five cycles of

5-fluorouracil (500 mg/m2), epirubicin (90 mg/m2), and

cyclophosphamide (500 mg/m2) (FEC). The high-dose

chemotherapy arm consisted of 4 identical cycles of FEC

followed by one cycle of high-dose chemotherapy com-

prising cyclophosphamide (6 g/m2), thiotepa (480 mg/m2),

and carboplatin (1600 mg/m2) administered over 4 days

followed by peripheral blood progenitor cell reinfusion on

day 7. There were 885 patients randomized; 804 of them

participated in the HRQOL part of the trial of which 405

patients were randomly assigned to the standard therapy

and 399 patients to the experimental (high dose) therapy.

The main study was a survival study. The primary out-

comes were the overall survival and the disease-free sur-

vival. Secondary outcome measures were health-related

quality of life measures. The Medical Ethical Committees

of all participating centers approved the study. All patients

gave informed consent before study entry.

Subgroup of patients

At the time of the analysis in 2003, there appeared to be no

significant differences following intention to treat analyses

with respect to overall and disease-free survival (Rode-

nhuis et al. [15]). However, a subgroup of patients with

normal HER2 expression did benefit of high-dose chemo-

therapy as far as disease free (P = 0.002) and overall

survival (P = 0.02) were concerned (Rodenhuis et al.

[16]). In this paper, we focus therefore on this subgroup.

Only patients participating in the HRQOL part of the trial

are considered, of which 273 patients were randomized to

standard dose and 288 to high-dose chemotherapy.

Quality of life assessment

The pattern mixture model is illustrated for one of the

subscales of the SF-36 namely the physical functioning

(PF) subscale, consisting of items which indicate the ability

to perform physical activities as walking, carrying shop-

ping, and climbing stairs. The scores range from 0 to 100,

with higher scores representing higher level of functioning.

The choice of this subscale was mainly based on illustra-

tive reasons: preliminary analyses on this subscale dem-

onstrated significant and relative large differences in favor

of the standard arm. Other subscales demonstrated smaller

(and/or not significant) differences.

The questionnaires were sent by mail before randomization

(baseline), after chemotherapy (about 3 months), after radio-

therapy (about 6 months), and thereafter every 6 months.

Due to the variation in entry date, not all patients could

be studied for the maximum period of 5 years and 12

measurements points. Each patient had a study period

follow-up of at least 3 years and eight measurement points.

We defined patients who were alive but did not have the

maximum study period follow-up as censored.

Statistical analysis

The analyses were performed with SPSS (version 16),

MLWin (version 2.02), and R (version 2.6.2).

Descriptive

Analyses were based on intention to treat. A cross-sectional

comparison of PF between the two doses was performed at

each measurement point, presenting the observed mean and

standard error per measurement point. In this analysis,

differences in PF per time point between both doses were

based on different sets of patients. Visual inspection of the

course of the means over time gave suggestions for mod-

eling the course over time in the random effect model and

pattern mixture model.
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Drop-out

A large part of drop-out was due to death and censoring

(e.g., patients who did not have the maximum study period

follow-up). Patients able to fill in the questionnaires at a

certain time point (the patients at risk) are the patients

being alive and being not censored at that time point.

Percentages of patients with observed HRQOL measures

(i.e., responding patients) are based on these patients at

risk, and are called response rates. They were calculated for

each time point and for each treatment.

A distinction in drop-out due to relapse and due to death

must be made. In the case of relapse, we can assume that

PF exists and is affected by a relapse, but that it is not

measured. The definition of PF after death is not directly

obvious. Therefore, three patterns were defined: A pattern

consisting of patients who died during the study period

(deceased patients), a pattern with patients with relapse

who were alive at the end of the study period, and a pattern

with patients who remained disease free. A cross-sectional

comparison of the PF assessments of these patterns was

performed to analyze descriptively whether the course over

time was different for the patterns or not, and whether both

doses had different responses over time per pattern.

Random effects model (assuming MAR)

A random effects model was fitted on the data with ‘course

over time’, ‘treatment’ and ‘interaction course over time by

treatment’ as fixed explanatory variables for the PF

assuming MAR. In the following, this is called the ‘‘final

model’’. Since we assumed that each patient had her own

course over time, time effects were also considered to be

random. The ‘course over time’ was specified based on the

findings of the visual inspection of the descriptive analysis.

P-values smaller than 5% were considered to be significant.

