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Abstract
In recent years, fused lasso models are becoming popular in several fields, such as com-
puter vision, classification and finance. In portfolio selection, they can be used to penalize 
active positions and portfolio turnover. Despite efficient algorithms and software for solv-
ing non-smooth optimization problems have been developed, the amount of regularization 
to apply is a critical issue, especially if we have to achieve a financial aim. We propose a 
data-driven approach for learning the regularization parameters in a fused lasso formula-
tion of the multi-period portfolio selection problem, able to realize a given financial target. 
We design a neural network architecture based on recurrent networks for learning the func-
tional dependence between the regularization parameters and the input data. In particular, 
the Long Short-Term Memory networks are considered for their ability to process sequen-
tial data, such as the time series of the asset returns. Numerical experiments performed on 
market data show the effectiveness of our approach.
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1 Introduction

Numerous real-life problems can be recast into the fused lasso form:

where f ∶ ℝ
n
↦ ℝ is a twice continuously differentiable convex function, L ∈ ℝ

l×n , 
A ∈ ℝ

m×n , b ∈ ℝ
m , m ≤ n , and 𝜏1, 𝜏2 > 0 . The lasso term ‖x‖1 and the fusion term ‖Lx‖1 

induce sparsity in the vector x and in some dictionary Lx, respectively. Among the applica-
tion areas, there are image processing, classification and finance (see De Simone et al. 2022 
and the references therein). The non-smoothness of the l1-type regularization terms needs 
different specialized variants of first and second-order numerical methods. First-order 
methods based on Bregman iteration (Corsaro et al. 2021b; De Simone et al. 2020; Gold-
stein and Osher 2009; Osher et al. 2005) have proved to be efficient for the solution of this 
type of problem. The Bregman iterative scheme requires the solution of an unconstrained 
subproblem at each step, which does not need to be computed exactly. It is possible to use 
iterative methods suited to deal with the l1 term, such as the alternating direction method 
of multipliers (ADMM), that guarantees convergence, provided that the inexactness of the 
solution can be controlled. The success of this approach is based also on the availability in 
closed (and cheap) form of the proximal operator of the l1 norm using the well-known soft-
thresholding operator (Corsaro et al. 2021b). Recently, specialized second-order methods 
have been proposed, that can offer an attractive alternative for large-scale problems (De 
Simone et al. 2022). In this case, a proper choice of the linear algebra solver allows one 
to efficiently solve the larger but smooth optimization problems coming from a standard 
reformulation of the original one.

Thus, very efficient methods are available to perform the numerical solution, whereas setting 
the regularization parameters is still a challenging task strongly related to the specific applica-
tion. The most generally applicable calibration schemes for this setting are typically based on 
Cross-Validation (Beer et al. 2019; Dijkstra 2014) or BIC-type criteria (Lee and Chen 2020). 
These methods provide optimal parameter values with respect to a certain loss function; they do 
not allow one to assume specific properties on the solution obtained by using those parameters. 
Our contribution is a procedure that automatically provides the regularization parameters, in a 
multi-period mean-variance portfolio optimization framework. In this context, a suitable choice 
of �1 and �2 allows one to build optimal portfolios that satisfy a fixed financial request. We refer 
to a composite financial requirement, comprising a maximum number of active positions, which 
correspond to non-null weights in the portfolio, and a maximum number of transactions. This 
allows one to reduce both holding and transaction cost, which is of great significance, especially 
for small investors (Lajili-Jarjir and Rakotondratsimba 2008; Ding 2006; Torrente and Uberti 
2023). The fused lasso approach was introduced in the context of multi-period portfolio optimi-
zation problem in Corsaro et al. (2021a, 2021b). In those papers, authors show that the formula-
tion (1) of the portfolio selection problem, where f is a dynamic risk measure, allows one to pro-
duce optimal cost-limited strategies, if �1 and �2 are properly chosen. The authors of this work 
previously explored the automatic regularization parameter computation in the context of the 
lasso portfolio selection problem in Corsaro and De Simone (2019), Corsaro et al. (2020) and 
Corsaro et al. (2022). In Corsaro and De Simone (2019) the single period case was considered. 
In that paper an adaptive procedure for parameter setting was presented; the procedure was then 
extended to the multi-period framework in Corsaro et  al. (2020). Despite its efficiency, this 
procedure generally exhibits overestimates of the optimal regularization parameter, leading to 

(1)
min
x

f (x) + �1‖x‖1 + �2‖Lx‖1
s.t. Ax = b,
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portfolios with fewer active positions than desired. For this reason, the use of Neural Networks 
(NN) was discussed in Corsaro et al. (2022). In that work, the authors show the effectiveness of 
this approach, which allows one to obtain accurate estimates. In this paper, we investigate the 
use of Neural Networks for learning the regularization parameters in the context of a fused lasso 
formulation of the multi-period portfolio selection problem, where one aims at computing opti-
mal medium and long-term investment strategies. In the last few decades, NN and Deep learn-
ing models are becoming very popular in economics and finance since their ability of process-
ing high-dimensional data and modeling complex phenomena (Slavici et al. 2016; Wang 2009).

