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Abstract
Multiverse analysis involves systematically sampling a vast set of model specifications, 
known as a multiverse, to estimate the uncertainty surrounding the validity of a scientific 
claim. By fitting these specifications to a sample of observations, statistics are obtained as 
analytical results. Examining the variability of these statistics across different groups of 
model specifications helps to assess the robustness of the claim and gives insights into its 
underlying assumptions. However, the theoretical premises of multiverse analysis are often 
implicit and not universally agreed upon. To address this, a new formal categorisation of the 
analytical choices involved in modelling the set of specifications is proposed. This method 
of indexing the specification highlights that the sampling structure of the multiversal sample 
does not conform to a model of independent and identically distributed draws of specifica-
tions and that it can be modelled as an information network instead. Hamming’s distance is 
proposed as a measure of network distance, and, with an application to a panel dataset, it is 
shown how this approach enhances transparency in procedures and inferred claims and that 
it facilitates the check of implicit parametric assumptions. In the conclusions, the proposed 
theory of multiversal sampling is linked to the ongoing debate on how to weigh a multi-
verse, including the debate on the epistemic value of crowdsourced multiverses.

Keywords Multiversal modelling · Sensitivity analysis · Janus effect · Panel regression · 
COVID-19

1 Introduction

The community of scholars of Statistics, Data Analysis, and Quantitative Methods 
has always been worried about misuses of, misconceptions about, and errors of mis-
specification in statistical modelling (Rao 1971; Ross 1985; Lagakos 1988; Czado and 
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Santner 1992; Verbeke and Lesaffre 1997; Olsson et  al. 2000; Gardenier and Resnik 
2002; Agresti et al. 2004; Fan and Sivo 2007). Aware of problems of overconfidence in 
one specification of the model, a precautionary sceptic demeanour resonates with the 
famous words of George Box (1976): “All models are wrong. Some are useful”. The 
theory of Multiverse of specification emerged as paradigmatic for those intended to pro-
vide reassurance to these concerns. A multiversal method uses the diversity of opinions 
and ambivalence of analytical choices as a means to measure the uncertainty behind a 
scientific hypothesis. In particular, the act of ‘modelling a multiverse of specifications’ 
consists of a peculiar method to draw and select random samples of “useful models” at 
massive scale (Gelman and Loken 2014; Steegen et al. 2016).

The present manuscript is aimed at making explicit assumptions behind the employ-
ment of a multiversal model for estimating the uncertainty around coefficients of regres-
sion between a dependent variable and a regressor. To achieve this result, a literature 
review of Multiverse Analysis is presented mainly in Sect. 2. This review highlights the 
process of convergence of different theoretical traditions and methods into a coherent 
methodological paradigm. The essential features of a Multiverse of specifications, as a 
derivation of the general theory of sampling, are presented in Sect. 3. Differently from 
the traditional representation of multiversal methods, a multiverse can be encoded as a 
string of information. This method of representation shows how a multiversal sample 
departs from canonical processes of independently identically distributed (i.i.d.) draws. 
It also allows a more thorough assessment of the sensitivity of the results, with a deeper 
linkage to the procedure of modelling the choices of the multiverse itself.

The theory is applied in Sect.  4, an example of a ’mapping’ of the model-induced 
uncertainty about the effectiveness of the vaccination plans against the COVID-19 pan-
demic in the year 2021. The sensitivity of the estimation procedure to relatively arbi-
trary modelling choices is assessed and a procedure to check a parametric assumption of 
the multiversal model is proposed.

A relevant result is that even if the observed effect of vaccination plans on the num-
ber of infected dead is generally significantly negative, adopting relatively reasonable 
choices it is possible to fabricate statistical results which would suggest, most likely 
erroneously, that vaccination plans induced the death of the infected people, instead. 
The technical causes for this concerning ambiguity are explained.

Final considerations are in Sect.  5: the debate surrounding weighting schemes for 
multiversal estimates is reignited with a focus on future research directions. Materials 
to reproduce the application, inclusive of the code in language R, are downloadable as 
indicated in Supplementary Information.

2  History of multiversal methods

In the history of criticism against bad practices in quantitative studies, three papers are 
the milestones of a broader scientific movement that crossed many labels: Open Science, 
Meta-research or Metascience (Christensen et  al. 2019; Peterson and Panofsky 2020; 
Breznau 2021) These three papers are:

• Schor and Karten (1966), which is considered one of the first meta-analyses in Medi-
cine. They found that 73% of 295 papers from 67 journals claimed results not correctly 
supported by the methods of the papers.
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• Ioannidis (2005) is an explanatory summary of the methodological features predict-
ing unreliability in scientific results: small sample sizes, small effect sizes, multiple 
hypotheses tested with unadjusted test statistics, etc. The paper also stressed the push 
from the system of the academic journals to submit novel findings to peer review, lead-
ing into publication bias (Rosenthal 1979; Simonsohn et al. 2014). If statistically sig-
nificant results are over-published, there are incentives to employ weak methods to fish 
for false (but significant) discoveries in data analysis (Ioannidis et al. 2015).

• A large team led by Brian Nosek (Open Science Collaboration 2015) replicated 100 
experimental and correlational studies published in three Psychology journals. Even if 
the 97 papers had significant results in their own data analysis, only 36 of replications 
had significant results.

Another study (Camerer et  al. 2018) was conducted only on papers from the renowned 
journals Nature and Science. It reached significance only in 14 replications on 21. These 
papers launched the alarm for the “replication crisis”, which soon became an important 
topic for the community of statisticians, who started to question the scientific validity of 
Null Hypothesis Statistical Testing (NHST), which reflected the application of the criterion 
significance to test statistics: the probability (the p-value) to observe equal or more extreme 
values of a test statistic under the assumption that the null hypothesis is true must be infe-
rior to a threshold ( � ) in order for a result to be statistically significant (Gelman 2015; Earp 
and Trafimow 2015; Wasserstein and Lazar 2016; McShane et al. 2019; Wasserstein et al. 
2019).

Often results failing to achieve statistical significance for � = .05 are perceived as less 
intellectually relevant. It has been empirically established, indeed, that not statistically sig-
nificant results are much less likely to be published in peer reviewed venues (van Zwet and 
Cator 2021). However, the likelihood to observe at least one falsely significant test result (a 
false positive result) increases for each attempt at testing, so a veracious result requires to 
report also the number of attempts before reaching significance, eventually adjusting p-val-
ues or � per the number of simultaneous test attempts (Hothorn et al. 2008). This problem 
is reflected in different specifications of the tests.

This is a problem in Science: there are incentives to not report not significant results 
and no material benefits from reporting them. The fact that � is fixed (e.g., � = .05 ) sets the 
stage for a Goodhart–Campbell1 phenomenon: the public knowledge of a filter in � pushes 
an incentive to p-hack the significance of its own results. p-hacking means that authors are 
disposed to sacrifice the substantial veracity of their scientific claims in order to decrease 
the p-values of their results and make them more credible (Nosek and Bar-Anan 2012; 
Nissen et al. 2016; West and Bergstrom 2021). Simmons et al. detailed this process (Sim-
mons et al. 2011), and other studies demonstrated evidence of p-hacking in scientific pro-
duction (Simonsohn et al. 2014; Head et al. 2015). p-hacking can be performed in more 
than one way, but one should deserve particular attention: when authors have the chance 
to opt for two or more j-specifications of the model conceptually equivalent, they may test 

1 Goodhart–Campbell Law: an excess of institutional relevance for a metric alters the well-functioning 
of the system that it was supposed to govern. This Law is summarised by the adage: “When a measure 
becomes a target, it ceases to be a good measure” (Rodamar 2018). Goodheart-Campbell is actually an 
empirical law on the second-order effects of quantitative policies.
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both, choose the result of that one with lower computed p-values, or with an estimate more 
aligned to their theoretical predictions, and not report the alternative.2

Gelman and Loken (2014) frame these arbitrary choices as if they are “degrees of free-
dom” of a researcher. The more modelling options are left to researchers, the easier it is 
for them to be able to meet quantitative requirements by pure chance, thanks to a fortui-
tous combination of success factors. Steegen et al. (2016) elaborated this theory to account 
for the sensitivity of the models to what is actually featured in the specifications, and 
called their statistical methodology Multiverse Analysis. They adopted the p-curve, a tool 
originally developed for the detection of p-hacking and publication bias in meta-analyses 
(Simonsohn et al. 2014), and, given a unique conceptual model of effect size, they provided 
a visual summary of all the ‘reasonable’ j-specifications of that conceptual model. Indeed, 
through the p-curve of the specifications of the model, it is possible to visually infer the 
likelihood that the scientific claim represented in the model is p-hacked (Fig. 1): for each 
‘reasonable’ specification, the p-value of the main effect is computed. The higher the pro-
portion of p < 𝛼 for a multiverse (or, a subset of it), the more robust the claim is.