We started with fitting the empty model (Snijders and

Bosker) [18], using maximum likelihood. This was a model

without explanatory variables; only a fixed intercept was

included (parameter for the overall mean) with two random

effects. This model estimated the overall mean PF of all

patients and time points and estimates the variability of the

PF within patients and between patients. Then, we fitted the

time model using maximum likelihood. This model included

only the fixed and random intercept and fixed and random

time effects. This model estimated the mean PF of all

patients over time. The difference in deviance (i.e., -2 times

the value of the likelihood) between the empty model and

time model is an indication for the effect of time on PF, and

the deviances can be compared using the likelihood ratio

test. Then, the final model ‘interaction course over time by

treatment’ was fitted by maximum likelihood. This model

estimated the mean PF over time for the different treatment

arms. The performance of the final model was evaluated by

the deviance compared to the deviance of the empty model

and to the deviance of the time model. The difference

between the final model and the time model is an indication

of the effect of treatment over time on PF. The comparisons

of different deviances between different nested models can

be regarded as a relative for the fit of the model for the data.

These models assumed only MAR implying that drop-out

dependent on the missing PF score itself (for example

because of an unpredictable decrease caused by relapse) was

not taken into account. The empty model, the time model,

and final model are explained and specified in the appendix.

Pattern mixture approach (correction for informative

drop-out)

In the pattern mixture approach, the drop-out process and the

outcome measures conditional on the drop-out pattern are

jointly modeled. The drop-out process was modeled by the

probability to belong to a specific drop-out pattern for each

dose separately, and estimated by the sample proportion.

Patterns were based on the relapse and survival state of the

patient at the end of the study period and defined as before:

‘deceased’, ‘alive with relapse’, and ‘disease free’. The

outcome conditional on the drop-out pattern was modeled by

the random effects model with additional explanatory vari-

ables indicating different follow-up patterns of patients. In

the following, we call this model, the pattern mixture model.

We implicitly assumed that each pattern has its own missing

data process and own course over time with respect to PF.

Moreover, we assumed that within each pattern, the drop-out

is MAR. This means that conditional on being in a certain

pattern, the missing PF can be predicted based on observed

measurements of patients within this pattern. The pattern

mixture model was specified with ‘course over time’,

‘treatment’, and ‘interaction course over time by treatment’

as explanatory variables (as before), and also with the vari-

ables ‘pattern’, and all possible interactions with pattern.

This model was fitted using maximum likelihood. See the

Appendix for the explanation and specification of the model.

Based on the difference in deviances (likelihood ratio

test), it was decided which additional explanatory terms

could be excluded from the model. This difference can be

regarded as a relative measure for the fit of the model on the

data.

For each pattern, the course over time per treatment was

estimated. In order to compare both treatments for all pat-

terns together, the effects of both doses were estimated by a

weighted average over all patterns weighted by their sample

proportions. An illustration of this is given in the appendix.

With the delta-method (Bisshop et al. [19]), standard errors

of the differences between the two treatments were esti-

mated to determine the significance of the effects.
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Comparison of the results of the random effects

model and pattern mixture approach

The fit of the random effects model and the random effects

part of the pattern mixture approach (i.e., the pattern

mixture model) were compared based on the difference in

deviance (likelihood ratio test). The results of the pattern

mixture approach (weighting over all patterns) in terms of

estimated differences in PF scores between both treatments

arms per time point were compared to those of the random

effects model assuming MAR.

Sensitivity analysis

Since in our data, not all patients had the maximum study

period of 5 years, the patterns ‘alive with relapse’ and

‘disease free’ consisted of patients for which the disease state

after 5 years was not known yet. Therefore, we implicitly

assumed that censored patients and patients with maximum

study period could be combined within each pattern and that

this did not have consequences for the results. To check

whether the definition of patterns for all patients (with

complete and incomplete follow-up) leads to different

results than the definition of patterns for only patients with

maximum study period follow-up, we performed a sensi-

tivity analysis by also modeling the data using only patients

with complete 5-year follow-up and comparing the results.

Results

Descriptive

In Fig. 1, the observed means and standard errors of PF per

arm and per measurement point are presented. The number of

patients that contributes to each mean is in Table 1, in the

column named ‘response’. For the high-dose arm, there was a

large drop in the observed mean after 3 months (just after

chemotherapy). There was also a decrease in observed mean

for the standard dose although much smaller. After

6 months, the means were increasing again in both treat-

ments. After 1 year, the means in both arms were similar, and

remain rather constant, and they were higher than at baseline.

Drop-out

In Table 1, the number of patients at risk (i.e., patients

being alive and being not censored), the number of

deceased, and the number of censored patients (with

incomplete study period follow-up) are presented for each

time point per chemotherapy, with also the number and

percentages of observed PF scores among all patients at

risk (response rates). For both schedules, the percentages

were comparable for each measurement point.

