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Abstract
We propose the valuation of a real option in the telecommunications industry. According 
to the probabilistic present worth approach, we estimate the value of a contract between 
a television network and a company willing to advertise its business on this network. We 
assume that the value of the contract depends on a time-dependent variable, i.e., the num-
ber of viewers tuned into the network, which behaves like a Markov process. After dis-
cretizing and converting this number into a monetary value through a specific function, 
we compute the nth-order moment of the total discounted earnings. The knowledge of the 
moments, and the application of the maximum-entropy approach, allows to find the prob-
ability distribution of the payoff function and the consequential pricing of the real option. 
Finally, we apply the proposed model to the real television audience data.

Keywords Markov chain · Advertising · Probabilistic present value · Real option

1 Introduction

The advertising industry plays a prominent role in driving consumer behaviour in several 
fields, e.g., food advertising (Harris et al. 2009) and public service advertising (O’Keefe 
and Reid 2020). In general, the literature is rich in studies analyzing the relationship that 
advertising has with the number of sales, the brand purchase choices, and the psychology 
(see, e.g., Raj 1982; Krishnamurthi and Raj 1985; Guadagni and Little 1983; Snyder and 
DeBono 1985; Putrevu 2001).
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However, there are few specific quantitative studies on advertising costs. For instance, 
Danaher and Rust (1996) consider advertising as an investment and find the level of 
expenditure that maximises the return on investment. This is maximization constrained 
to a set budget without deepening the timing of an advertising campaign. Martín-Oliver 
and Salas-Fumás (2008) study how investment in advertising, together with other inputs 
as labour, physical, and IT capital, affects the demand for deposit and loan bank services 
through a static model of profit maximisation. Therefore, we aim to estimate the value of 
a contract between a television network and a company willing to advertise its business on 
this network without budget constraints and valuing advertising airtime. To this extent, we 
compute this value by employing a real options approach, which is widely discussed in the 
literature (see, e.g., Lo and Lan 2008).

A key aspect of the real option pricing method is that it is not possible to build replicat-
ing portfolios because the assets are not tradable. However, it can be possible to relate the 
valuation of real projects to quoted assets with the same level of risk as the non-traded ones 
(see Borison (2005) and Smith and Nau (1995)). We can identify four main pricing meth-
ods. First, the Black and Scholes (B&S) option pricing model (Black and Scholes 1973) 
used for real option in McDonald and Siegel (1986). The second most popular method is 
the so-called Binomial Option Pricing Model (BOPM), which limits the underlying asset 
movement to two choices: up by a factor u and down by a factor d. The first contribution 
of the BOPM for financial options is by Cox et al. (1979). However, Kellogg and Charnes 
(2000) used decision trees and binomial lattice methods to value biotech companies as the 
sum of the value of their drug development programs. Also Di  Bari et  al. (2023) study 
the impact of polarity score on real option valuation by using a binomial approach. An 
alternative approach is to employ the Monte Carlo method for valuing options (see, e.g., 
Boyle et al. 1997; Glasserman 2004).1 In particular, for the evaluation of real options with 
the Monte Carlo method see Abdel Sabour and Poulin (2006). Finally, we note the proba-
bilistic present worth analysis, developed by Carmichael et al. (2011), who computes the 
present value as the sum of all the discounted cash flow at each period using only expected 
values and variances. Moreover, the same author presented a complete collection of plain 
and compound real options (Carmichael 2016).

Each of these pricing methods has strengths and weaknesses. For example, the B&S 
model presents the following limitations: the arbitrage principle is not applicable to real 
options as real assets are not traded; the Geometric Brownian motion may be a suitable 
model for stock price movements, but its applicability to real assets is not straightforward 
(Damodaran 1999; Newton et al. 2001); the computation of volatility in the real options 
analysis is difficult (Amram and Kulatilaka 1998; Kodukula and Papudesu 2006; Lewis 
et al. 2008); contrary to the real options, financial options are usually exercised instantane-
ously (Damodaran 1999; Lewis et  al. 2008); while the decision pertaining to a financial 
option cannot change the value of the underlying asset, the same is not true for real options 
(Newton et al. 2001). The BOPM method is useful for pricing vanilla options with early 
exercise opportunities because of its accuracy and rapid convergence. However, it can be 
quite difficult to adapt to complex situations as stated in Fadugba et al. (2012). Contrary to 
the previous methods, the Monte Carlo method can handle any type of option with differ-
ent complexities. However, its weakness resides in the required computational effort, which 
can be intense in more complex situations. Finally, the probabilistic present worth can be 

1 For a comprehensive review of Monte Carlo method see Glasserman (2004).
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used with any kind of distribution for the asset value. However, it was employed using only 
the first two moments leading to an estimate that can be biased and must be improved.