In this paper, we design a Recurrent Neural Network (RNN) model for computing the regu-
larization parameters. This class of NN are specifically designed to analyze and extract pat-
terns from data with a sequential structure. In particular, modern RNN architectures, such as 
the Long Short-Term Memory (LSTM) networks, are a promising tool for learning the com-
plex dependence structure between the regularization parameters and the time series of the asset 
returns. The paper is organized as follows: in Sect. 2 we present the reference model for portfo-
lio selection and discuss its numerical solution; in Sect. 3 we briefly introduce neural networks, 
with special regard to recurrent ones; in Sect. 5 we show the results of tests that validate the 
approach; finally, we give some conclusions and outline future work.

2  Mathematical model

We consider either a medium or long-term investment, where the investor has the oppor-
tunity to exit before the term. We define our model in a multi-period setting, that is, the 
investment period is partitioned into sub-periods, delimited by the rebalancing dates, at 
which decisions are taken. The optimal portfolio is defined by the vector

where m is the number of rebalancing dates, n is the number of assets and N = m ⋅ n . The 
dynamic risk measure is an additive one; this kind of measures arise when the risk of losses 
is estimated separately in different periods, and then the time contributions are aggregated 
(Chen et al. 2017). It is given by the following quadratic function:

where Ci is the covariance matrix estimated at the beginning of the i-th period. The optimal 
portfolio is the solution to the following non-smooth optimization problem:

Problem (2) is a fused lasso one. The lasso term ‖u‖1 allows one to obtain small portfolios, 
that is, a small number of active positions, thus reducing the holding cost. L is a first-order 
finite-difference operator, so the fusion term ‖Lu‖1 controls the transaction cost, acting 
on the portfolio turnover. The penalizing effect of each regularization term increases with 
respect to the related parameter; moreover, the interaction between the two terms must be 
considered. Thus, the choice of �1 and �2 is a key issue.

w = [wT
1
,… ,wT

m
]T ∈ ℝ

N ,

J(w) =

m∑

i=1

w
T
i
Ciwi

(2)
min

w
J(w) + �1‖w‖1 + �2‖Lw‖1

s.t. Aw = ���
Gw ≥ �����.



 S. Corsaro et al.

1 3

Both equality and inequality linear constraints define the feasible set. Equality con-
straints establish the budget constraint and the self-financing property. Inequality con-
straints state the minimum expected wealth at all the rebalancing dates to prevent severe 
loss in the case of an early exit and at the end of the investment period.

2.1  Numerical solution

We consider the alternating split Bregman algorithm used in Ma et al. (2021), based on a 
further reformulation of problem (2) in terms of equality constraints only:

where ID(s) the indicator function of the slack variable s on D = {s ∈ ℜm ∶ s ≥ 0} . 
Alternating split Bregman splits the minimization process into four parts. At each iteration, 
closed-form solutions can be obtained for the minimization with respect to s, d and z . Mini-
mization with respect to d and z can be efficiently done using the soft operator, defined as:

where the proximal mapping of the indicator function on a given set is the orthogonal pro-
jection operator onto the same set. Regarding the quadratic minimization with respect to w , 
we note that at each step k, the optimal value can be obtained by solving the linear system

where only rhsk depends on the current iteration. The matrix H is symmetric positive defi-
nite, sparse, and banded; its sparse Cholesky factorization can be compute once, and two 
triangular systems are solved at each iteration. The method is outlined in Algorithm 1.

min(w,s,d,z)
1

2
J(w) + �1‖z‖1 + �2‖d‖1 + ID(s)

s.t. Aw = b

Gw − s = ����

Lw = d

w = z.

S(x, �) =
x

|x|
max(|x − �|, 0),

Hw = rhsk,
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Algorithm 1  Split Bregman for Portfolio Selection

1: λ1, λ2, λ3, λ4 > 0;
2: w0 = 0, s0 = 0,d0 = 0, z0 = 0
3: bw

0 = 0,bs
0 = 0,bd

0 = 0,bz
0 = 0

4: H = diag(C1, ..., Cm) + λ1A
TA+ λ2G

TG+ λ3L
TL+ λ4I

5: Compute the Cholesky factorization of H
6: for k = 0, 1, 2, . . . do
7: rhsk = λ1A

Tbw
k + λ2G

T (s− bs
k) + λ3L

T (d− bd
k ) + λ4(z− bz

k)
8: wk+1 = H−1rhsk
9: sk+1 = max(0, Gwk+1 + bs

k)
10: dk+1 = S(Lwk+1 + bd

k , τ2/λ3)
11: zk+1 = S(wk+1 + bz

k, τ1/λ4)
12: bw

k+1 = bw
k + λ1(b−Awk+1)