Another visual layout presented by Steegen et al. (2016) is the p-Grid (Fig. 2): a multi-
dimensional array where both columns and rows are modelling choices. These are crossed 
into cells, with one p-value for the cell. The p-Grid is useful because it allows to visualise 
the global sensitivity of the p-value to the modalities of the modelling choices, however, it 
is not very practical for large multiverses.

p-Curve and p-Grid are tools focused on displaying the statistical behaviour of p-values 
in the multiverse. To visualise the statistical behaviour of both the estimate of the coef-
ficient of the regressor, is proposed the Volcano Plot (Fig. 3), which is commonly associ-
ated with the so-called “Vibration of Effect” (VoE) framework (Patel et al. 2015; Palpacuer 
et al. 2019; Tierney et al. 2021). Volcano Plot is useful because it allows to visualise the 
risk of what the authors call ‘Janus effect’, which is the condition for observing both a sig-
nificant positive and a significant negative estimate of the same effect size.

The most advanced tool to visualise a Multiverse Analysis is the Specification Curve 
(Simonsohn et al. 2020). The Specification Curve is a plot in two sections (Fig. 4). The 
upper section is a plot with the estimates of the coefficient of the main regressor on the 
y-axis, and the rank of the coefficients on the x-axis. A flat curve is indicative of low vari-
ance in the population. If an estimate is associated with a statistically significant p-value 
and higher than the null value, it is coloured; if significantly lower than the null value, 
in the opposite colour. Estimates not associated with a statistically significant p-value are 
grey-coloured. If necessary, instead of plotting point estimates, intervals can be reported 
instead. In the lower section of the specification curve, the modalities of the most relevant 
analytical decisions are vertically piled as horizontal sequences of blocks. These blocks 
follow the curve of the upper section: when a point in the curve is associated with a modal-
ity of a feature, the corresponding block in the horizontal sequence is of the same colour. 

2 p-hacking is conceptually equivalent to Hypothesising only After Results are Known, or HARKing 
(Rubin 2017). HARKing is not necessarily a malicious activity: the fraud is there only if the number of 
tested specifications before significance is omitted. One solution to prevent p-hacking and HARKing is pre-
registration of the specification of the model before data is collected. But pre-registration forces a limited 
set of features of the model, limiting serendipitous discoveries. Furthermore, pre-registrations do not techni-
cally prevent PARKing, or Pre-Registrations After Results are Known (Yamada 2018): authors can still lie 
about the moment of their data collection. Arguably, pre-registration is not immune from Goodhart–Camp-
bell Law: since pre-registration is costly, it sets incentives to fabricate data that are coherent with the pre-
registered specification (Gelman and Loken 2014; Pham and Oh 2021).
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Fig. 1  Examples of p-curves as employed in Multiverse Analysis. A p-Curve is a histogram of a sample 
of p-values, where on the y-axis is counted the density or the frequency of the p-value in the sample. In 
Meta-analysis, a high concentration of p-values close to .05 is a red flag that the sample of studies is biased 
and not representative (Simonsohn et al. 2014). In Multiverse Analysis, the p-Curve is a visual summary of 
the likelihood in the multiverse of the statistical significance of the effect of the regressor on the dependent 
variable. In the exemplary figures are presented two p-curves of two studies with the same scientific claim: 
“not romantically involved women feel less religious when they are close to ovulation”. The two samples 
are from Durante et  al. (2013). The p-curves are generated by Steegen et  al. (2016). In the first sample, 
only 8% ( n = 120 ) of the specifications of the multiverse are statistically significant at � = .05 . In the sec-
ond sample, this rate raises up to 44% ( n = 270 ). Durante, Rae, and Griskevicius claim that their scientific 
theory on religiosity and ovulation is successfully replicated through these two studies, but their claim is 
based only on one significant specification of the model per sample. Applying Raftery’s heuristic ( > .5 of 
specifications must be statistically significant), both the studies cannot reject the null hypothesis that ovula-
tion and religiosity are uncorrelated (Raftery 1995)

Fig. 2  Example of p-Grid. It represents the multiverse of Study 2 of Fig.  1. Acronyms represent model-
ling choice. This scheme is useful for statements about the sensitivity of the p-values in the multiverse. For 
example, in this case, modality F2 is always significant conditionally to modalities R1 and R3, but almost 
never under R2. Given the whole picture, one is led to think that results are sensitive to the analytical choice 
R, which is the operative definition of the concept of being “not romantically involved”
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The union of all the modalities of a feature always reconstructs the sequence of colours of 
the whole ranked curve. If a multiverse has too many specifications, it is convenient to just 
plot a representative sample (stratified per feature) of it. The lower section allows visual 
analysis of the distribution of ranked outputs (p-values and estimates). Clusters of blocks in 
the modalities are visually informative regarding the sensitivity of outputs to that feature.

For canonical applications of a Specification Curve to a big observational dataset, see 
Burton et  al. (2021). Slightly alternative visual templates for Specification Curve are in 
Rohrer et al. (2017), Orben and Przybylski (2019), and Cosme and Lopez (2020).

A Specification Curve has been employed as the main visualisation tool in Breznau 
et al. (2022) for a multi-teams meta-analysis: Brezau and his teams provided 72 teams of 
analysts with the same dataset and he asked them a research question: on the basis of this 
dataset, what can be said about the effect of migratory flows on public opinion on welfare 
policies? Each team was tasked with testing their hypotheses and providing a set of model 
specifications that they deemed to be equally valid. Upon aggregating all the estimates, the 
experiment revealed concerning variability in the results, since emerged an evident case of 
Janus effect between positive and negative estimates.

To conclude this historical Section, it is appropriate to mention that there is pre-existing 
scientific literature from which multiversal methods explicitly draw upon: Leamer (1983, 
1985), Raftery (1995), Sala-I-Martin (1997), Durlauf et al. (2012) and Athey and Imbens 
(2015). Saltelli et al. (2019) ascribe to Leamer the guilt of confusing uncertainty analysis, 
i.e. analysis of the robustness of a single result, with proper sensitivity analysis. For Sal-
telli et al. (2019), sensitivity analysis regards methods of assessment of the relevance of 
elements of inputs as determinants of the output, which is actually doable with the p-Grid 
(Fig.  2) or the lower section of the Specification Curve (Fig.  4) but not with p-Curve 
(Fig. 1) o Volcano Plot (Fig. 3). This criticism is not far-fetched and it must be taken into 
consideration for theoretical developments. Historically, authors of the multiversal meth-
ods did not focus primarily on the assessment of the causal impact of analytical choices 
on the numerical estimation of a parameter (e.g., what happens if we ‘switch’ this assump-
tion?) but on the generalisation of a scientific claim after relaxation of its assumptions.