In Table 2, the numbers of patients for the different pat-

terns are presented. The majority of the patients belonged to

pattern 3: ‘disease free’. About 20% died within 5 years. In

Fig. 2a, the different observed courses of PF over time in

terms of observed means and standard errors are given per

pattern. There were small differences between the patterns

during the first year, but there was an obvious difference in

the observed course over time after 1 year: the observed

mean of patients in the pattern ‘deceased patients’ decreased,

the mean PF of patients in the pattern ‘alive with relapse’

also decreased but less steep, and the mean PF in the pattern

relapse free was rather constant. In Fig. 2b–d, the observed

differences between mean PF over time between the doses

are presented for each pattern. During the first year, the

observed course over time was similar for all patterns: a large

drop at 3 months for the high dose, and a somewhat smaller

drop for the standard dose. However, after 1 year, the dif-

ferences between doses were not similar for the patterns. In

the patterns ‘deceased’ and ‘alive with relapse’, the observed

course over time suggests that patients who get recurrence or

die within the study period benefitted somewhat from the

high dose in the long run. In the ‘relapse free’ pattern, the

observed means of both doses were similar after 1 year with

a negligible difference in favor of the standard dose.

Random effects model (assuming MAR)

Based on the findings of the descriptive analysis, the course

over time was modeled by four time variables, namely

three dummy time variables t0, t1, t2 on the first three time

points indicating the measurements at baseline, after

3 months, after 6 months, and one variable tc indicating

the time continuously after 1 year. At each measurement

point, there could be differences between both doses.

Therefore, the main effect ‘dose’ was included in the

model, together with the interaction terms of dose with the
Fig. 1 Observed mean and standard error per treatment and per time

point for all available PF measures
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four time variables. The intercept can be considered as the

estimated PF at 1 year for the standard dose. The main

effect ‘dose’ can be considered as the estimated difference

between both doses at 1 year. The sum of the main dose

effect and the interaction effect per time dummy is the

difference between doses for each time point (baseline,

after 3 months, and after 6 months). The interaction effect

with the time variable indicating the time continuously

after 1 year indicates the difference between doses in

Table 2 Number of patients per arm by survival and relapse state

Pattern Arm

Standard dose High dose Total

Deceased 68 53 121

Alive with relapse 39 28 67

Disease free 166 207 373

Total 273 288 561

Fig. 2 a Observed means and standard errors per time point per

pattern. b Observed means and standard errors per arm and per time

point for deceased patients. c Observed means and standard errors per

arm and per time point for patients alive with relapse. d Observed

means and standard errors per arm and per time point for relapse-free

patients

Table 1 The response rates per follow-up time and per treatment arm, by number at risk, number deceased, and censored patients

Follow-up time Standard-dose arm number High-dose arm number

At risk deceased censoreda Response (%)b At risk deceased censoreda Response (%)b

Baseline 273 0 0 251 (92) 288 0 0 271 (94)

3 months 273 0 0 244 (89) 288 0 0 257 (89)

6 months 273 0 0 248 (91) 285 3 0 250 (88)

1 year 264 9 0 242 (92) 282 6 0 251 (89)

1.5 years 251 22 0 222 (88) 279 9 0 242 (87)

2 years 248 25 0 204 (82) 268 20 0 227 (85)

2.5 years 238 35 0 195 (82) 262 26 0 213 (81)

3 years 218 41 14 187 (86) 243 30 15 205 (85)

3.5 years 183 52 38 167 (92) 216 38 34 192 (89)

4 years 158 57 58 143 (91) 187 45 56 168 (90)

4.5 years 140 63 70 128 (91) 165 49 74 143 (87)

5 years 130 68 75 102 (78) 155 53 80 127 (82)

a Number of patients alive with incomplete follow-up due to late inclusion date
b Number of patients with observed PF score among all patients at risk
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course over time after 1 year. (For the specification of the

model, see Appendix). In Table 3, the fitted final model

assuming MAR is presented, together with the empty

model and the time model. The deviance of the final ran-

dom effects model (i.e., 39,869) was much smaller than the

deviance of the empty model (i.e., 42,022) and the time

model (i.e., 40,047), indicating that the dose had a signif-

icant effect over time on the PF under the assumption of

MAR (P \ 0.001). In Fig. 3, the estimated mean PF scores

for both doses based on this model are presented. In

Table 4, the estimated differences between doses per time

point (at baseline, after 3 months, and after 6 months) and

the estimated difference in slope after 1 year are presented,

together with their standard errors and P-values. Just after

chemotherapy, after 3 months up to 1 year, there was a

significant difference for PF between both arms in favor of

the standard dose. After 1 year, the slope for the high-dose

arm was nearly significant larger (P = 0.055) than the

standard-dose arm.

Pattern mixture approach (correction for informative

drop-out)

The fit of the pattern mixture model

In Table 5, the fitted pattern mixture model is presented.