13: bs
k+1 = bs

k + λ2(Gwk+1 −wmin − sk+1)
14: bd

k+1 = bd
k + λ3(Lwk+1 − dk+1)

15: bz
k+1 = bz

k + λ4(wk+1 − zk+1)
16: end for

3  Deep neural networks

Deep Learning represents a class of algorithms replicating the human brain’s learning 
mechanism. They consist of interconnected computational units, called neurons, arranged 
in multiple layers that process data and learn from it. In Hornik et al. (1989), the authors 
proved that a deep neural network with a linear output layer, at least one hidden layer and 
a suitable activation function can approximate any continuous function defined on a closed 
and bounded subset of ℝn . The structure of connections of the units defines different types 
of neural networks; see Goodfellow et al. (2016) for a detailed description. In the feed-for-
ward neural networks, the information propagates among the different layers only forward.

Let x ∈ X ⊆ ℝ
q0 and y ∈ Y ⊆ ℝ

qD be the input and output values. A deep feed-forward 
neural networks with D layers and (q1, q2,… , qD) ∈ ℕ

D units, can be formalised as follows:

We denote with W (k) ∈ ℝ
qk×qk−1 the weight matrices, w(k)

0
∈ ℝ

qk the bias vectors and �(k) 
some non-linear activation function, for k = 1,… ,D . Popular choices for the activa-
tion function are the rectifier linear unit (relu), the sigmoid, and the hyperbolic tangent 
(tanh) functions. The output of each layer z(k)(x) is a set of new features obtained as a 

z(1)(x) =�(1)
(
w
(1)

0
+W (1)x

)
,

z(2)(x) =�(2)
(
w
(2)

0
+W (2)z(1)(x)

)
,

…

y = z(D)(x) =�(D)
(
w
(D)

0
+W (D)z(D−1)(x)

)
.
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transformation of the input variables. Through this process, the explanatory power of the 
features on the response variable y is progressively improved. The calibration of the net-
work weights (w(k)

0
,W (k))1≤k≤D is performed through the Back-Propagation (BP) algorithm. 

It is an iterative process in which the network weights are progressively adjusted to mini-
mise a specific loss function measured on a data sample (xi, yi)Ii=1.

In addition to the classical connections, recurrent Neural Networks (RNN) have some addi-
tional synapses that connect neurons cyclically (Elman 1990). In this framework, the unit’s 
output is reprocessed as input in the following time steps. In this way, predictions are formu-
lated by considering what has been processed in the past. The recurrent nature of these net-
works makes them promising tools for processing sequential data.

Let xt ∈ ℝ
q0 , 0 < t ≤ T , be a multivariate time-series. RNN generally contains only one 

layer that exploits the sequential structure of the input data. One often chooses the first layer 
since it directly works on the input data. In this case, the mechanism of an RNN layer can be 
formulated as follows:

where U ∈ ℝ
q×q are the weights associated to the output of the previous time-step. In this 

setting, the last activation of the RNN layer, z(1)
T

 , becomes the input of the second layer.
However, the calibration of the weights of the RNN generally presents vanishing gradi-

ent issues. In order to overcome these problems, more sophisticated RNN architectures were 
introduced. The Long Short-Term Memory (LSTM) networks, in addition to the recurrent 
synapses containing the short-term memory, present additional memory cells that store and 
release the long-term information through some functions called gates. Combining short- and 
long-term memories, LSTM networks appear able to learn complex dynamics (Abedin et al. 
2021; Jauhar et al. 2022; Perla et al. 2021; Sun et al. 2021). A graphical representation of the 
LSTM cell is depicted in Figure where U ∈ ℝ

q×q are the weights associated to the output of 
the previous time-step. In this setting, the last activation of the RNN layer, z(1)

T
 , becomes the 

input of the second layer.
However, the calibration of the weights of the RNN generally presents vanishing gradi-

ent issues. In order to overcome these problems, more sophisticated RNN architectures were 
introduced. The Long Short-Term Memory (LSTM) networks, in addition to the recurrent 
synapses containing the short-term memory, present additional memory cells that store and 
release the long-term information through some functions called gates. Combining short- and 
long-term memories, LSTM networks appear able to learn complex dynamics (Abedin et al. 
2021; Jauhar et al. 2022; Perla et al. 2021; Sun et al. 2021). A graphical representation of the 
LSTM cell is depicted in Fig. 1.