Fig. 3  An example of Volcano 
Plot about an artificial dataset 
made ad hoc to display a Janus 
effect. The null value of the coef-
ficient is 1 because the estimate 
is of the hazard ratio between 
a biomarker and outcome. 
The y-axis of the scatterplot 
(p-value) has been scaled to 
−log10 for proper visualisation. 
This multiverse is a simulation 
by Del Giudice and Gangestad 
(2021). Their aim was to dem-
onstrate that is theoretically pos-
sible that the output statistics of 
the same general model can be so 
sensitive to Q to the point that to 
observe significantly positive or 
significantly negative estimates is 
almost equally likely to be in the 
same multiverse
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The development of Multiverse Analysis is closely aligned with both the epistemology 
of robust analysis in Leamer and the program to achieve a method of estimation for what 
Nosek and Bar-Anan (2012) called a “conceptual replication” (p. 619) of a result, a ter-
minology which was originally proposed by sociologist Collins (1992). Leamer’s concern 

Fig. 4  An example of specification curve. Data is from the same simulation of Fig. 3, by Del Giudice and 
Gangestad (2021). In the upper section, significant positive estimates are blue, significant negative esti-
mates are red, and non-significant estimates are grey. In the lower section, ranked estimates are decomposed 
into three features: Predictors (main regressors plus control structure of alternative main regressors), 
Covariates (additional control structure), and Outliers (preprocessing). Some results are visu-
ally immediate: biomarker BM4 and Fatigue are robustly associated with not-positive effects, while the 
absence of control (no covariate) will lead to non-negative effects - even for BM4, because BM4 is statisti-
cally significant only when controlled. Other results are less intuitive: Genotype leans towards positive 
effects, but once paired with Fatigue, it does not mediate the negative effects of Fatigue. Outputs are not 
sensible to data pre-processing (outliers)
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was that analysts might resort to an “easy way” of presenting their work as significant and 
insightful, while Collins was interested in the veracity of scientific discoveries.

3  Theory of the multiverse

Section  2 presented Multiverse Analysis and its variants as a paradigm of quantitative 
research methods that emerged in the social sciences and epidemiology. The historical 
sight fails to provide a systematic treatment of the core methodology, primarily due to a 
lack of coordination among its authors in developing unified definitions and principles. As 
a result, some problems of Multiverse modelling still remain unresolved, such as the con-
cept of “reasonableness” of alternative choices, which is almost expressed in subjective 
terms. In this Section, we aim to address these issues by clarifying the theoretical assump-
tions that underlie the adoption of a multiversal method.

3.1  Multiversal methods and multiversal modelling

A multiversal method is a procedure involving (1) a phase of collection of a systemati-
cally differentiated multiplicity of alternative specifications of the same unitary regression 
model, and (2) a comparative evaluation of fit statistics regarding the estimation of the 
proprieties of the regression coefficient of the main regressor variable, commonly referred 
as ‘effect size’ in studies oriented towards causal inference3. Multiverse Analysis is not the 
only possible instance of a multiversal methodology, since one can collect specifications 
of the scientific modelling of a unitary scientific hypothesis from many teams (Schweins-
berg et al. 2021; Breznau et al. 2022). However, Multiverse Analysis as exposed in Steegen 
et al. (2016) remains the canonical application of multiversal methodology, whereas Vibra-
tion of Effect (Patel et al. 2015) or many teams (Breznau et al. 2022) are alternative meth-
ods with different epistemological premises.

During phase (1) of Multiverse Analysis, a set of specifications is collected through the 
systematic differentiation of a single conceptual model into a multiplicity of specifications. 
This operation is itself a form of (multiversal) modelling: while a regression model is a 
representation of a scientific hypothesis, a multiversal model represents the knowledge of a 
group of analysts about testing a specific hypothesis through a regression method.

Gelman and Loken’s metaphor of a “Garden of Forked Paths” provides an example 
of how decisions made by analysts, flowing from an abstract hypothesis into a specified 
model (often a line of code in software), follow an organic process of systemic differentia-
tion; whose magnitude and range depends on their methodological knowledge and insight. 
For instance, when estimating the coefficient of a binomial regression between a singular 
regressor and a dependent binary outcome, an analyst has to choose between using a logit 
or probit link function. While these two link functions may be considered conceptually 
equivalent, there is always a numerical difference between the two coefficients, however 

3 These statistics are commonly the estimate of the effect size itself or p-values. Potentially, there may be 
others: the output of a linear model in base software R provides values for estimates of regression coef-
ficients, their standard errors, confidence intervals, test statistics, and p-values for each, global R2 (adjusted 
and unadjusted) for the whole specification of the model, the p-value of specification and the sum of the 
residuals. It includes also a more refined measure of fit as Information Criteria of the specification (Akai-
ke’s and Schwartz’s), and the logarithm of the likelihood of the specification.
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trivial. Another example of a binary decision concerns the absence or presence of a third 
variable as a “control”. Such decisions are often ambiguous but can lead to a numerical 
differentiation in the resulting estimates. Gelman and Loken refer to these arbitrary deci-
sions as “researcher degrees of freedom.” When two binary decisions are combined, four 
coefficients are assumed to be equally valid a priori. With a sufficiently high number of 
“researcher degrees of freedom,” the number of possible specifications can easily exceed 
a thousand, resulting in a proper sample of different numerical estimates. The assumptions 
on multiversal modelling draw on this analogy between the process of organic specification 
of a model and the process of sampling observations.

3.1.1  Assumptions of multiverse analysis

Let � be an estimand on whose value depends the validity of a scientific claim (Muñoz 
and Young 2018a). For example, � may represent an effect size of a unitary increase of a 
regressor x on a dependent y. �̂� is the generic estimate of the � from a regression model fit 
on a sample. The claim ‘x causes y’ substantiate its veracity if it can be demonstrated that �̂� 
is sufficiently distant from 0.

Conventional sampling theory assumes that � is a parameter of the involved data-gener-
ating process and also a parameter of the sampling distribution of representative samples 
of that data-generating process. If samples are unbiased (e.g. i.i.d. draws), then the error 
between the estimate �̂�k (fit a sample k) and � follows a Normal distribution. Under these 
assumptions, the expected variability between the estimate and the parameter can be meas-
ured with the canonical estimator of sampling standard error 𝜎k(�̄�):

whereas K is the number of samples. Assuming �̄�k ≈ 𝜃 , then,

is equivalent to the sampling error, which can be characterised as the random component 
of the error of measurement of the estimate.

The theory of sampling error assumes that exists one correct specification j� of the 
model of the data-generating process, and that �̂�k are estimated through j� . A �̂�k is accepted 
as an approximation of � by an analyst when he or she is confident that it is sufficiently 
close to the parameter, hence �k is small.

Young and Holsteen (2017) accept the formal reasoning behind sampling theory, but 
they argue that the assumption j�̄�k = j𝜃 in practice systematically neglects the compo-
nent in the estimation error that is due to the misspecification of the model. Keeping in 
mind the expression: “All models are wrong, some are useful”, they are correct in iden-
tifying that sampling theory alone does not measure the usefulness of a model specifi-
cation, and that this usefulness should reflect how “less wrong” the specification is in 
the representation of the data-generating process involved in a scientific claim (Aronow 
and Miller 2019). Even if Young and Holsteen (2017) never explicitly mentions Multi-
verse Analysis, the theoretical foundations to refute that �k is a sufficient measure of the 
uncertainty regarding a scientific claim lies deeply on the same theoretical foundations 
of the works mentioned in Sect. 2. Their work, focused on effect sizes, is an extended 
attempt to re-frame the Multiversal methodology as a theory of variation of estimates 

(1)𝜎k(�̄�) =

�

∑J

k=1
(�̄�k − �̂�k)

2

K

(2)𝜖k ≈ �̄�k − �̂�k



1456 G. G. Cantone, V. Tomaselli 

1 3

across model specifications. Mirroring Eq. 1, they derive an estimator of what they refer 
to as model (standard) error 𝜎j(�̄�):

which in the context of a theory of Multiverse Analysis can also be understood as the mul-
tiversal standard error.

From Eq. 3 it is possible to derive the assumptions of the theory of the Multiverse, and 
appreciate how it mirrors the theory of sampling, albeit with some not trivial differences. 
The primary assumption of Multiverse theory is that, if � is a value looked for validating 
a scientific claim, and exists a population of 𝜃 + 𝜖k = �̂�k values that are equivalent to � , 
then, it holds the following generalisation: it exists a population of equivalent parameters 
Θ ∶ {�1, �2,…} such that the same scientific hypothesis originally modelled after � would 
still be validated by the estimation of the approximation of � as �j ∈ Θ . From this assump-
tion derives the formal definition of model error (multiversal error) as:

The following assumption of Multiverse theory is that the Θ can be sampled through the 
identification of a finite set j ∶ {j1, j2,… , jJ} of specifications that are ‘reasonably’ concep-
tually equivalent. Indeed, from this set of specifications is computed a finite sample of esti-
mates Θ̂ ∶ {�̂�j1 , �̂�j2 ,… , �̂�J} . Of course, the corollary of this assumption is that it is not only 
possible to sample representative estimates through the identification of a finite scheme of 
specifications (a theoretical multiversal model), but also that this identification is possible 
through a reproducible procedure (a sample of specification).