This model consisted of all explanatory variables of the

final random effects model assuming MAR together with

all possible interactions with ‘pattern’. Since ‘pattern’ has

three categories, two dummy variables were defined indi-

cating the pattern ‘‘relapse’’ and the pattern ‘‘relapse free’’,

respectively; the reference category is ‘deceased’. Based on

the small difference in deviance (P = 0.48), the main

effect ‘pattern’ was excluded from the model.

The estimates of the interactions between the time

variables during the first year and the patterns are negative,

suggesting that for the standard dose, the pattern ‘‘relapse’’

and the pattern ‘‘relapse free’’ are worse in terms of PF

during the first year than the pattern ‘‘deceased’’. However,

these estimates are not significant.

Courses per pattern

In Fig. 4a–c, the estimated course over time for both treat-

ments is given per pattern. It is evident that the results con-

firmed the findings of the descriptive analysis: the courses

over time were very different for the patterns. The differences

Table 3 The fitted empty model, time model, and random effects

model; model estimates and standard errors

Variable Estimate (standard error)

Empty model Time model Final model

Fixed effects

Intercept 74.79 (0.62) 79.35 (0.73) 84.21 (2.32)

t0a -3.42 (0.76) -5.41 (1.08)

t1b -23.23 (1.19) -10.53 (1.51)

t2c -5.72 (0.70) -3.30 (0.99)

tcd -0.13 (0.025) -0.18 (0.04)

dose * t0a 3.92 (1.51)

dose * t1b -24.67 (2.11)

dose * t2c -4.84 (1.378)

dose -3.24 (1.46)

dose * tcd 0.10 (0.05)

Random part (variances level 2)

Intercept 176.44 (12.66) 230.43 (17.62) 227.74 (17.45)

t0a 130.08 (19.24) 125.53 (18.95)

t1b 540.11 (45.27) 394.17 (36.05)

t2c 75.64 (16.02) 69.82 (15.66)

tcd 0.18 (0.02) 0.18 (0.02)

Residual variance

260.13 (5.59) 109.98 (3.16) 109.94 (3.32)

Deviance

42,022 40,047 39,869

P-value \ 0.0001

a Time dummy indicating time point at baseline
b Time dummy indicating time point at 3 months (just after

chemotherapy)
c Time dummy indicating time point at 6 months
d Time variable continuously after 1 year

Fig. 3 The estimated course of PF over time per treatment based on

the final random effects model assuming MAR

Table 4 The estimated difference between arms for the first time

points t0 to t3 and for the slope after 1 year based on the random

effects model

Time point Estimate (standard error) P-value

t0 0.68 (1.23) 0.59

t1 -27.90 (1.97) \0.001

t2 -8.08 (1.60) \0.001

t3 -3.24 (1.46) 0.026

After t3 0.10 (0.05) 0.055
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between treatments within each pattern were also in line with

the descriptive analysis: during the first year, the estimated PF

scores for the standard dose were larger than those for the high

dose. After 1 year, the difference in slope between the high-

dose arm and standard-dose arm for the patterns ‘deceased’

and ‘alive with relapse’ was estimated in favor of the high

dose. For the pattern ‘relapse free’, the estimated slopes were

similar for both patterns, indicating that the small difference

in favor of the standard dose remained after 1 year.

All patterns together

To compare the schedules for all patterns together

(weighted over all patterns), the estimated PF for both

doses is shown in Fig. 5. In Table 6, the differences per

time point (at baseline, after 3 months, and after 6 months)

and the difference in slope after 1 year together with their

standard errors are presented. During the first year, there

was a significant difference in favor of the standard-dose

arm. After 1 year, the slopes differed significantly in favor

of the high dose (P = 0.001). However, in terms of abso-

lute differences in PF between both doses, the differences

are very small (see Fig. 5).

Comparison results of both approaches

Comparing the deviance of the pattern mixture model to

the final random effects model assuming MAR, we see that

the fit was significantly better since the difference in

deviance is large (39,626 vs. 39,869); P \ 0.0001). This

indicates that under the assumption of MAR within each

pattern, the pattern mixture model has a better fit than the

random effects model.

Comparing the results of the random effects model

assuming MAR to the results of pattern mixture approach

(weighting over all patterns), see Tables 4 and 6, we see that

the estimated differences between both doses were similar for

both approaches. However, the estimated difference in slope

Table 5 The fitted pattern

mixture model; model estimates

and standard errors

a Time dummy indicating time

point at baseline
b Time dummy indicating time

point at 3 months (just after

chemotherapy)
c Time dummy indicating time

point at 6 months
d Time variable continuous

after 1 year

Variable Estimate (standard error)

Fixed effects

Intercept 81.51 (3.32)

t0a -5.70 (1.84)

t1b -9.74 (2.80)

t2c -1.53 (1.96)

tcd -1.32 (0.11)

dose * t0a 11.54 (3.22)

dose * t1b -14.44 (4.59)

dose * t2c -4.40 (3.19)

dose -11.06 (2.79)

dose * tcd 0.44 (0.17)