In our work, we adopt the present worth method to compute the value of a contract 
between a television network and a company willing to advertise on this network. Con-
trary to the option valuation in Carmichael (2016), we employ a Markov chain reward to 
model the number of viewers of the advertising, thus including a time dependence into 
the computation of the present value. Moreover, we do not limit the analysis to the use 
of expected values and variances of the cash flows, but we also include higher moments. 
Then, we obtain the probability distribution with the maximum entropy approach by Mead 
and Papanicolaou (1984).

Specifically, we consider an option that gives the possibility, in exchange for a price 
paid today, to exercise the option at a future time to choose between airing the advertise-
ment or not.

Our methodology is based on Markov chains due to the high versatility and robustness 
demonstrated in describing a variety of real-world problems (see, e.g., D’Amico and Vil-
lani 2021; Petronio et  al. 2014; Kalligeris et  al. 2021; De Blasis 2020. Other examples 
of works that have used Markov Chains in the context of options are D’Amico (2006), 
D’Amico (2008) and Duan et al. (2003).

The contribution of this work is twofold. On the one hand, we propose a new methodol-
ogy to compute the pricing of an option in which the underlying asset is a television adver-
tisement. In particular, this strategy requires the calculation of the expected value of the 
payoff function of a European call option depending on the sum of discounted cash flows 
for the pricing of a real option. To this extent, we compute the moments derived through 
a general Markovian reward process by identifying new recursive equations. On the other 
hand, by employing these moments as constraints within an entropy optimization problem, 
we can derive the density function of the underlying asset.

The methodology is applied to advertising data freely provided by the Italian Audi-
tel website. The dataset comprises aggregated data referring to eight time slots for each 
month. The application to real data shows that results are consistent to variations of the 
general parameters of the model. Moreover, they show an increasing accuracy when using 
higher order moments, contrary to the classical B&S model which uses only two moments.

The paper is organised as follows. In Sect. 2, we present the mathematical model for 
option pricing. Then, in Sect. 3, an application case of the model is proposed and, finally, 
in Sect. 4, the conclusions of our work are given.

2  The model

We assume that company A wants to advertise its business and company B is a television 
network. To this end, they sign an option contract that gives the possibility to company A 
to advertise its business on a television owned by company B. At time t = 0 the option has 
a price equal to P and it can be exercised at the strike price K, at a specific time t0 . Exercis-
ing the option allows company A to air multiple advertisements at future times t0, t1,… , tn . 
At maturity, cash flows are generated depending on the number of viewers N(ti) , tuned at 
time ti , through a function G ∶ ℕ0 → IR+ where G = G(N(ti)) . The cash flow related to the 
option is illustrated in Fig. 1 and note that ti times are not necessarily equispaced.
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Obviously, the value assumed by G(N(ti)) depends on the estimate that company A will 
make.

Let r be a fixed discount rate.2 We compute the sum of all the discounted cash flows as

and, since the considered option is a European call option, we can define the payoff func-
tion as

Finally, we can compute the option price as

where fZ is the density function of the random variable Z.
Unfortunately, we do not know the density function fZ . However, one possibility to find 

it is to employ the maximum entropy approach by Mead and Papanicolaou (1984), which 
requires the knowledge of the moments �[Zk] , k ∈ ℕ.

2.1  Method of moments

In the classical moment problem, the positive density fZ(z) is sought from the knowledge 
of its finite N + 1 power moments. However, we can find an infinite number of densities 
with the same N + 1 moments. To overcome this issue, Mead and Papanicolaou (1984) 
proposed the maximum-entropy approach that leads to the construction of a sequence of 
approximations. The solution to the problem coincides with the solution to the constrained 
maximization of the following function:

where a and b are the extremes of the distribution support, �k , with 0 ≤ k ≤ N , are the first 
N + 1 true moments, and �n are the Lagrange multipliers. Setting the partial derivatives of 
the function equal to zero, �S

�fZ (z)
= 0 and �S

��k
= 0 , the authors obtain the maximum of the 

entropy, with general solution

(1)Z =

n∑
i=1

e−(ti−t0)rG(N(ti)),

(2)W = max (Z − K, 0).