If we denote with W (p) ∈ ℝ
q×d , U(p) ∈ ℝ

q×q and w(p)

0
∈ ℝ

q the weights associated to each 
subnet p ∈ {i, o, f , z} , the mechanism of an LSTM layer can be described, for t = 1,… , T , as 
follows:

z
(1)
t =�(1)

(
w
(1)

0
+W (1)xt + Uz

(1)

t−1

)
, t = 1,… , T;

z
(1)

0
= 0,

(3)it =�

(
w
(i)

0
+W (i)xt + U(i)zt−1

)
,
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where �(⋅) ∶ ℝ ↦ (0, 1) and tanh(⋅) ∶ ℝ ↦ (−1, 1) are respectively the sigmoid and the 
hyperbolic tangent activation function, ct is the state memory cell at time t, and ⊙ is the 
Hadamard product.

Three gates regulate the mechanism of storing and releasing information. They are 
generally called forget, input and output gates. Specifically, the forget gate (eq. (5)), 
which has sigmoid activation, defines the percentage of information considered obsolete 
and must be deleted. The input gate (eq. (3)) selects new information from the input 
data that have to be merged with the output of the forget gate (eq. (7)). Finally, the 

(4)ot =�

(
w
(o)

0
+W (o)xt + U(o)zt−1

)
,

(5)f t =�

(
w
(f )

0
+W (f )xt + U(f )zt−1

)
,

(6)z̃t = tanh

(
w
(z)

0
+W (z)xt + U(z)zt−1

)
,

(7)ct =ct−1 ⊙ f t + it ⊙ z̃t,

(8)
zt =𝜙

(
ct
)
⊙ ot,

z0 = 0,

c0 = 0.

LSTM unit
Fig. 1  A graphical representation of the LSTM cell
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output value of the LSTM cell (eq. (8)) is computed by combining the state of the mem-
ory cell c(t) with the output gate (eq. (6)). The number of parameters to optimize in an 
LSTM layer equals 4 × q × (d + q + 1).

4  A LSTM‑based model for regularization parameters

In this section we describe the NN-based model. The section is split in two parts. In Sect. 4.1 
we describe the network architecture; in Sect. 4.2 we discuss the network calibration.

4.1  Network architecture

We aim to learn the functional relationship between the regularization parameters 
� = (�1, �2) ∈ ℝ

2
+
 and the financial target, given in terms of percentage of portfolio sparsity 

and transaction costs, and the asset returns R = (rt)t ∈ ℝ
n×T , 0 < t ≤ T . We use two values, 

ls ∈ [0, 1] and lc ∈ [0, 1] , to define lower and/or upper bounds on sparsity and transaction 
costs. We formulate a regression problem where the response variable is the vector of regulari-
zation parameters � allowing to achieve the desired financial targets, and the regressor is the 
matrix past returns R.

We design a neural network consisting of one LSTM layer and one fully-connected layer. 
In general, deeper neural network architectures could be used for learning this function. How-
ever, this architecture realizes a good trade-off between accuracy and efficiency. First, an 
LSTM layer of size qLSTM is used to process the multivariate time series of the returns, as 
described in equations (3)–(8). The output of the LSTM layer is the activation in the last time-
step zT . This vector can be interpreted as a set of features that summarises the information 
related to the asset return time series.

We assume that the regularization parameters depend on asset returns and on the financial 
target. In this framework, � is computed by applying a 2-dimensional fully-connected layer to 
the vector 

(
zT (R), ls, lc

)
:

where w(�)

0
,w(�)

s
,w(�)

c
∈ ℝ

2 and W (�) ∈ ℝ
2×qLSTM are the networks parameters. In par-

ticular, w(�)

0
= (w

(�1)

0
,w

(�2)

0
) is the bias term related to the regularization parameters, 

W = (w(�1),w(�2)) are the coefficients associated to the features extracted by the asset returns 
zT (R) , w(�)

s
= (w

(�1)
s ,w

(�2)
s ) are the coefficients associated to the required sparsity, and 

w(�)
c

= (w
(�1)
c ,w

(�2)
c ) are the coefficients associated to the required cost rate.

4.2  Network calibration

The elements of the matrices and the bias vectors of the different layers of the NN architec-
tures need to be appropriately calibrated. Denoting by � the vector containing all the network 
parameters, one could argue that the training process consists of an unconstrained optimiza-
tion problem, where a suitable loss function L(�) is chosen. The NN training is generally car-
ried out using the Back Propagation (BP) algorithm where the updating of the weights is based 
on the gradient of the loss function L(�) . The weights are iteratively adjusted to decrease the 

�
(NN) = �(�)

(
w
(�)

0
+W (�)zT (R) + lsw

(�)
s

+ lcw
(�)
c

)
,
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error of the network outputs with respect to some reference values. To train the Neural Net-
work, we collect a sample set

where ljs, l
j
c define the financial target, Rj is the time series of n asset returns. The couple 

(�
j

1
, �

j

2
) ∈ [�min, �max] × [�min, �max] is computed using a random grid search. We define a 

nonuniform grid to guarantee the same number of grid points for consecutive magnitude 
orders of parameters. Then, we recursively sample grid points that are used to compute 
the optimal portfolios by means of Algorithm 1. We choose the first point that produces an 
optimal portfolio satisfying the financial target.