Compared to Eq. 2, the concept of model error as expressed in Eq. 4 is not formalised 
after an approximation. It is just an abstract propriety of the set Θ that epistemologically 
derives from the unknown � . But there are no assumptions on the distribution of Θ , so 
in this stage, there is no formal connection between � , Θ and �̄� . In other words, these two 
assumptions are sufficient to define only the non-parametric proprieties of the Multiverse, 
and to derive non-parametric tests as those proposed in Simonsohn et al. (2020).

There is a third parametric assumption that is definitely worth mentioning, because it 
seems a necessary premise to accept the methodological toolbox of Young and Holsteen 
(2017), Muñoz and Young (2018b), and arguably of Steegen et al. (2016), too. This third 
assumption can be expressed as follows: given that both � and j� are unknown, for each 
j ∈ j , for a sufficiently large J, then the modeller of a sufficiently large Multiverse expects 
the average �̂�j to be closer to the latent parameter � than the majority of the individual esti-
mates 𝜃j.

Following this third assumption, conditional to no other prior information on � and j� , 
even without other assumptions on the distribution of Θ , the approximation

is the unconditional best estimator of model error �j . This assumption reflects the belief 
that the average of estimates from many sources of knowledge (many specifications) is a 
priori more reliable than a single opinion, as well-informed as it may be. Why? Because a 
priori it is not possible to know how informative �̂�j is. So the belief that it is not possible 

(3)𝜎j(�̄�) =

�

∑J

j=1
(�̄�j − �̂�j)

2

J

(4)𝜖j = �(Θ) − �̂�j

(5)�̄�j − �̂�j = 𝜖j
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to weight a priori the relevance of specification is the theoretical origin of the parametric 
assumption in Multiverse Analysis.

The suggestion to expand to higher values the number of specifications J surely reso-
nates with the approaches in Young and Holsteen (2017) or Breznau (2021), and arguably 
with all the other authors mentioned in Sect. 2. However, authors as Slez (2019) and Lun-
dberg et al. (2021) proposed arguments for refusing to treat a large set of estimates as if all 
specifications were epistemologically equivalent.

3.2  Modelling the multiverse

It is convenient to represent the set of specifications as a vector j ∶ {j1, j2,… , jJ} , of 
J length. After the specifications are fitted on the sample, the vector is matched to their 
regression statistics (estimates, p-values). The resulting database is the multiversal sample. 
The modelling of the Multiverse consists primarily of the procedure to identify j.

3.3  Taxonomical issues: the analogy of the switch

Gelman and Loken (2014) presents analytical choices as “degrees of freedom”; from a 
modelling standpoint, a better analogy is that of the ‘switches’ connected to an engine. 
These switches dictate how the regression model (the “engine”) should proceed to esti-
mate parameters, conditioned by input data. In this analogy, a specification of a model is 
a scheme of the positions of all the switches. Another word for the position of a switch is 
modality.

Let q represent the generic analytical decision regarding a model. The set of analytical 
choices can be represented by a vector q = {q1, q2,… , qQ} . The initial step in multiversal 
modelling involves the quantification of Q by identification of the ambivalent analytical 
choices encountered during the specification of the model. This is not a trivial task, as 
the literature presents multiple taxonomies and possibly contradicting methodological rules 
(Steegen et al. 2016; Simonsohn et al. 2020; Del Giudice and Gangestad 2021). Uncontro-
versial examples of analytical decisions are the adoption of alternative estimators and the 
inclusion of variables in the structures of controls.

In social sciences, different operative definitions (or ‘proxies’) of the same latent con-
struct are generally admitted as ‘switches’ of a model, even when these operative defini-
tions regard the dependent variable. In this case, the analysis of multiversal statistics truly 
depends on choices that the analysts regard as ‘good sense’. This ‘good sense’ is mostly an 
expression of their own methodological knowledge and finesse. Indeed, a multiverse, if not 
a representative sample of Θ , is very informative on the methodological knowledge and 
insight of its own authors.

Some choices depend strictly on what exactly � is, and how it is informative about the 
scientific claim: when estimating the variability in multiversal estimates of effect size, 
it is only reasonable to avoid mixing estimates from a linear model with those from a 
binomial, unless they are converted into a comparable scale. However, when observing 
the variability in p-values, a differentiation through types of regression models could be 
a valid analytical choice.

Once those analytical decisions are set, for each decision it is necessary to iden-
tify the set of admitted modalities, too. A detailed attempt to formalise multiversal 
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modelling is in Hall et  al. (2022), but it does not catch some emergent proprieties of 
model specifications within a multiverse. A different formalism is proposed, with the 
aim of a more radical identification of the type of analytical decisions in multiversal 
modelling. Three categories are identified:

• a logical decision is one that can be thought of as a switch set on ON or OFF. For 
example, deciding whether to include a covariate as a control involves the presence 
or absence of the covariates in the model. The proposed formalism is to record value 
0 representing the absence of the feature, and 1 representing its presence.

• a multimodal decision regards two or more alternative options, of which if one is 
included in the model, no other is. An example is which estimator to adopt for a 
parameter. The proposed formalism is to use Latin letters to identify a modality of 
this kind of decision.

• a multimodal decision with absence regards the presence or absence of a feature, 
that can be present with alternative modalities, too. An example is whether to inter-
polate missing data at all and, if so, how to do it. The proposed formalism is to adopt 
the value 0 when the feature is absent, and Latin letters to identify a modality of the 
decision.

The correct identification of modalities is a cumbersome task because it should follow 
the guidance of the current state-of-the-art of the involved methodology. Three general 
situations can be identified:

• Some alternative choices are truly ambivalent in literature, e.g. the multimodal 
choice between logit and probit.

• In certain cases, there may be clear indications about the inclusion of a modality, 
which depends on just checking if an assumption holds. For instance, it has been 
argued in Sect.  4 that a strong assumption of a Poisson model regression is the 
absence of overdispersion, which refers to an inflation of variance in the observed 
values of the dependent variable y. If overdispersion is observed, it is highly advis-
able to adopt a corrected estimator. Not correcting is not a reasonable alternative, 
as uncorrected estimates will be less representative of the data-generating process 
(Lundberg et al. 2021).

• Yet, there are decisions where the literature seems to suggest a direction, but there are 
other factors that lead an analyst to still include some modalities. An example would be 
modelling a regression over samples presenting a panel structure (see, Sect. 4). Specific 
estimators have been developed to improve the estimation after observing the clustering 
of the observations across time and groups, but yet the literature suggests that is also 
worth checking results from conventional linear models (Gelman and Hill 2007).

Identified the mq number of modalities for each q, it holds:

because j is the finite set of all the combinations of j ∶ {m1,m2,… ,mQ}.

(6)J =

Q
∏

q=1

mq
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3.3.1  Model specifications as strings of information

It is now possible to introduce a fundamental difference between Eq. 1 and Eq. 3, which 
goes beyond any abstract assumption on the distribution of Θ . The theoretical k-draws of a 
sample are equally likely and mutually independent, so they conform to the i.i.d condition. 
Instead, the j of Eq. 3 are combinations of features that, by how they are differentiated, can 
not be assumed to be drawn by an i.i.d. sampling distribution (Western 2018).

This fact becomes even more clear with a representation of j as a string of Q symbols, 
each symbol representing a mq . For example, following the rules of Sect. 3.2, a small mul-
tiverse of J = 4 made of a logical choice and a binary multimodal choice would consist of 
a list of four strings:

• j1 ∶ “0A”
• j2 ∶ “1A”
• j3 ∶ “0B”
• j4 ∶ “1B”

Two proprieties emerge after this example. The first is that strings are sampled in clusters, 
not as individual units. For example, if a multimodal q3 ∶ mq3

= 3 is added to the model, 
then 8 new strings will be sampled together (see, Eq. 6). If this choice is then repelled, 
these will fall out together. A corollary is that the same string will be never sampled twice.