(3)�[W] = ∫
∞

K

z ⋅ fZ(z)dz,

S(fZ(z)) = −∫
b

a

[fZ(z) ln fZ(z) − fZ(z)]dz +

N∑
k=0

�k

(
∫

b

a

zkfZ(z)dz − �k

)
,

t
− P

0

− K + G (N ( t0 ))

t0

G (N ( t1 ))

t1

G (N ( t2 ))

t2

. . .

. . .

G (N ( tn ))

tn

Fig. 1  Cash flow of the option

2 For stochastic discount interest see Zhao and Zhang (2010).
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Now, to find the maximum entropy solution, they solved the following system of N + 1 
equations,

2.2  Moments computation

In order to compute the moments of the random variable Z, we assume that the number 
of viewers behaves like a Markov reward process. The related Markov chain {Jn}n∈ℕ has 
a state space E = {1, 2,… , s} indicating the regimes of the viewers. The chain respects 
the following Markov property:

where pji,ji+1 represents the probability to reach state ji+1 starting from state ji . These prob-
abilities, which together make up the transition probability matrix P , are easily calculated 
by counting how many times the chain reaches the state ji+1 from the state ji divided by 
the total number of times the chain reaches the state ji+1 . Each state of the Markov process 
indicates at any time the listening regime. For instance, if s = 3 , Ji = 1 could be associated 
with a low level of audience, Ji = 2 could represent a medium level and Ji = 3 will stand 
for a high audience level.

Conditionally to the regime Ji = l with l ∈ E , the random number of listeners has 
specific cumulative distribution functions:

We define the k-th moment of Z, conditioned to the starting state Jt0 = j0 of our process, 
referred to tn

0
= (t0, t1,… , tn) that is the vector of times in which the advertisement will be 

aired, as follows:

We split the previous equation into two addends as follows,

Then, applying Newton’s binomial formula, we obtain

fZ(z) = e−�0−
∑N

k=1
�kz

k

.

∫
b

a

zkfZ(z)dz = �k, k = 0, 1,… ,N.

(4)

ℙ(Ji+1 = ji+1|Ji = ji, Ji−1 = ji−1,… , J0 = j0)

= ℙ(Ji+1 = ji+1|Ji = ji)

= pji,ji+1 ,

(5)Fl(y) = ℙ(N(ti) ≤ y ∣ Ji = l), ∀i ∈ ℕ0.

(6)M
(k)

j0
(tn
0
) ∶= �

⎡⎢⎢⎣

�
n�

r=1

e−(tr−t0)rG(N(tr))

�k����Jt0 = j0

⎤⎥⎥⎦
.

(7)M
(k)

j0
(tn
0
) = �

⎡⎢⎢⎣

�
e−r(t1−t0)G(N(t1)) +

n�
a=2

e−r(ta−t0)G(N(ta))

�k����Jt0 = j0

⎤⎥⎥⎦
.
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and we can consider the following three expected values,

Now, the previous expected values are calculated. As far as the first addend is concerned, 
the tower property of conditional expectation gives

We proceed to compute the internal expected value as,

This means that the value assumed by the first addend of Eq. (9) is

The quantity p(t1−t0)
j0,j1

 is the probability of reaching the state j1 in the time t1 starting from 
state j0 in the time t0 , obtainable as the place element j0, j1 of the t1 − t0 power of the transi-
tion matrix P . Similarly, we calculate the expected value of the second addendum of 
Eq.  (9). However, this time, we condition on the chain state and the number of tuned 
people,

The deterministic part comes out of the innermost expected value,

Now, the internal expected value is computed as follows:

(8)

M
(k)

j0
(tn
0
) =

k∑
m=0

(
k

m

)
�

[(
e−r(t1−t0)G(N(t1))

)m
⋅

(
n∑

a=2

e−r(ta−t0)G(N(ta))