5  Numerical experiments

In this section, we show some results of tests that we perform on real market data. The 
Neural Network algorithm is applied to several portfolios, generated using the real-word 
price values.

5.1  SP 500

We start the discussion by considering a real dataset containing weekly returns of assets 
included in the S &P 500 index, widely regarded as the most significant index of large-cap 
U.S. equities. We consider the data provided in Bruni et al. (2016). Returns are obtained 
from daily prices obtained by Thomson Reuters Datastream; data are filtered to check and 
correct missing or inaccurate values. Moreover, data are adjusted for dividends and stock 
splits. Figure 2 shows the time series of the SP500 index for the considered period. It is 
interesting to note that some volatility clusters are visible since the time span covers some 

(9)S = {(lj
s
, lj
c
,Rj, �

j

1
, �

j

2
), j = 1,… , L},

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

2004 2007 2010 2013 2016
time

re
tu

rn

SP500  Nov 2004 −  Jan 2016

Fig. 2  Time-series of the returns related to the SP500 index
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periods of market instability. The first volatility cluster matches the period of the bank-
ruptcy of Lehman Brothers (De Haas and Van Horen 2012), which occurred on September 
15, 2008, during the subprime crisis (2007–2009). The second cluster is framed into the 
Sovereign Debt Crisis (2010–2011), which led to an increased heterogeneity of financial 
markets conditions (Ehrmann and Fratzscher 2017).

We simulate 5 years (2007–2012) investment strategies, where the investor revises 
decisions twice a year so that we have m = 10 rebalancing dates.

We compute the sparsity and the transaction costs. The sparsity is computed as 
follows:

where Nsparse is the number of zeros in the optimal portfolio.
To evaluate the transaction costs, we count the number of changes in the wealth associ-

ated with a fixed asset across successive rebalancing dates; we assume that each change 
in wealth corresponds to a transaction on the asset. The number of transactions associated 
with the optimal strategy is given by

where

for i = 1,… , n and j = 1,… ,m − 1 . We count only variations that are significant from the 
financial point of view, that is, we do not consider differences below 10−6 × �init , where �init 
is the initial investment.

The percentage of transactions of the optimal strategy is estimated as:

where N is the number of transactions of the portfolio with full turnover.
As already said, we use ls and lc to define the financial target used in our experiments. 

We require that the sparsity and the transaction costs are bounded as follows:

where tolc and tols are acceptable levels of tolerance.
In our experiments, the sample (9) contains L = 9000 elements. For j = 1,… L ljs 

and ljc vary in the set F = {0.4, 0.5, 0.6} and tolc and tols are equal to 0.1. Rj is the return 
time series of n = 100 assets randomly extracted from the S &P 500 basket. The cou-
ple (� j

1
, �

j

2
) , that satisfies (10), is computed by means of the random grid search, setting 

�min = 10−5, �max = 10−2 . We discretize the square [10−5, 10−2] × [10−5, 10−2] using 3600 
points not evenly spaced. In particular, for both dimensions we consider 20 points in each 
one of the intervals [10−5, 10−4] , [10−4, 10−3] , [10−3, 10−2].

We assume that the investor has one unit of wealth at the beginning of the planning 
horizon, that is, �init = 1 . We set �i = 1, ∀i = 1,… , 4 in Algorithm 1. Iterations are stopped 

SP =
Nsparse

N
,

Topt =

n∑

i=1

m−1∑

j=1

Gi,j,

Gi,j =

{
0 if |(wj+1)i − (wj)i)| < 𝜖 ∗ 𝜉init
1 otherwise

T =
Topt

N
,

(10)ls − tols < SP < ls + tols; 0 < T < lc + tolc,
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as soon as all the constraints are satisfied within constraint tolerance Tol = 10−6 . We con-
sider a NN model with an LSTM layer of size qLSTM = 24 . The NN model is calibrated to 
minimize the Mean Absolute Error (MAE) between the network predictions and the refer-
ence values. In such a case, the training induces the minimization of the following loss 
function:

It is equivalent to minimising the sum of the l1-norm of the error related to �1 and �2 . The 
NN was fit for 100 epochs using the ADAM algorithm (Kingma and Ba 2014). The train-
ing is carried out considering the 75% of the total sample ( Ltrain = 6750 ); it represents 
the training set. To analyse the ability of the network to generalise to new portfolios, the 
remaining 25% is used as testing set ( Ltest = 2250 ). We select the weight configuration that 
presents the lowest out-sample error. It is measured on the validation set, that is, a small 
portion of the training set which is not used for the training. In our case, the validation set 
size is 5% of the training sample one.