The second propriety is that the canonical structure of the multiverse of specifications 
is not exactly a “Garden of Forked Paths”, but more akin to a regular network structure, 
where some strings are more similar to others. This similarity can be represented in two 
equivalent ways. The first is through a Hamming distance (d) between two j, which is the 
number of symbols that should be altered for one of the two to be an identical string to the 
other (Bookstein et al. 2002). Since the same string cannot be sampled twice, the minimal 
Hamming distance between two strings is d = 1 , and the maximal is d = Q . The second 
representation of this quantity is the length of the shortest path between two nodes in a 
graph (Fig. 5).

3.4  Inference on multiversal statistics

An argument against the canonical employment of parametric inference through multiver-
sal statistics is proposed by Del Giudice and Gangestad (2021): the choice q of including 
a control variable biases the estimates of half of the multiverse if that variable is a collider 
(Elwert and Winship 2014).

Through a simulation, Del  Giudice and Gangestad (2021) shows how a collider 
(Fatigue, see Fig. 4 and also Fig. 3) can also induce a Janus effect in a multiverse. If 
instead this variable had been correctly identified as a collider, then it would have been 
excluded from controls of the multiverse. Given that the identification rules of q pri-
marily rely on the prior knowledge of the analyst, they argue that nothing in Multiverse 
theory precludes the presence of collider variables, or analogous analytical decisions, 
within the multiverse.
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This issue is concerning because the modern theory of collider structures incorpo-
rated the concept of biased data collection: any selection bias is a collider bias (Munafò 
et al. 2018). While it is truly important to be aware of collider bias, the claim that large 
multiverses are inevitably biased should not rest undisputed. To better understand this 
issue, we can draw an analogy with the concept of M-bias. An M-bias arises from an 
M-shaped causal structure where a collider cannot be distinguished from a confounder 
(Shrier 2008; Rubin 2009). It is credible that, in the case of M-bias, a team of analysts 
could include the collider variable as a logical q of the multiverse, biasing half of the 
estimates as a consequence. However, further studies have shown that M-shaped causal 
structures are highly specific and embedded within more complex causal structures, 
reducing the magnitude of bias to trivial values (Liu et  al. 2012; Ding and Miratrix 
2015). In other words, as long as there is no clear intention to bias the estimates towards 
a specific outcome, independent sources of bias in the multiverse behave as random 
errors, annihilating each other out in the estimator of �̄�j . Thus, contrary to what Lund-
berg et al. (2021) seems to suggest agnostic yet large multiverses may be more reliable 
than small well-tailored ones. This analogy could be an argument to not refute the para-
metric assumptions of multiversal methods.

A prudent approach to the application of multiversal statistics involves conducting sen-
sitivity analyses to evaluate the effects of the modelling choices, such as understanding the 
conditions for which Janus effect manifests in a multiverse. The formal categorisation of 
the analytical choices in the modelling of the specifications as strings has the potential to 
facilitate such analyses by enabling differentiation between absent and included features. 
This differentiation is also foundational for a preliminary method to check the parametric 
assumption underlying the Multiverse approach.

Fig. 5  The multiverse of strings represented as a graph. The object A represents the simpler case of mul-
tiverse, with J = 4 . Strings are nodes. Each node is reachable from any other, but some pairs of nodes are 
closer: the number of links to cross (path length) is lower. The number of links to cross is the length of the 
shortest path and it is equivalent to Hamming’s distance d between two strings. The object B is much more 
complex just by adding a third q with 3 modalities, yet the structure preserves a regular form
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3.4.1  Sensitivity analysis through multiversal models

In the sensitivity analysis within Multiverse Analysis, modalities act as grouping variables 
for the statistics of the multiverse. The aim is to assess which modality is the most rel-
evant contributor to two proprieties of the multiverse: the variance of the estimates and the 
relative location within the sampling space of the multiverse. For the scopes of the present 
analysis, the variance of the estimates can be measured as the exponentiation of the estima-
tor of the multiversal standard error (Eq. 3).

About the second property, locating the estimates when a modality is present, can be 
actually insightful in understanding the sources of biases, with the caveat that one does 
not really see a ‘bias’ but only the stability of the estimates in a certain portion of the sam-
pling space of estimates. Despite this caveat, this operation is not at all useless. In fact, the 
problem represented by the Janus effect is quite evident. Generally speaking, and especially 
in social sciences, rarely models check quadratic relationships. Whether this is an episte-
mological limit or not, except when it is expressly provided for in a scientific claim, the 
coexistence of positive and negative effect size estimates is a strong red flag of an error of 
misspecification. A posterior selection of the modalities, under which the Janus effect does 
not occur, can be a method to reduce this effect.

Some purists may argue against a posterior selection of the modalities since it could be 
arbitrary. In Sect. 3.2, the analytical choices are classified into three categories: legitimate 
differentiations of the model; false options, that should not be considered when modelling 
the multiverse, and cases in-between, where one modality seems more valid than others, or 
where choosing one modality makes it seems contradictory to consider others. In this third 
case, it is recommended to still compute multiversal statistics for all combinations and then 
cluster them to reflect these ambiguities in a priori modelling. So, this operation of a priori 
clustering can be the preliminary step for validating a posterior selection as not arbitrary.

The significance of differences between modalities can be inferred through a statistical 
test of the difference between groups. Practically, in large multiverses, it is usually suf-
ficient for the visual outlook of the lower section of the Specification Curve to detect suf-
ficient differences among modalities (see, Fig. 4).

3.4.2  Check the parametric assumption

The following procedure is proposed to check the assumption that, the larger a multiverse, 
the less unbiased the estimate of �̄�j is.

In a string, the symbol “0” always represents the absence of a feature. A model speci-
fication represented as a string with a “0” is always equivalent to a specification of that 
model in a multiverse where that feature has not been included. From this equivalence, it 
follows that splitting a multiverse across the number of “0” in their strings, those with a 
high number of 0 are equivalent to more parsimonious models and, by converse, those with 
a low number of 0 are more complex models.

So, this procedure, akin to sensitivity analysis, consists in grouping specifications across 
the number of their 0 and checking their differences in variance and location. The assump-
tions of this procedure are derived from an analogy to model high-parameterised inferen-
tial models. Conventionally, raising the number of parameters in a model has the effect to 
reduce the bias of estimates, while inducing higher variance. This is also referred to as the 
trade-off between bias and variance in estimation (James et al. 2013; Belkin et al. 2019). 
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So, in this procedure, it is assumed that a shift in location is representative of a reduction of 
pre-existing biases. Also, as the number of 0 raises, the sample variance of the estimates is 
expected to rise.

4  Application: COVID‑19 vaccination

A multiverse is modelled around the following scientific hypotheses:

• �
� : The vaccination plans in 2021 had no significant impact on the risk of death in 

infected people with COVID-19.
• �

� : The vaccination plans in 2021 reduced the risk of death in infected people.

These hypotheses are identified as such: 

1. the explanans of death reduction is a collective social fact, the vaccination plan - and 
not the vaccine shot as an individual biological fact. The demographic effect is mediated 
by the biological effects of the vaccine shot but it accounts also for spillover effects of 
potential reduction of contagiousness of the virus due to a reduction in symptoms. This 
definition does not differentiate between different brands of vaccines for COVID-19. It 
also allows to account for behavioural responses to enacted policies (lockdowns, etc.).

2. the death reduction is imputed only on the infected, not to general mortality in the popu-
lation. �

�
 does not regard a cost-benefit analysis of vaccination plans on general human 

mortality. For example, it can be hypothesised that before vaccination plans, lockdown 
policies actually reduced general mortality at cost of mobility. If after vaccination plan 
lockdown policies are ceased, general mortality could raise not because of the effects 
of vaccine shots, but only because mobility is regained (Islam et al. 2021).

From point 1. follows that this theory involves the effectiveness of vaccination, not its effi-
cacy (Olliaro et al. 2021; Lipsitch et al. 2022). The literature on COVID-19 vaccine effec-
tiveness against risk of death (Dagan et al. 2021; Haas et al. 2021; Jabłońska et al. 2021; 
Patel et  al. 2021; Tregoning et  al. 2021; Fiolet et  al. 2022; Lipsitch et  al. 2022; Pormo-
hammad et al. 2022) reveals a certain variability. These sources report that the reduction 
spanned around 75–80% of the relative risk of death in the un-vaccinated, but with large 
confidence intervals.