)k−m||||Jt0 = j0

]
,

(9)

M
(k)

j0
(tn
0
) = �

��
e−r(t1−t0)G(N(t1))

�k�Jt0 = j0

�

+

k−1�
m=1

�
k

m

�
�

⎡⎢⎢⎣
�
e−r(t1−t0)G(N(t1))

�m
�

n�
a=2

e−r(ta−t0)G(N(ta))

�k−m����Jt0 = j0

⎤⎥⎥⎦

+ �

⎡⎢⎢⎣

�
n�

a=2

e−r(ta−t0)G(N(ta))

�k����Jt0 = j0

⎤⎥⎥⎦
.

(10)�

[
�

[(
e−r(t1−t0)G(N(t1))

)k|Jt1 , Jt0 = j0

]
|Jt0 = j0

]
.

(11)e−rk(t1−t0) ∫
∞

0

(g(y))kfJ1 (y)dy.

(12)
∑
j1∈E

p
(t1−t0)

j0,j1
e−rk(t1−t0) ∫

∞

0

(g(y))kfj1 (y)dy.

(13)

k−1∑
m=1

(
k

m

)
�

[
�

[(
e−r(t1−t0)G(N(t1))

)m
⋅

(
n∑

a=2

e−r(ta−t0)G(N(ta))

)k−m||||Jt1 ,N(t1)
]||||Jt0 = j0

]
.

(14)

k−1∑
m=1

(
k

m

)
�

[(
e−r(t1−t0)G(N(t1))

)m
⋅ �

[( n∑
a=2

e−r(ta−t0)G(N(ta))

)k−m||||Jt1 ,N(t1)
]||||Jt0 = j0

]
.
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By substituting the previous value into the second addend of Eq. (9), we obtain

After performing the necessary calculations, we arrive at the following form,

The final step is to determine the expected value of the third addend of Eq. (9) that is equal 
to

The moment equation results from replacing the addends in (9),

�

⎡⎢⎢⎣

�
n�

a=2

e−r(ta−t0)G(N(ta))

�k−m����Jt1 ,N(t1)
⎤
⎥⎥⎦

= �

⎡⎢⎢⎣

�
n�

a=2

e−r(ta−t1+t1−t0)G(N(ta))

�k−m����Jt1 ,N(t1)
⎤⎥⎥⎦

= e−r(k−m)(t1−t0)�

⎡⎢⎢⎣

�
n�

a=2

e−r(ta−t1)G(N(ta))

�k−m����Jt1 ,N(t1)
⎤⎥⎥⎦

= e−r(k−m)(t1−t0)M
(k−m)

j1
(tn
1
).

k−1∑
m=1

(
k

m

)
�

[(
e−r(t1−t0)G(N(t1))

)m
e−r(k−m)(t1−t0)M

(k−m)

j1
(tn
1
)
||||Jt0 = j0

]

=

k−1∑
m=1

(
k

m

)
e−r(t1−t0)m

∑
j1∈E

p
(t1−t0)

j0,j1 ∫
∞

0

(g(y))mfj1 (y)dy

⋅ e−r(k−m)(t1−t0) ⋅M
(k−m)

j1
(tn
1
).

(15)
k−1∑
m=1

(
k

m

)
e−rk(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1
M

(k−m)

j1
(tn
1
)∫

∞

0

(g(y))mfj1 (y)dy.

�

⎡⎢⎢⎣
�

⎡
⎢⎢⎣

�
n�

a=2

e−r(ta−t0)G(N(ta))

�k����Jt1
⎤
⎥⎥⎦
����Jt0 = j0

⎤
⎥⎥⎦

= �

⎡⎢⎢⎣
�

⎡⎢⎢⎣

�
n�

a=2

e−r(ta−t0+t1−t1)G(N(ta))

�k����Jt1
⎤⎥⎥⎦
����Jt0 = j0

⎤⎥⎥⎦
=

�
j1∈E

p
(t1−t0)

j0,j1
e−rk(t1−t0)M

(k)

j1
(tn
1
).
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At this point, it is possible to find the first moment by setting k = 1 and we obtain the fol-
lowing result,

After some arrangements, we have

To solve the previous equation, we set t0 = tn−1 , which is equivalent to say that t1 = tn . 
Thus, we obtain