Interaction with patterns With relapse Relapse free

t0a -0.80 (2.76) -0.27 (1.99)

t1b -2.10 (4.48) -1.74 (3.24)

t2c -5.95 (3.07) -2.32 (2.23)

tcd 0.84 (0.13) 1.32 (0.11)

dose * t0a -6.21 (5.16) -8.96 (3.53)

dose * t1b -9.84 (7.38) -11.84 (5.16)

dose * t2c 0.09 (4.96) -0.03 (3.54)

dose 8.03 (4.12) 9.04 (2.84)

dose * tcd -0.30 (0.20) -0.43 (0.17)

Random part (variances level 2)

Intercept 225.06 (17.19)

t0a 125.21 (18.73)

t1b 378.90 (34.90)

t2c 67.16 (15.29)

tcd 0.09 (0.01)

Residual variance 108.51 (3.11)

Deviance 39,626

P-value \ 0.0001
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after 1 year in the pattern mixture approach (0.21) was twice

the estimated difference in slope of the random effects model

(0.10) and was significant. However, in both approaches, the

absolute differences in PF after 1 year were small, as can be

concluded comparing Figs. 3, 4, and 5.

Sensitivity analysis

The results of the analysis for only patients for which the

disease state was known after 5 years (patients with maxi-

mum study period) revealed no differences compared to the

results of the analysis for all patients. Therefore, we do not

present the results for this restricted number of patients. In

our data, the consequences of defining patterns based on

patients with different length of study period were negligible.

Discussion

In this paper, the pattern mixture approach as a method for

correction for informative drop-out was studied. We

illustrated this on data from a large multi-center random-

ized trial comparing the long-term impact on HRQOL of

two different doses chemotherapy for patients with breast

cancer. We only considered one dimension of the HRQOL,

namely PF. We focused on a subgroup of patients with

normal HER2 expression in their tumor for whom it was

shown that the (disease free) survival was better for the

high dose than for the standard-dose arm (Rodenhuis et al.

[16]). We compared the results of the pattern mixture

approach to the results of the commonly used random

effects model for the subscale PF.

In this particular example, the pattern mixture approach

leads to differences with respect to the estimation and

Fig. 5 The estimated course of PF over time per treatment based on

the pattern mixture model

Table 6 The estimated difference between arms for the first time

points t0 to t3 and for the slope after 1 year based on the pattern

mixture model

Time point Estimate (standard error) P-value

t0 0.72 (1.26) 0.55

t1 -27.81 (2.01) \0.001

t2 -8.17 (1.63) \0.001

t3 -3.75 (1.47) 0.003

After t3 0.21 (0.06) 0.001

Fig. 4 a The estimated course of PF over time per treatment for pattern ‘deceased’. b The estimated course of PF over time per treatment for

pattern ‘alive with relapse’. c The estimated course of PF over time per treatment for pattern ‘disease free’
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significance of the difference in decline of PF measures

over time between both arms after 1 year: The estimated

difference in decline is doubled from 0.10 (P = .055) in

the random effects model to 0.21 (P = 0.001) in the pat-

tern mixture approach. However, the absolute estimated

differences in PF between both chemotherapy doses after

1 year are similar in both approaches, and therefore the

pattern mixture approach does not lead to other conclusions

than the commonly used random effects model.

In studies with a lot of missing values due to drop-out for

different reasons, it is important to explore whether the drop-

out is informative or not. It is possible that for some out-

comes the drop-out is informative, while for other outcomes

this is not. An example for this is the case where the mean

blood pressure is the main outcome in a study concerning a

clinical patient population with high blood pressure, and

where patients are repeatedly measured over time until their

blood pressure is sufficiently reduced. So, patients are not

measured any more (drop-out of the study) when they have

‘‘good’’ blood pressure values. In this case, the drop-out is

caused by the previous measurement, and therefore not

informative. So if one is planning a study with different sort

of outcome measures, one must consider whether the drop-

out is informative for each different outcome measure. In our

data, we only considered drop-out by death or relapse as the

two main sources of informative drop-out.

The crucial (and maybe the hardest) point in applying

the pattern mixture approach is the choice of the patterns.

The validity of the model estimates is determined by the

implicit assumption that within each pattern, the missing

data process is MAR. This is an untestable assumption;

testing MCAR vs. MAR is possible, but testing MAR vs.

MNAR is not (Molenberghs et al. [20]). The choice of the

patterns must be made in such a way that this assumption is

plausible. The number of patterns could be extended, based

on the exact survival time or time of relapse, for example to

account for the fact that shortly before death, the PF often

drops and the amount of missing responses increases. In

our data, we defined the patterns based on HRQOL-related

events as death and relapse.