4.1  Panel dataset

The dataset is a data linkage of sources:

• the dataset on the pandemic from Johns Hopkins University (Dong et al. 2020);
• “Our World in Data COVID-19” (oWiD) datasets (Mathieu et al. 2021)
• the Oxford COVID-19 Government Response Tracker (OxCGRT); (Hale et al. 2021), 

accessed through the COVID-19 DataHub (Guidotti and Ardia 2020).

These are fused into a panel dataset, which is a multivariate sample indexed by a time 
covariate with regular time intervals, and by one or more grouping covariates. In the sam-
ple, the time covariate ( t ) consists of 409 days and contains all year 2021, and the grouping 
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variable ( g ) contains 186 countries.4 There is a total of 186 ⋅ 509 = 76.074 rows in the 
dataset.

The response y is the count of deaths in infected. y has not a problem of missing values, 
however, as a count variable, it is more overdispersed than a Poisson distribution5.

In the dataset, there are two candidate variables to represent the main regressor men-
tioned in �

�
 , the state of a “vaccination plan”. These two are: 

A Minimal: The percentage of people with at least one shot of vaccine. This quantity can 
never conceptually decrease over time.

B Full: The percentage of people that are counted by the country administration of their 
State as “fully vaccinated”, e.g. because they took up-to-date booster doses. This number 
can also decrease over time.

This is the first degree of freedom the researcher, or q1 , and it is multimodal. Differently 
from the case for identifying a vector y , these two potential candidates for x have rele-
vant issues of missing values (na), clustered around some countries, China being the most 
problematic (Fig. 6).

The issue of missing data can be disjoint in two considerations:

• The vaccination plan does not start before the first vaccination, hence the natural per-
centage of the vaccinated population before the first non-na values are ∼ 0 (China is an 
exception). These ’0’ are natural zeroes.

• All of na between two non-na are logically non-zeroes, instead.

It follows that q2 is the logical decision to impute natural zeroes before the first not-missing 
value in the location group, and q3 is the logical decision to interpolate the others missing 
values6.

Fig. 6  Missing values of the 
proportion of people with at 
least a vaccine shot. In this 
plot, the days before the first 
day of reporting do not count 
as na, even if in some cases, 
they should. China is the most 
problematic case since it scarcely 
reported data on vaccination 
plans only

4 46 other locations have been removed for being substantially uninformative e.g. ships like the “Diamond 
Princess”, micro-nations and semi-independent administrative territories with less than 30.000 inhabitants, 
countries that reported data on COVID-19 deaths only once in 2021 (e.g. Eritrea).
5 The assumption of a Poisson distribution is ȳ

s2(y)
∼ 1 . In the dataset, ȳ

s2(y)
= 962 and Median(y)

s2(y)
= 11.

6 There is a regular progression of the vaccination plan, hence linear interpolation is appropriate. Linear 
interpolation is also the standard model of interpolation with the command zoo::na.approx in R. 
One may argue that instead q

3
 should be a multimodal decision with an ’absence’ modality (no interpola-
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4.2  Modelling of the regression on panel data

Since y is a count, the most appropriate type of regression is the Poisson, however, since y 
it is also overdispersed a Negative Binomial (NB) or a Quasi-Poisson (QP) is used instead. 
These alternative methods of parametric estimation differ in how the parameter of over-
dispersion ( � ) maps the relationship between the parameter of the mean value in Pois-
son ( � ) and the expected value of the variance. q4 is the multimodal choice of the correc-
tion of overdispersion for the Poisson regression. Details on this correction are provided in 
Appendix A.

A Poisson coefficient is usually not immediately interpreted as an effect size. However, 
conditional to some further assumptions, since the vector x is scaled within the unit inter-
val (i.e., it is a percentage), then the coefficient b of a Poisson regression can be interpreted 
as the natural logarithm of the estimator of the hazard ratio of the binary choice to treat (get 
vaccinated) vs not. For clarity, 1 − exp(b̂) can also be interpreted as an estimate of relative 
risk reduction, i.e. how likely is to expect a reduction in the risk of death after infection, if 
treated with the vaccine. For the assumptions holding this interpretation, see Appendix  A.

The causal effect stated in �
�
 requires time before manifesting itself. To properly model 

this delay, the vector y must be lagged compared to both x and the controls Z. The most 
mentioned lags in the literature (Sect. 4) are 7 days, 14 days, and 21 days, and these will 
be the modalities of the fifth ‘switch’ ( q5 ), the lagging scheme, which is a multimodal 
decision.

�
�
 does not make a distinction among subgroups of human populations (gender, ethnic 

genetics, etc.). This makes sense for the causal effect of the vaccine shot: vaccines are not 
developed to be biased across human groups. Nevertheless, data on deaths ( y ) are collected 
by countries, and variability in y may depend on how different countries collect data, plus 
on specific unobserved features of these countries. There are two ways to account for the 
variability that is within the grouping covariate g : 

A to pool all the rows of the dataset, ignoring g , while controlling for all the fixed determi-
nants Zg of y . Zg are all the variables that can be assumed as fixed to only one numeric 
value within the grouping variable while having an impact on the value of y, i.e. all 
those variables whose variability is dependent mostly by differences between groups. 
For example, is practical to assume that in a time span of one year, the population of 
the country or the percentage of elderly people in that country is stable around only one 
numeric value.

B to model the assumption of the fixed effect directly through the mediation of the grouping 
variable g in itself. This can be done with the so-called Fixed Effect (FE) estimator7. To 
intuitively understand FE estimation: it is an implicit control for all of these unobserved 

7 For linear models, there are many estimators of FE e.g., the de-meaned (a.k.a within) estimator or the first 
difference estimator. These estimators do not generalise for GLMs. Hausman et al. (1984) proposed a spe-
cific FE estimator for Poisson based on Conditional Likelihood Estimation (CLE), but Allison and Water-
man (2002), deemed its link function for Negative Binomial biased. However, a new unbiased FE estimator 
has been proposed for count data, this time based on MLE (Broström and Holmberg 2011).

Footnote 6 (continued)
tion), and different models of interpolation would be the modalities of presence but the practical differences 
would be abysmal.
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features (covariates) that are fixed within g - even those that are not determinant for y. 
In this sense, FE is a shortcut to avoid an identification strategy for what is Zg.

Should this decision be q6 about how to control the variability between groups? Yes, but 
with a caveat: this is a complex decision because it is not necessarily limited to a binary 
choice.

The first approach requires an identification strategy for the Zg : which ones to 
include, or not. The population of the country (actually its natural logarithm, since the 
regression type is Poisson) should always be included in Zg . Without this operation, 
it would be not possible to claim a proper panel estimation, since y is a count of daily 
events happening exactly in the finite population. Two other relevant time-fixed vari-
ables in the dataset are the share of elderly people ( > 65 years old) in the population 
and the population density (pop_d). So there are 4 different modalities for the pooled 
estimator: including only age, including only pop_d, including both, or neither. The 
number became 5 with the addition of the FE alternative.

q6 can be framed as a multimodal decision with absence but put into practice the 
theoretical rules, there is still ambiguity. If one applies the rules of Sect. 3.3.1 within 
a simple multiverse where only a pooled model is considered, then there are two deci-
sions: to include or exclude age and pop_d. The shape of this small multiverse would 
be a square, like the one in Fig. 5, and the specifications where both (“11”) or neither 
(“00”) are included would measure a Hamming’s distance equal to 2. But if instead the 
same problem is re-framed as a problem of comparison of specifications of a pooled 
model to a FE model, then “00” should be re-coded as “0”, and “11”, “01”, “10” and 
“FE” are conceptually re-coded as “A” “B”, “C”, and “D”. In addition, the FE estima-
tion is peculiar because it aims to mimic the coefficient that would be seen if all the 
fixed characteristics of the group features would be controlled. In FE estimation, differ-
ently from pooled models, Zg are not added to not induce technical multicollinearity in 
the model (Allison 2009), so the distance between “FE” and “00” should be even higher 
than between “00” and “11”. On the other side, the reason to include these differences 
as different modalities of the same q is exactly their role as fixed Zg . They do not control 
for the variance in the effect of X → Y  , they control jointly the variance within x . These 
issues would be accounted for in the sensitivity analysis of the result.