The moment M(1)

jn
(tn
n
) is null by definition, which occurs when t0 = tn . Therefore, the for-

mula becomes

We note that all terms to the right of the equality symbol are known and that this calcula-
tion must be done for all possible values of jn−1 ∈ E . Subsequently, we replace t0 = tn−2 , 
thus we have

The moment M(1)

jn−1
(tn
n−1

) is known from the previous step, hence the formula becomes,

(16)

M
(k)

j0
(tn
0
) = e−rk(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1 ∫
∞

0

(g(y))kfj1 (y)dy

+

k−1∑
m=1

(
k

m

)
e−rk(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1
M

(k−m)

j1
(tn
1
)∫

∞

0

(g(y))mfj1 (y)dy

+ e−r(t1−t0)k
∑
j1∈E

p
(t1−t0)

j0,j1
M

(k)

j1
(tn
1
).

M
(1)

j0
(tn
0
) = e−r(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1 ∫
∞

0

(g(y))fj1 (y)dy

+ e−r(t1−t0)
∑
j1∈E

p
(t1−t0)

j0,j1
M

(1)

j1
(tn
1
).

(17)M
(1)

Jt0
(tn
0
) = e−r(t1−t0)

∑
jt1
∈E

p
(t1−t0)

Jt0
,j1

[
∫

∞

0

(g(y))fj1 (y)dy +M
(1)

j1
(tn
1
)

]
.

M
(1)

jn−1
(tn
n−1

) = e−r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn

[
∫

∞

0

(g(y))fjn (y)dy +M
(1)

jn
(tn
n
)

]
.

(18)M
(1)

jn−1
(tn
n−1

) = e−r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn ∫
∞

0

(g(y))fjn (y)dy.

M
(1)

jn−2
(tn
n−2

) = e−r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1
⋅

[
∫

∞

0

(g(y))fjn−1 (y)dy +M
(1)

jn−1
(tn
n−1

)

]
.

(19)

M
(1)

jn−2
(tn
n−2

) = e−r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1

[
∫

∞

0

(g(y))fj1 (y)dy

+ e−r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn ∫
∞

0

(g(y))fjn (y)dy

]
.
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At this point, we can continue recursively setting t0 = tn−3 up to t0 to finally have the first 
moment.

To compute the second moment, we set k = 2 in (16) and we obtain

thus,

We set t0 = tn−1 , which is identical to saying t1 = tn , to find the solution,

The moments M(1)

jn
(tn
n
) and M(2)

jn
(tn
n
) are null by definition, which occurs when t0 = tn . 

Therefore, the formula becomes

We note that all terms to the right of the equality symbol are known. Subsequently, we 
replace t0 = tn−2 and t1 = tn−1 , thus we obtain

M
(2)

j0
(tn
0
) = e−2r(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1 ∫
∞

0

(g(y))2fj1 (y)dy

+

2−1∑
m=1

(
2

m

)
e−2r(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1
M

(2−m)

j1
(tn
1
)∫

∞

0

(g(y))mfj1 (y)dy

+ e−2r(t1−t0)
∑
j1∈E

p
(t1−t0)

j0,j1
M

(2)

j1
(tn
1
),

(20)

M
(2)

j0
(tn
0
) = e−2r(t1−t0)

∑
j1∈E

p
(t1−t0)

j0,j1 ∫
∞

0

(g(y))2fj1 (y)dy

+ 2e−2r(t1−t0)
∑
j1∈E

p
(t1−t0)

j0,j1
M

(1)

j1
(tn
1
)∫

∞

0

(g(y))fj1 (y)dy

+ e−2r(t1−t0)
∑
j1∈E

p
(t1−t0)

j0,j1
M

(2)

j1
(tn
1
).

M
(2)

jn−1
(tn
n−1

) = e−2r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn ∫
∞

0

(g(y))2fjn (y)dy

+ 2e−2r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn
M

(1)

jn
(tn
n
)∫

∞

0

(g(y))fjn (y)dy

+ e−2r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn
M

(2)

jn
(tn
n
).

(21)M
(2)

jn−1
(tn
n−1

) = e−2r(tn−tn−1)
∑
jn∈E

p
(tn−tn−1)

jn−1,jn ∫
∞

0

(g(y))2fjn (y)dy.