In our model, we had some censored patients, and we

used their last observed event state for grouping them into

patterns. Compared to the patients with maximum study

period, relapse-free patients who are censored could still die

or get tumor relapse within 5 years, implying that they

belong to the pattern ‘deceased’ or ‘alive with relapse’.

Analogously, patients with tumor relapse could still die

within 5 years and therefore belongs to the pattern

‘deceased’. The implication of the different length of study

period follow-up might be that the assumption of MAR

within each pattern is violated. To check this, we also

modeled the data for only patients with complete follow-up.

Comparing these results with the results of the analysis of all

patients, we found similar results with somewhat larger

standard errors. This means that for our data, there is no

large problem here on this point. But for the application on

other data with patterns based on disease states for patients

with different lengths of follow-up, one must carefully

consider the point whether the data are MAR within the

patterns, and check this by sensitivity analysis, if possible.

The patterns chosen here do have clinical relevance. It is

clinically interesting to estimate the courses over time for

relapse-free patients. This could be interesting in terms of

prediction: What is the HRQOL during the next 5 years,

assuming that patients remain disease free? However, our

model is less appropriate for the prediction for patients alive

with relapse, because the pattern is based on the state at

5 year and the estimated PF measures over time are based on

PF measures for patients with relapse and patients who did

not yet have a relapse at that time point. The pattern

‘‘deceased’’ needs also special attention. Death is different

from other reasons of missing, where we can assume that the

quality of life exists but is not measured. If and how quality

of life after death is defined is a topic of much discussion.

The random effects models used in this paper implicitly

impute missing PF scores, also after a patient has died. This

is done by extrapolating the patient’s individual trajectory

before death. One could question this approach. Therefore,

one might want to limit the analysis for patients being alive.

Pauler et al. [9] proposed to use the pattern mixture model

estimates conditional on not being in pattern ‘‘deceased’’.

Diggle et al. [14] discussed extensively the validity of dif-

ferent models accounting for informative drop-out, includ-

ing the relatively new approaches where measures (as

HRQOL) and times to events (as relapse and death) are

jointly modeled. Applying the latter models to these par-

ticularly data will be a topic for new research.

In general, it is recommended in data with informative drop-

out to do sensitivity analysis by using different approaches.

The pattern mixture approach we propose here is rather a

simple extension of the commonly used random effects models

in longitudinal data, and might therefore be routinely

employed in the analysis of randomized clinical trials.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

Appendix

Model specification empty model

Yij ¼ b0 þ ui þ eij;

where Yij is the HRQOL of patient i on time point j, ui the

random term indicating the between-person variability, and
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eij the random term indicating the residual variance. The

random terms are independent and assumed to be normally

distributed with mean zero and constant variance, notated

by

ui �Nð0; r2
uÞ and eij �Nð0; r2

eÞ:

Model specification time model

The course over time (in months after randomization) is

specified using four different time variables, namely t0, t1,

t2, and tc defined as follows.

Let t0 be the dummy variable for time which equals 1

at baseline and zero afterward. Let, similarly, t1 be the

dummy variable, which equals 1 at 3 months, and zero

on other time points and t2 the dummy variable, which

equals 1 at 6 months, and zero at other time points. Let

tc be a variable equal to 0 in the first year and equal to

time-12 thereafter. In this way, the effect of time is

assumed to be continuously increasing or decreasing after

1 year.

The time model can be specified as follows

Yij ¼ ðb0 þ u0iÞ � t0þ ðb1 þ u1iÞ � t1þ ðb2 þ u2iÞ � t2þ b3

þ u3i þ ðbc þ uciÞ � tcþ eij;

where b0, b1, b2, b3, and bc are the fixed effects, and u0i,

u1i, u2i, u3i, uci the random effects.

Interpretation

b0 ? b3: HRQOL at baseline

b1 ? b3: HRQOL at 3 months (just after chemotherapy)

b2 ? b3: HRQOL at 6 months

b3: HRQOL at 1 year

bc: slope of the HRQOL course over time after 1 year

The random effects u0i, u1i, u2i, and u3i can be grouped in a

similar way, but now indicating the random variability

between patients at each time point. The random effect uci

indicates the random variability of the slope between

patients, and eij is the residual variance.

Model specification final model

Define

f timeð Þ ¼ ðb0 þ u0iÞ � t0þ ðb1 þ u1iÞ � t1þ ðb2 þ u2iÞ � t2
þ b3 þ u3i þ ðbc þ uciÞ � tcþ eij

indicating the time model.

The final model is the time model plus the effect of

treatment arm and all interactions (as fixed effects)

between treatment arm and time variables t0, t1, t2, and tc.