This does not exhaust the analytical choices involved in a panel model. Should y 
be assumed as time-independent? This question is tricky: serial correlations could rise 
through behavioural dynamics of information cascades (e.g., “once I see a reduction in 
deaths, then I vaccinate myself”), but also because the vaccination plans could decrease 
the contagiousness of the virus.

One way to control the time dependencies is to extend FE to the t vector. t and g are 
orthogonal, hence the FE of t can be combined with pooled models to control for vari-
ance within g, too. t can be pre-processed with two different principles: 

A conventionally: t is the distance from the first day in the dataset.
B after onset: t is the distance from the first day of the vaccination plan within g , the ‘onset’ 

of the vaccination plan for g. t would be a random variable pegged to g , and all days 
with 0% vaccination rate would be set as t ∶= 0.
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The q7 , about how to control for time-dependencies, is not dual but threefold, with a modal-
ity for absence: }}0�� would stand for no control, A = Conventional for regular time count, 
and B = Onset for the alternative time counts from the first day of vaccination.

In a regression on a panel-structured sample, there are two reasons to add a control. 
Fixed numerical controls ( Zg ) are added to identify the contributing causes for the variance 
between groups. Other controls ( Zt,g ) are added to identify contributing causes of variance 
over time. q8 is the inclusion/exclusion of the reported rate of infected (positive rate or 
pos_rt). This would be a natural inclusion in the multiverse, yet 40% of the rows of the 
dataset reports a na, so this q could be a considerable source of variance in the multiversal 
estimates.

A concept to explore within the formulation of �
�
 is the mediating effect of mobility 

restrictions. Oxford COVID-19 Government Response Tracker (OxCGRT) (Hale et  al. 
2021) provides both a composite normalised index in the unit interval (OXSI) and many 
indicators of anti-pandemic policies. The most pertinent indicator is an ordered multino-
mial measure of the severity of lockdown policies (LKDW). OXSI and LKDW are collinear 
proxies of the same concept (mobility restrictions) and should not be included together, so 
q10 has two modalities: control for OXSI and control for LKDW,8. This is an example of a 
case where a theory leads to reject a ‘false’ modality.

4.3  Results

In Table 1 are reported the 9 q.
The maximum number of 0 in the strings is 6. The number of specifications in the mul-

tiversal posterior distribution is then 26 ∗ 32 ∗ 5 = 2280.
The estimates of the regression coefficient bx and their p-values are represented in the 

upper section of the specification curve of the multiverse in Fig. 7.
The specification curve shows two jumps in the slope at its extremes and a linear 

slope in the middle. The absence of jumps in the middle, plus the scarcity of not sig-
nificant estimates leads to think that the hypothesis H1 is plausible, even if not without 
uncertainty. The Janus effect is neither trivial nor alerting: only 14% (413) of the spec-
ifications have a significant positive bx , associated with an increase in the risk of death 

Table 1  Features and modalities 
of the multiverse

Decision Type Mq

q
1

Measure for vaccination plan Multimodal 2
q
2

Natural zeroes imputation Logical 2
q
3

Linear interpolation of na Logical 2
q
4

Overdispersion’s correction Multimodal 2
q
5

Lagging schemes Multimodal 3
q
6

Panel Estimator Multimodal with 0 5
q
7

Time control Multimodal with 0 3
q
8

Infected rate control Logical 2
q
9

Lockdown policies Logical 2

8 All of OXSI LKDW, and pos_rt can be pre-processed as rates in the unit interval, hence they are not 
logged. Other pertinent covariates in the dataset have a high rate of missing values.
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after vaccination. 79% (2285) have a significant negative estimate, associated with a 
decrease in the risk of death after vaccination. Given that the hypothesis of a reduction 
of the risk is much more credible, the multiverse data can be employed a posteriori to 
ascertain potential sources of bias, through a sensitivity analysis. The variation of the 
estimates across their own range of variation is represented in Fig. 8. Compared to the 
upper section of the specification curve, this representation is more attuned to a para-
metric interpretation of the estimates.

The estimate of the effect size 1 − exp(b̄x) = .54 is significantly lower than the 
majority values of vaccine effectiveness reported in the literature, although it does not 
fall outside the confidence intervals of most of the literature (which can also reach 
lower bounds equal to .2). Methodological differences in estimation methods between 
in vivo monitoring experiments and panel regression do not emerge in the literature 
(Jabłońska et al. 2021; Tregoning et al. 2021).

An alternative hypothesis is that authors over-focused on some countries associ-
ated with the administration of peculiar brands of vaccines and overestimated the over-
all effectiveness against death of the state-of-the-art of vaccine technology against 
COVID-19, especially against late virus strains.

Fig. 7  Upper section of the specification curve of the multiverse. This curve represents the concept of vari-
ability across two dimensions: on the vertical axis is represented the range of the confidence interval of the 
estimate; on the horizontal axis, the slope represents the variability across specifications. p-values are not 
very informative, since almost any specification is statistically significant at � = .05

Fig. 8  Distribution of b in the multiverse of this application. Following Appendix A, coefficients can be 
interpreted as hazard ratios. A bx inferior to 0 implies a reduction in the risk of death. Instead, interpreting 
the coefficients in the scale 1 − exp(bx) it is possible to estimate an effect size of the average coefficients of 
the vaccination treatment as a reduction of .54 of the risk of death. The median estimate is associated with 
an effect size of a reduction of .49
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4.3.1  Sensitivity to modalities

The multiversal model has 9 analytical choices or q. These are divided into a first group 
of insensitive decisions, and a second group that shows more sensitivity to their own 
modalities.

The first group is represented in Fig. 9. Summary statistics are proposed in Table 2. q1 
and q9 are operative definitions of abstract concepts, q2 and q3 are other operations of pre-
processing. q5 regards true conceptual differences in the regression model.

The second group is made of the other four analytical decisions relevant choices are 
provided in Table 3 and Fig. 10.

q6 is the choice with more alternative modalities, and possibly the most complex, as 
highlighted in Sect.  4.2. “FE” is the only modality in the whole sample multiverse that 
is never associated with a significant positive estimate (see, Fig.  10), so a convenient 

Table 2  Sensitivity analysis: 
insensitive analytical decisions

q Decision Modality n b̄x s2(bx)

1 Measure for vaccination plan Full 1440 −0.80 0.69
1 Measure for vaccination plan Minimal 1440 −0.77 1.12
2 Natural zeroes imputation 0 1440 −0.88 0.81
2 Natural zeroes imputation 1 1440 −0.68 0.98
3 Linear interpolation of na 0 1440 −0.84 0.85
3 Linear interpolation of na 1 1440 −0.72 0.95
5 Lagging schemes 7 960 −0.80 0.92
5 Lagging schemes 14 960 −0.78 0.90
5 Lagging schemes 21 960 −0.78 0.89
9 Lockdown policies LKDW 1440 −0.84 0.98
9 Lockdown policies OXSI 1440 −0.73 0.82

Fig. 9  Lower section of specification curve of the multiverse: insensitive analytical decisions
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solution to avoid Janus effect would be to restrict the multiverse at the 576 specifica-
tions processed with a FE estimator. Indeed, the effect size in relative risk reduction is 
1 − exp(−1.74) = 82% , which is a value close to the prior of 75 ∼ 80%.

Accepting the assumption that FE is a methodological approximation of including ‘as 
much fixed-within-groups ( Zg ) variables’ as possible, then the progression of b̄x in Table 3 
assesses that in the sample multiverse the magnitude of the estimate increases with the 
inclusion of Zg variables in the model.

Negative Binomial has significantly higher estimates (less risk reduction), but this may 
be an effect of the amplification of the magnitude, since overdispersion brings significantly 
higher variance, too. Similar considerations hold for controlling for the infection rate ( q8).