In Table  1, we present the values of the two components of the loss function in the 
whole training and testing set. Overall, the losses are quite low. Furthermore, the losses on 
the testing set are comparable to the losses on the training set. This result highlights that 
the NN model has successfully learnt the functional relationship between input data and 
regularization parameters.

In Fig. 3, we analyze the percentage of sparsity (left) and costs (right) realized by the 
NN on the training and testing set for different values of ls and lc . The red lines define the 
non-zero bounds in (10). In almost all cases, the regularization parameters produced by 
the NN allow for achieving the financial target. In particular, the target in terms of transac-
tion costs is always satisfied, while the bounds related to the sparsity target sometimes are 

L(�) = L�1
(�) + L�2

(�) =

L∑

l=1

|�1 − �
(NN)

1
| +

L∑

l=1

|�2 − �
(NN)

2
|.

Table 1  Loss function in the 
training and testing sets; the 
values are multiplied by 103

Loss Training Testing

L�1
(�) 0.1076 0.1402

L�2
(�) 0.0902 0.0909
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Fig. 3  box plots of the realized sparsities (left) and costs (right) produced by the NN in both the training 
and testing set for different values of l

s
 and l

c
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violated. This happens especially when low sparsity is required. However, the maximum 
violation is about 10−2.

Table 2 reports the percentage of cases in which the parameters produced by the NN 
model allow to satisfy (10) on training and testing sets, varying lc and ls jointly. The overall 
success rate decreases marginally on the testing (98.80%) with respect to the training set 
(99.87%). Furthermore, success rates are lower when lc = 0.4 . This requirement on trans-
action cost is the most stringent one among the tested values since it allows, at most, a 
rate of transactions in the case of total turnover equal to 40% . The lowest success rate is 
realized when ls = 0.4 where more active positions are allowed, thus the trade-off between 
density and drastic reduction costs is more complicated.

We now want to investigate the mutual impact of the requirements on sparsity and trans-
action costs. As said, the main purpose of sparsity requirement is holding cost reduction. 
However, high sparsity level requirements also affect transaction cost since zeros are kept 
across time, avoiding transactions. Therefore, we expect that the request on sparsity ls also 
affects the output value of �2 . This is confirmed by Fig. 4 that shows how �1 behaves in 
dependence of lc and how �2 behaves in dependence of ls , for the testing set.

More precisely, Fig. 4 depicts the box plot of �1 on the left side and the box plot of �2 
on the right side. On the left side, we report the sparsity target on the x-axis, while the 

Table 2  Percentage of portfolios in which the couple (�1, �2) computed by the NN provides optimal portfo-
lios that satisfy the financial target on the training and testing sets

Training set l
c
= 0.40 l

c
= 0.50 l

c
= 0.60 tot

l
s
= 0.40 99.33% 99.73% 99.87% 99.64%

l
s
= 0.50 99.87% 100.00% 100.00% 99.96%

l
s
= 0.60 100.00% 100.00% 100.00% 100.00%

tot 99.73% 99.91% 99.96% 99.87%

 Testing set l
c
= 0.40 l

c
= 0.50 l

c
= 0.60 tot

l
s
= 0.40 94.40% 98.40% 98.40% 97.07%

l
s
= 0.50 99.60% 100.00% 100.00% 99.47%

l
s
= 0.60 99.60% 100.00% 100.00% 99.87%

tot 97.73% 99.33% 99.33% 98.80%

Fig. 4  Values of �1 (left) and �2 (right) for different financial targets
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different colours refer to the target cost levels. As expected, the value of �1 provided by the 
neural network increases with respect to the sparsity level request. The figure also shows 
that for a fixed level of target sparsity, �1 increases marginally as the target cost increases. 
Looking at the right side of Fig. 4, we observe that �2 is decreasing with respect to the tar-
get cost since when more cost is allowed, less penalization is required. However, differently 
from what we observed on �1 , �2 strongly depends on the sparsity target too: the values of �2 
decrease considerably as the target sparsity increases.

To study the portfolio performance, in Table 3, we report the average Information Ratio 
(IR) (the average excess return per unit of volatility) and the Sharpe Ratio (SR) (the ratio 
between the average of the expected return of the portfolio and its standard deviation) for 
the different values of ls and lc . At each rebalancing date, the expected minimum wealth 
wmin is set to the expected wealth of the market index. We estimate the IR according to the 
following formula:

where AER = (AER1,… ,AERm) , and

The SR is measured as follows:

 where R = (R1,… ,Rm) , and

We report the average IR and SR of optimal portfolios obtained using Algorithm 1 with 
the regularization parameters provided by the random grid search (denoted with IRRG ) and 
those provided by the NN (denoted with IRNN ). We observe that the values of both ratios 

IR =

1

m

∑m

j=1
AERj

�(AER)

AERj =
w

T
j
1n − (wmin)j

(wmin)j
, j = 1,… ,m.

SR =

1

m

∑m

j=1
Rj

�(R)

Rj = r
T
j

wj

w
T
j
1n

, j = 1,… ,m.