M
(2)

jn−2
(tn
n−2

) = e−2r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1 ∫
∞

0

(g(y))2fjn−1 (y)dy

+ 2e−2r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1
M

(1)

jn−1
(tn
n−1

)∫
∞

0

(g(y))fjn−1 (y)dy

+ e−2r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1
M

(2)

jn−1
(tn
n−1

).
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Now, we substitute the previously calculated M(1)

jn−1
(tn
n−1

) and M(2)

jn−1
(tn
n−1

) , and we have

Finally, we can recursively set t0 = tn−3 up to t0 , to obtain the second moment.
Similarly to the computation of the first and second moments, we can compute higher 

moments.

3  Case study

We propose an application of the previously described method to advertising data from 
the Italian television network. In particular, we employ the audience data provided by 
Auditel and available at https:// www. audit el. it/ en/ data/. We obtain the monthly Average 
Minute Rating (AMR) data which represents the average number of viewers for each of 
the following time slots3: 2:00 AM–7:00 AM, 7:00 AM–9:00 AM, 9:00 AM–12:00 PM, 
12:00 PM–3:00 PM, 3:00 PM–6:00 PM, 6:00 PM–8:30 PM, 8:30 PM–10:30 PM and 10:30 
PM–2:00 AM. As an example let “Canale 5” be the channel on which the advertisement 
will be broadcast. We collected the data referred to this channel from January 2017 to 
December 2021.

In this way, the time series of AMR consists of a number of observations equal to eight-
time slots for 12 months for five years, resulting in 480 monthly observations.

To get an overview, we report the summary statistics in Table  1 that shows that the 
AMR series assumes values from 359,774 to 4,756,853 viewers, with a mean of 1,945,300 
and a standard deviation of 1,002,336.

In addition, we plot the full dataset in Fig. 2 that shows a monthly and yearly season-
ality. Therefore, to eliminate the periodic component, we perform a deseasonalization 
employing the moving average with a period equal to eight which is the number of the time 
slots for each month.

To apply the model and thus compute the relative parameters, we discretize the mov-
ing average series into a 3-state space. Specifically, we assign to the lower state all values 
included between the lowest one to � −

�

2
 , to the middle state the observations from � −

�

2
 

to � +
�

2
 , and to the higher state the values between � +

�

2
 and the greatest one.

(22)

M
(2)

jn−2
(tn
n−2

) = e−2r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1 ∫
∞

0

(g(y))2fjn−1 (y)dy

+ 2e−2r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1
e−r(tn−tn−1)

∑
jn∈E

p
(tn−tn−1)

jn−1,jn

⋅ ∫
∞

0

(g(y))fjn (y)dy∫
∞

0

(g(y))fjn−1 (y)dy

+ e−2r(tn−1−tn−2)
∑

jn−1∈E

p
(tn−1−tn−2)

jn−2,jn−1
e−r(tn−tn−1)

⋅

∑
jn∈E

p
(tn−tn−1)

jn−1,jn ∫
∞

0

(g(y))2fjn (y)dy.

3 In addition to the audience averages on the time slots, Auditel also owns data referring to audiences on 
the average minute, but these are not freely accessible. Hence, the results could be improved by using this 
data.

https://www.auditel.it/en/data/
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To get an overview of the data distribution we report the histogram in Fig. 3 along with 
the frequencies of the discretized observations. The central dashed vertical line represents 
the mean of the distribution.

Using the maximum likelihood estimation (see, e.g., Billingsley 1961; Bharucha-Reid 
1962, we are able to compute the transition probability matrix, as follows

We observe higher values along the main diagonal. Thus, the probability of remaining, for 
a time period, in the starting state is very high for one period. From this matrix, we obtain 
the following stationary distribution

(23)P =

⎡⎢⎢⎣

0.965 0.035 0.000

0.038 0.902 0.060

0.000 0.045 0.955

⎤⎥⎥⎦
.

Table 1  Descriptive statistics of 
AMR

Statistic AMR

Mean 1,945,300
Median 1,844,926
Minimum 359,774
Maximum 4,756,835
Standard deviation 1,002,336
Fisher asymmetry index 0.610
Pearson’s Kurtosis index 2.639

Fig. 2  Time series of Average Minute Rating (AMR) with rolling average expressed in 106
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that is the probability of the three audience levels in the stationary regime. Note that it is 
approximately equally distributed.