So, the final model is specified as follows

Yij ¼ f time � doseð Þ
¼ f timeð Þ þ bd � doseþ bd0 � dose � t0þ bd1 � dose � t1
þ bd2 � dose � t2þ bdc � dose � tc;

where dose equals 1 for the high-dose arm and 0 for the

standard dose.

Note that the interaction term dose�t3 is not included in the

model, since this would lead to over specification of the

model. This is more evident when considering the interpre-

tation of the different fixed effects: each extra parameter in this

model reflects the difference in doses for each time variable.

Interpretation

bd ? bd0: difference in HRQOL between both doses at

baseline.

bd ? bd1: difference in HRQOL between both doses at

3 months.

bd ? bd2: difference in HRQOL between both doses at

6 months.

bd: difference in HRQOL between both doses at 1 year

bdc: difference in slopes between both doses after 1 year

The fixed part of f(time) reflects the course over time for

patients in the standard dose. Filling in 1 for dose in the

fixed part of f(time * dose) yields the course over time for

patients in the high dose.

Specification of the pattern mixture model

Let pat1 be the pattern dummy variable equal to 1 for patients

with relapse during the study period, and zero otherwise. Let

pat2 be the pattern dummy variable equal to 1 for relapse-

free patients during study period, and zero otherwise.

The random effects model in the pattern mixture

approach (called the pattern mixture model) is the final

model with additional the pattern dummy variables and all

interactions between the variables of the final model with

these pattern dummy variables.

Let f(time * dose) be the final model. The pattern mix-

ture model can then be specified as

Yij ¼ f time � doseð Þ þ c1 � pat1þ c2 � pat2þ c1d � pat1 � dose

þ c2d � pat2 � doseþ c10 � pat1 � t0þ c20 � pat2 � t0
þ c11 � pat1 � t1þ c21 � pat2 � t1þ c12 � pat1 � t2
þ c22 � pat2 � t2þ c1c � pat1 � tcþ c2c � pat2 � tc
þ c1d0 � pat1 � dose � t0þ c2d0 � pat2 � dose � t0
þ c1d1 � pat1 � dose � t1þ c2d1 � pat2 � dose � t1
þ c1d2 � pat1 � dose � t2þ c2d2 � pat2 � dose � t2
þ c1dc � pat1 � dose � tcþ c2dc � pat2 � dose � tc;

where c1 to c2dc are the fixed parameters.
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Interpretation

The fixed part of f(time * dose) indicates the course over

time for both doses for the deceased patients and can be

interpreted as in the final model. The fixed part of

f(time * dose) and additionally all variables including pat1

reflects the course over time for both doses for the patients

with relapse. The fixed part of f(time * dose) and all

variables including pat2 reflects the course over time for

both doses for relapse-free patients (rel free).

So,

Yij deceasedð Þ ¼ f time � doseð Þ

Yij relapseð Þ ¼ f time � doseð Þ þ c1 þ c1d � dose

þ c10 � t0þ c11 � t1þ c12 � t2þ c1c � tc
þ c1d0 � dose � t0þ c1d1 � dose � t1
þ c1d2 � dose � t2þ c1dc � dose � tc

Yij rel freeð Þ ¼ f time � doseð Þ þ c2 þ c2d � doseþ c20 � t0
þ c21 � t1þ c22 � t2þ c2c � tc
þ c2d0 � dose � t0þ c2d1 � dose � t1
þ c2d2 � dose � t2þ c2dc � dose � tc

The results for patients in the standard dose are obtained

for dose equal to zero (the fixed part of the time model).

The results for patients in the high dose are obtained for

dose equal to one.

Weighting over all patterns in the pattern mixture

approach

In the pattern mixture approach, the drop-out process is

modeled by the probability to belong to a specific drop-out

pattern for each dose separately. Let p0 = (p00, p01, p02) be

the vector of probabilities to belong to patterns 0

(deceased), 1 (relapse), or 2 (relapse free), respectively, for

patients in the standard dose. Let p1 = (p10, p11, p12) be

the vector of probabilities to belong to patterns 0

(deceased), 1 (relapse), or 2 (relapse free), respectively, for

patients in the high dose.

The results of the pattern mixture approach are obtained

by weighting the courses over time of the different patterns

by their corresponding proportions.

So,

Yij pattern mixture approachð Þ¼p00 �Yij deceased; dose¼0ð Þ
þp10 �Yij deceased; dose¼1ð Þ
þp01 �Yij relapse; dose¼0ð Þ
þp11 �Yij relapse; dose¼1ð Þ
þp02 �Yij rel free; dose¼0ð Þ
þp12 �Yij rel free; dose¼1ð Þ:

References

1. Groenvold, M., Fayers, P. M., Petersen, M. A., et al. (2006). Che-

motherapy versus ovarian ablation as adjuvant therapy for breast

cancer: impact on health-related quality of life in a randomized trial.