Table 3  Average Information 
Ratio and Sharpe Ratio of the 
optimal portfolios, for different 
levels of sparsity and costs, for 
the random grid search (third and 
fifth columns) and for the NN 
model (fourth and sixth columns)

l
s

l
c

IR
RG

IR
NN

SR
RG

SR
NN

0.4 0.4 0.59 0.59 1.73 1.73
0.4 0.5 0.57 0.54 1.73 1.73
0.4 0.6 0.49 0.50 1.72 1.72
0.5 0.4 0.58 0.54 1.74 1.73
0.5 0.5 0.50 0.50 1.73 1.73
0.5 0.6 0.42 0.47 1.72 1.72
0.6 0.4 0.51 0.51 1.73 1.74
0.6 0.5 0.43 0.48 1.74 1.73
0.6 0.6 0.39 0.44 1.73 1.73
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are similar, highlighting that the NN approach allows for obtaining optimal portfolios with 
comparable financial performance.

Finally, we investigate the ability of the network trained on data examples related to 
time tref  , to provide regularization parameters that allow obtaining portfolios with desired 
financial properties on a future date tref + � with 𝛿 > 0 . In Table  4, we report the per-
centage of success in achieving the financial target for different values of ls and lc , and 
� = 0.25, 0.5, 0.75 years. We see that in some cases, the percentage of success decreases as 
� grows. However, the percentage of success decreases slowly. This result suggests that the 
function learned by the NN can also be used in future dates, saving much computational 
time since the training process does not have to be repeated every time. In addition, this 
evidence suggests that the functional relationship between the asset returns and the regu-
larization parameters does not substantially change over time.

5.2  FTSE MIB

To confirm the effectiveness of the proposed approach in achieving financial targets and 
obtaining portfolios with valuable financial performance, we test our model on the data 
related to the equities of an alternative index-the FTSE MIB. This index serves as the pri-
mary stock market indicator for the Italian stock exchange, Borsa Italiana, capturing the 
performance of Italy’s largest and most liquid companies. We collected the historical 
weekly return time series from November 2018 to November 2023 for 38 of the 40 securi-
ties (2 were excluded due to insufficient data). In Table 5, we report detailed information 
about the dataset used in this analysis: a number identifying the asset, the name of the 
assets included in the index, with the mean and the standard deviation of the returns time 
series and the average market capital. We solve the portfolio selection problem for differ-
ent combinations of financial targets using the regularization parameters obtained through 
the Neural Network. The investment horizon is 2.5 years with m = 5 half-year rebalancing 
dates. In Table  6, we report the performance in terms of Information Ratio and Sharpe 
Ratio. For completeness, we also report the values for �1 and �2 obtained by the Neural 
Network for each pair of financial targets. In all tests, the IR is slightly higher than 0.4, and 
the SR is always greater than one, confirming the effectiveness of the proposed approach.

Finally, in Fig. 5 we illustrate the optimal portfolio composition for ls = 0.5 and lc = 0.5 . 
On the left side of Fig. 5a, we show the sparsity pattern of weights for FTSE-MIB. Assets 

Table 4  Percentage of success 
in achieving the financial target 
for different values of l

s
 and l

c
 , 

and for time windows shifted by 
one (third column), two (fourth 
column) and three (fifth column) 
quarters

l
s

l
c

3 months (%) 6 months (%) 9 months(%)

0.4 0.4 98.60 96.00 96.80
0.4 0.5 99.20 99.20 97.70
0.4 0.6 99.70 99.20 98.60
0.5 0.4 99.80 99.00 99.30
0.5 0.5 99.90 99.40 99.90
0.5 0.6 99.80 99.90 100.00
0.6 0.4 99.90 99.90 100.00
0.6 0.5 100.00 100.00 100.00
0.6 0.6 100.00 100.00 99.90
Total 99.66 99.07 99.10
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versus periods are represented, thus a dot at position (i,  j) is an active position in asset i 
in period j. On the right side of Fig. 5b, we report the average investment in percentage. 
We note that the two highest values correspond to the assets with the lowest volatilities 

Table 5  FTSE MIB dataset. First column: number identifying the asset. Second column: name of the asset. 
Third-fourth columns: mean and standard deviation of the return time series. Fifth column: average market 
value