Being useful for the calculation of moments, we plot the Empirical Cumulative Dis-
tribution Function (ECDF) of State 1, State 2, and State 3 compared to the global ECDF 

(24)� =
[
0.311 0.296 0.393

]
,

Fig. 3  Histogram of the discretized states distribution superimposed on the moving average histogram

Fig. 4  Empirical Cumulative Distribution Function (ECDF) of the whole dataset and of each state
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in Fig. 4. We can see that the ECDFs of States 2 and 3 grow faster than the ECDF refer-
ring to State 1.

Since we want to check that the Markovian model is a right choice for the data consid-
ered, we perform the independence test (Basawa and Rao (1980)):

Where �j is the component of the vector

where nij is the number of times the chain moves from state i to state j.
The null hypothesis states that the probability of going from state i to state j does not 

depend on the starting state i. If this happens the sequence of MA does not depend on 
the previous state and so instead of being represented by a Markov Chain, the observa-
tions would constitute a sequence of independent and identically distributed random vari-
ables. The statistic proposed in Basawa and Rao (1980) was used to test the independence 
hypothesis:

where ni =
∑

j∈E nij . We have that S has a limiting �2 distribution with 4 degrees of free-
dom. The value of the statistic is 785.252 and we reject the null hypothesis with a confi-
dence level of 1% . Therefore, we can assume that there is time dependence on the previous 
state and Markov chains can be a suitable tool to do this modelling.

For our case study, we assume to air an advertisement for a time vector t2
0
= [4, 12, 20] . 

According to the presented model, the time at which the option is exercised is t0 , but we 
could also have chosen a different time to carry out the evaluation.4 For simplicity, let 
the gain function be a linear function of the number of listeners connected at each time 
G(N(ti)) = N(ti) . Since we do not know the risk level of the investment, we chose the dis-
count rate equal to r = 3.873% , which is the rate of the Italian Treasury Bonds.5

First, we calculate the first ten moments conditioning at each state using Eq.  (16). 
Results are shown in Table 2.

Then, we apply the method of moments with the maximum entropy approach to deter-
mine the density functions generated using different orders of moments. For the implemen-
tation of this approach, we employ the Python code PyMaxEnt by Saad and Ruai (2019). 
Figures 5, 6, and 7 show the density functions obtained from the knowledge of 2, 3, 4, 5 
and 10 moments conditioning on each state. It can be seen, for instance, that State 3 reveals 
changes in the shape of the distribution as the order of moments increases. This means that 
by increasing the moments we get a more detailed density function. This behaviour is less 
evident in State 2.

(25)H0 ∶ pi,j = �j, H1 ∶ pi,j ≠ �j, i, j ∈ E,

(26)� = (�1,�2,�3) =

�∑3

i=1
ni1

n
,

∑3

i=1
ni2

n
,

∑3

i=1
ni3

n

�
,

(27)S =
∑
i,j∈E

(nij − ni�j)
2

ni�j

,

4 In this case, it would simply be necessary to discount the incoming and outgoing monetary amounts up to 
that time.
5 Auction Results for 12-month Treasury Bonds of the 12th September 2023 published by the Italian Min-
istry of Economy and Finance.



 G. D’Amico et al.

1 3

Employing the density function derived from the knowledge of the first ten moments, 
we proceed to calculate the option price using Eq.  (3). The results are summarised in 
Table 3. We note that as the strike price increases, the option price decreases and as the 
status increases, the price also increases.