Breast Cancer Research and Treatment, 98, 275–284.

2. Bottomley, A., & Therasse, P. (2002). Quality of life in patients

undergoing systemic therapy for advanced breast cancer. Lancet
Oncology, 3(10), 620–628.

3. Fitzmaurice, G., Laird, N., & Ware, J. (2004). Applied longitu-
dinal analysis. New York: Wiley-Interscience.

4. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63,

581–592.

5. Hedeker, D., & Gibbons, R. D. (2006). Longitudinal data anal-
ysis. New Jersey: Wiley-Interscience.

6. Curran, D., Molenberghs, G., Aaronson, N. K., Fossa, S. D., &

Sylvester, R. J. (2002). Analysing longitudinal continuous quality

of life data with drop-out. Statistical Methods in Medical
Research, 11, 5–23.

7. Michiels, B., Molenberghs, G., Bijnnes, L., Vangeneugden, T., &

Thijs, H. (2002). Selection models and pattern-mixture models to

analyse longitudinal quality of life subject to drop-out. Statistical
Methods, 21, 1023–1041.

8. Hedeker, D., & Gibbons, R. D. (1997). Application of random-

effects pattern-mixture models for missing data in longitudinal

studies. Psychological Methods, 2, 64–78.

9. Pauler, D. K., McCoy, S., & Moinpour, C. (2003). Pattern mix-

ture models for longitudinal quality of life studies in advanced

stage disease. Statistics in Medicine, 22, 795–809.

10. Diggle, P., & Kenward, M. G. (1994). Informative drop-out in

longitudinal data analysis. Applied Statistics, 43, 49–93.

11. Little, R. J. A. (1995). Modeling the drop-out mechanism in

repeated-measures studies. Journal of the American Statistical
Association, 90, 1112–1121.

12. Curran, D., Molenberghs, G., Fayers, P. M., & Machin, S. (1998).

Incomplete quality of life data in randomized trials: Missing

forms. Statistics of Medicine, 17, 697–709.

13. Kurland, B. F., & Heagerty, P. J. (2005). Directly parameterized

regression conditioning on being alive: Analysis of longitudinal

data truncated by deaths. Biostatistics, 6, 241–258.

14. Diggle, P., Farewell, D., & Henderson, R. (2007). Analysis of

longitudinal data with drop-out: Objectives, assumptions and a

proposal. Applied Statistics, 5, 499–550.

15. Rodenhuis, S., Bontenbal, M., Beex, L. V., et al. (2003). High

dose chemotherapy with hematopoietic stem-cell rescue for high-

risk breast cancer. New England Journal of Medicine, 349, 7–16.

16. Rodenhuis, S., Bontenbal, M., Van Hoesel, Q. G. C. M., et al.

(2006). Efficacy of high- dose alkylating chemotherapy in HER2/

neu-negative breast cancer. Annals of Oncology, 17, 588–596.

17. Buijs, C., Rodenhuis, S., Seynaeve, C. M., et al. (2007). Pro-

spective study of long-term impact of adjuvant high-dose and

conventional-dose chemotherapy on health-related quality of life.

Journal of Clinical Oncology, 25, 5403–5409.

18. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis. An
introduction to basic and advanced multilevel modeling. London:

Sage Publications.

19. Bisshop, Y. M. M., Fienberg, S. E., & Holland, P. (1975). Dis-
crete multivariate analysis: Theory and practice. Cambridge,

MA: MIT Press.

20. Molenberghs, G., Goetghebeur, E. J. T., Lipsitz, S. R., & Ken-

ward, M. G. (1999). Nonrandom missingness in categorical data:

Strengths and limitations. The American Statistician, 53, 110–

118.

148 Qual Life Res (2010) 19:137–148

123


	The analysis of longitudinal quality of life measures �with informative drop-out: a pattern mixture approach
	Abstract
	Purpose
	Methods
	Results
	Conclusion

	Introduction
	Methods
	Dutch multi-center randomized clinical�breast cancer trial
	Subgroup of patients
	Quality of life assessment
	Statistical analysis
	Descriptive
	Drop-out
	Random effects model (assuming MAR)
	Pattern mixture approach (correction for informative drop-out)
	Comparison of the results of the random effects�model and pattern mixture approach
	Sensitivity analysis

	Results
	Descriptive
	Drop-out
	Random effects model (assuming MAR)
	Pattern mixture approach (correction for informative drop-out)
	The fit of the pattern mixture model
	Courses per pattern
	All patterns together
	Comparison results of both approaches
	Sensitivity analysis


	Discussion
	Open Access
	Appendix
	Model specification empty model
	Model specification time model
	Interpretation
	Model specification final model
	Interpretation
	Specification of the pattern mixture model
	Interpretation
	Weighting over all patterns in the pattern mixture approach

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