ID Company Mean SD Market cap

1 A2A 0.0017 0.0389 4723.27
2 AMPLIFON 0.0035 0.0492 6605.90
3 AZIMUT HOLDING 0.0037 0.0476 2711.25
4 BANCA GENERALI 0.0031 0.0441 3416.12
5 BANCA MEDIOLANUM 0.0026 0.0449 5449.27
6 BANCA MPS − 0.0057 0.0842 1605.51
7 BANCO BPM 0.0060 0.0617 3832.88
8 BPER BANCA 0.0034 0.0657 2370.61
9 CAMPARI 0.0023 0.0332 11285.85
10 CNH.INDUSTRIAL 0.0024 0.0522 15252.05
11 DIASORIN 0.0012 0.0470 7231.70
12 ENEL 0.0020 0.0369 65948.92
13 ENI 0.0010 0.0446 43508.73
14 ERG 0.0024 0.0420 3561.41
15 FERRARI 0.0048 0.0399 37620.70
16 FINECOBANK 0.0018 0.0450 7649.94
17 ASSICURAZIONI GENERALI 0.0017 0.0345 25955.68
18 HERA 0.0011 0.0353 4701.53
19 INTERPUMP GROUP 0.0029 0.0468 4244.16
20 INTESA SANPAOLO 0.0021 0.0468 39267.01
21 INFR. WIRELESS SPA NPV 0.0028 0.0388 8131.03
22 ITALGAS 0.0006 0.0299 4411.81
23 LEONARDO 0.0032 0.0586 4971.44
24 MEDIOBANCA 0.0026 0.0473 7859.69
25 MONCLER 0.0028 0.0446 12355.62
26 PIRELLI & C − 0.0003 0.0472 4776.74
27 POSTE.ITALIANE 0.0023 0.0402 12351.59
28 PRYSMIAN 0.0035 0.0412 7233.40
29 RECORDATI INDUA CHIMICA 0.0021 0.0352 8852.47
30 SAIPEM − 0.0016 0.0954 2701.11
31 SNAM 0.0011 0.0286 15686.65
32 STELLANTIS 0.0032 0.0522 35171.96
33 STMICROELECTRONICS 0.0056 0.0561 27505.45
34 TELECOM − 0.0005 0.0693 5748.38
35 TENARIS 0.0025 0.0570 12686.98
36 TERNA 0.0023 0.0306 13018.18
37 UNICREDIT 0.0046 0.0617 25180.78
38 UNIPOL 0.0024 0.0458 3197.57
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(SNAM, asset 31 and ITALGAS, asset 22), according to the mean-variance framework 
principle. In Fig. 5a, we observe that assets 22 and 31 are kept along all the investment 
strategies. On the other hand, the assets that are not selected in the optimal portfolio, such 
as 1, 5, and 27, generally exhibit high positive correlations with the others and low average 
returns.

Table 6  Information Ratio and 
Sharpe Ratio of the optimal 
portfolios, for different levels 
of sparsity and costs for the NN 
model on FTSE-MIB data

l
s

l
c

�1 �2 IR
NN

SR
NN

0.4 0.4 1.53E–03 5.20E–04 0.4065 1.3085
0.4 0.5 1.55E–03 3.45E–04 0.4068 1.2939
0.4 0.6 1.58E–03 2.43E–04 0.4019 1.3096
0.5 0.4 2.20E–03 3.95E–04 0.4064 1.3102
0.5 0.5 2.24E–03 2.72E–04 0.4071 1.3175
0.5 0.6 2.27E–03 2.01E–04 0.4067 1.3257
0.6 0.4 2.64E–03 3.07E–04 0.4074 1.3212
0.6 0.5 2.70E–03 2.21E–04 0.4052 1.3281
0.6 0.6 2.76E–03 1.71E–04 0.4099 1.3298

Fig. 5  Left: Sparsity pattern of the optimal portfolio FTSE MIB with investment horizon 5 years. Right: 
Average amounts invested in the FTSE MIB companies. Target are fixed to l

s
= 0.5 and l

c
= 0.5



Learning fused lasso parameters in portfolio selection via…

1 3

6  Conclusion

In this work, we present a data-driven approach for the automatic computation of the regu-
larization parameters in a fused lasso portfolio selection problem where a financial target is 
fixed. Starting from the results obtained in Corsaro et al. (2022) to detect the regularization 
parameter in a lasso model, we extend the use of NN to problem (1). The increased com-
plexity of the model motivates the use of more sophisticated NN. Moreover, we propose 
to use Long Short-Term Memory networks, specifically designed for processing sequen-
tial data. This design allows for the direct application of the networks to time series data 
of log-returns, eliminating the need for a priori identification of relevant features. Results 
show that the network effectively learns the functional relation between the regularization 
parameters and input data. Moreover, preliminary tests show that LSTM networks allow 
one, at least under stable market conditions, to use the learnt function in future periods, 
that is, successively to the investment period employed for training the network. Whether 
one can assume that the output of the training process can be kept over time is to be inves-
tigated and will be the subject of future work. In future research, we also intend to inves-
tigate the use of other Deep Learning models such as Convolutional Neural Networks and 
Selft-Attention-based mechanism (Vaswani et al. 2017) to learn the optimal regularization 
to apply and to use functional data clustering methods (Levantesi et al. 2023) to identify 
similarities among the assets and develop a more appropriate portfolio selection strategy.
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