As a robustness test for our model, we compare the results with those obtained employ-
ing a parametric lognormal distribution which is compatible with a B&S model. We 
recall that the random variable X = eN follows the lognormal distribution logX(�, �2) if 
N = logX follows the normal distribution N(�, �2) . Its probability density function is:

with expected value and variance as follows:

(28)f (x) =
e
−

(ln x−�)2

2�2

x
√
2��

,

Table 2  First 10 moments 
conditioning at State 1, 2 and 3 
in millions

k j0 = 1 j0 = 2 j0 = 3

1 1.086 ⋅ 101 1.551 ⋅ 101 1.824 ⋅ 101

2 3.734 ⋅ 101 6.283 ⋅ 101 7.883 ⋅ 101

3 1.320 ⋅ 102 2.580 ⋅ 102 3.427 ⋅ 102

4 4.797 ⋅ 102 1.072 ⋅ 103 1.497 ⋅ 103

5 1.788 ⋅ 103 4.504 ⋅ 103 6.574 ⋅ 103

6 6.822 ⋅ 103 1.907 ⋅ 104 2.898 ⋅ 104

7 2.659 ⋅ 104 8.142 ⋅ 104 1.282 ⋅ 105

8 1.056 ⋅ 105 3.498 ⋅ 105 5.694 ⋅ 105

9 4.263 ⋅ 105 1.512 ⋅ 106 2.536 ⋅ 106

Fig. 5  Density functions starting from the knowledge of 2, 3, 4, 5 and 10 moments conditioning on State 1
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(29)�[X] = e
�+

�2

2 ,

(30)Var(X) = e2�+�
2

(e�
2

− 1).

Fig. 6  Density functions starting from the knowledge of 2, 3, 4, 5 and 10 moments conditioning on the 
State

Fig. 7  Density functions starting from the knowledge of 2, 3, 4, 5 and 10 moments conditioning on the 
State 3
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Using the first two moments of our parametric distributions, conditional on each state, 
we find the prices in Table 4. Similarly to the previous table, prices decrease as the strike 
price increases. The comparison of Tables 3 and 4 reveals that the values are qualitatively 
similar. It can be noted that for the first state, the values from our model are lower than 
the ones calculated with the assumption of lognormally, while those for states 2 and 3 are 
higher at least up to K = 3,500,000. Since the values in Table 3 are generated by the knowl-
edge of ten moments, they contain more information.

4  Conclusion

In the modern economy, the advertising sector has seen exponential growth in interest as 
it plays a key role in the sale of products and services. Advertising today is understood as 
a commercial vehicle for the realization of profit. With our work, we investigated how to 
price an option that allows for an advertisement to be aired at certain times in exchange for 
a strike price. First, we assumed the number of viewers of the advertisement behaves as a 
Markov chain. Then, we adopted the present worth method calculating the moments of the 
sum of all the discounted cash flows, earned from the fact that a certain number of people 
saw the advertisement.

To get the fair price of the option, we found the density function of the discounted 
cash flows via the method of moments with the maximum entropy approach by Mead and 
Papanicolaou (1984).

Applying this model to a concrete case, we found that the price value depends on the 
number of moments that are used for the calculation. Certainly, the way in which the num-
ber of viewers is converted into monetary amounts also influences the option price, along 
with the rate at which the amounts are discounted over time, the vector of the times in 
which the advertisement is aired, and the value of the strike price.

The accuracy of the result depends also on the accuracy of the data available and there-
fore, since we have data that are monthly averages, a sensitivity analysis is proposed as 
future work.

Table 3  Option prices in 
euros for different levels of 
strike prices K conditioning at 
different states starting from the 
knowledge of 10 moment

K �[Z+|j0 = 1] �[Z+|j0 = 2] �[Z+|j0 = 3]

2,500,000 3,026,852 2,712,016 4,246,645
3,000,000 2,281,606 2,609,331 4,197,020
3,500,000 993,900 2,253,315 4,066,860
4,000,000 267,469 1,452,044 3,618,019

Table 4  Option prices in euros 
for different levels of strike 
prices K conditioning at different 
states with the assumption of 
lognomality using only the first 
two moments

K �[Z+|j0 = 1] �[Z+|j0 = 2] �[Z+|j0 = 3]

2,500,000 3,093,391 3,896,355 4,253,178
3,000,000 2,320,997 3,788,033 4,252,876
3,500,000 1,166,557 3,102,409 4,185,223
4,000,000 397,141 1,784,133 3,233,648
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This paper leaves several open questions that can be addressed in future studies. Spe-
cifically, we can consider the possibility of making comparisons with further models or 
diversifying the application with other case studies. Moreover, it would be interesting to 
investigate the extension from a television network to a mobile platform with apps and 
software, to reach different viewers with on-demand requests. Finally, it can be possible to 
value the business as a compound option, in which n phases of an investment are involved.
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