Finally, conventional FE control for the time variable fails to achieve a high magnitude 
of effect compared to no control, however the properly modelled control “After onset” 

Table 3  Sensitivity analysis: 
sensitive analytical decisions

q Decision Modality n b̄x s2(bx)

4 Overdispersion’s correction NB 1440 −0.62 0.50
4 Overdispersion’s correction QP 1440 −0.95 1.26
6 Panel Estimator 0 576 −0.14 0.51
6 Panel Estimator pop_d 576 −0.30 0.47
6 Panel Estimator age 576 −0.80 0.36
6 Panel Estimator pop_d & age 576 −0.94 0.48
6 Panel Estimator FE 576 −1.74 1.12
7 Time control 0 960 −0.52 0.24
7 Time control Conventional 960 −0.57 1.37
7 Time control After onset 960 −1.26 0.76
8 Infected rate control 0 1440 −0.95 1.08
8 Infected rate control 1 1440 −0.62 0.67

Fig. 10  Lower section of specification curve of the multiverse—sensitive analytical decisions
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achieves to reach lower estimates, similarly to q4 . This is an analytical decision when 
diverging from the convention seems a much more sensible decision, because it makes no 
sense to account effects of a vaccination plan before it even started. This is also an example 
of an analytical decision that can easily be overlooked if the data-generating process is not 
very well understood, and including all three modalities in the Multiverse helps to assess 
the impact of this modelling choice.

Selecting only those 192 estimates when the variance within groups is corrected through 
the Fixed Effect estimator and when time-effects are controlled accounting for the onset of 
the vaccination campaign, too, the new effect size for the relative risk reduction is 88% . It 
is farther than 82% from the prior of 75 ∼ 80% , but it is still closer to it than the average 
estimate of effect size in the whole multiverse ( 54% ) or its median ( 49%).

4.3.2  Sensitivity to the absence of features

In Table  4 is checked the assumption that location and variance are correlated across 
classes of estimates grouped by the frequency of “0” in their string. In Table 4, groups pro-
ceed from the simplest to the most complex.

This negative correlation is indisputable, although it is more ambiguous when estimates 
are re-grouped into only three classes of similar size. Assuming as a reference that the 
multiverse has a positive bias, the lower values of the estimates in the latter classes confirm 
that more complex specifications of the multiverse, in this case, are slightly less biased. As 
a reference: 1 − exp(−0.91) = 60%.

5  Conclusions, limitations and future developments

In this study, the methodological paradigm of Multiverse Analysis has been linked to a 
theoretical framework of sampling. It has been demonstrated that under a rigorous classifi-
cation of the analytical decisions involved in the procedure of modelling the specifications 
of a multiverse, some non-trivial proprieties of the specifications emerge. These proprieties 
are: (1) specifications within a multiverse can be coarsely classified with a degree of com-
plexity; (2) two specifications have a measurable distance between their associated result 
statistics but also the distance a priori is measurable.

In the application, it has been demonstrated that the classification of the analytical deci-
sion is not self-evident and that a typical procedure of sensitivity analysis through the 

Table 4  Sensitivity to absent 
features

n(m ≠ 0) n(j) b̄x s2(bx)

0 24 −0.77 0.03
1 216 −0.66 0.35
2 696 −0.74 0.83
3 1032 −0.79 1.00
4 720 −0.82 1.02
5 192 −0.91 0.95
< 2 936 −0.72 0.70
2 1032 −0.79 1.00
> 2 912 −0.84 1.00
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observation of clustered multiversal statistics can lead to a reasonable selection of a more 
credible subset of specifications within the multiverse. A simple procedure to check the 
parametric assumption for adopting the mean estimate of a multiverse is discussed through 
the results of the application.

The paper aims to illustrate two divergent approaches to the application of multiverse 
methods. One approach, championed by Del Giudice and Gangestad (2021), involves the 
development of tailored multiverses that carefully reflect the causal assumptions underly-
ing the data-generating process. In contrast, the other approach, advocated by Young and 
Holsteen (2017) or Patel et  al. (2015), focuses on constructing large multiverse models. 
The current study demonstrates that both approaches have provided valid results, and both 
are objectively more useful than attempting to construct a single, optimal specification a 
priori. The balance between a priori feature inclusion and post-selection has successfully 
resolved the Janus effect and brilliantly shifted the average estimate closer to the prior 
value. Moreover, the paper provides a tentative confirmation that the arithmetic mean of 
estimates from a large multiverse cancels out different sources of bias, even if much more 
evidence is needed to assess this definitely.

To synthesise the contribution of the theory of multiversal methods and multiversal 
modelling, the following analogy is proposed: multiversal modelling of analytical deci-
sions acts as a map of what Young and Holsteen (2017) refers to as the ‘model space’, 
while the operations of clustering and selection act as suggested ‘paths’ to follow in order 
to interpret the estimates. The selection of a subset of the multiverse should be interpreted 
as a suggestion from the authors that helps the reader to understand the technical and meth-
odological conditions of validity of a scientific thesis. The ‘multiverse-map’ makes more 
transparent the theoretical link between a scientific claim and the proposed inferential pro-
cedures, helping to refute or to correct the procedures (or the claims!) if necessary.

5.1  Weighting schemes

Through the paper lurks a recurring theme that is often neglected in the literature on mul-
tiversal methods, robustness checks, and sensitivity analysis. This is the topic of the epis-
temological trade-off between prior model identification and posterior model selection in 
multimodel inference, where analysts identify a set of valid models to support or refute a 
scientific claim but prefer to account for comparative information from multiple models 
instead of focusing on only one. While this topic may not be at the core of multiverse lit-
erature, the exchange of papers between Slez (2019) and Young (2019) provides valuable 
insights into the limitations of multiversal models. As such, it has significant implications 
for the future development of the theory of the Multiverse.

Slez’s argument starts as a criticism of a family of measures of the Robustness Ratio 
�(�)

�TOT (�)
 , originally proposed by Young and Holsteen (2017). �TOT represents the ‘total’ stand-

ard error, that combines sampling and model errors.9 Young and Holsteen propose different 
measures with slightly different assumptions. More or less any employment of it is based 

9 One way to think about the total error is as a function of the squares of the sampling error and model 
error. Specifically, it can be seen as the hypotenuse of a right triangle where the two components of the 

error are orthogonal segments: �TOT =
√

�2

k
+ �2

j
 . The geometric interpretation of this measure is fertile 

soil to better understand advanced measures of heterogeneity variance between classes of specifications in a 
multiverse.
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on epistemological premises similar to Multiverse Analysis (see, Fig. 1). In addition, the 
authors extend the heuristic to assert that the magnitude of a 𝜃j or an average ̄𝜃CLASS must 
be parameterised after �TOT in order to not reject a posteriori the associated specifications.

To understand the main lines of criticism of this approach, a strong argument is that a 
simple idea of ‘robustness’ implied in Young and Holsteen (2017) seems to place no value 
in any procedure to re-calibrate the multiversal estimates (Western 2018), which in practice 
translates into the refusal to weight the estimates through any scheme that is not uniform 
weights (unweighted estimates). For example, Young (2019) is critical of the proposal of 
Slez (2019) to calibrate the multiverse through a quantity that derives from the Information 
Criteria:

whereas I is a statistic of information of the specification (Bayesian Information Criterion 
in the original) and Δ is a function of distance from the global minimum of Ij within the 
multiverse. Young (2019) argues that this method, being still based on fitting the theoreti-
cal model over the sample at disposal, does not overcome canonical problems like omitted 
variable bias. Furthermore, the exponential form of the function induces an extreme model 
selection, with few specifications counting for the majority of the weight.

In this debate, it is important to distinguish between two different topics. The first con-
cerns the use of non-uniform weighting schemes vs uniform weights (unweighted esti-
mates). This aspect of the debate largely centers around epistemological arguments and 
may reflect two different scientific cultures. As aforementioned, one culture is focused on 
transparently representing subjective multiversal models, while the other is concerned with 
interpreting evidence correctly. Those who prioritise accurate representations of their orig-
inal ideas will favour an unweighted multiverse, to demonstrate that they are not ‘hacking’ 
a specific result. In this view, paradoxically a ‘bad model’ may even enrich the multiverse 
by demonstrating the conceptual robustness of scientific ideas, and therefore the multiverse 
should be large and unweighted.

The second dichotomy is about how to weigh the multiverse. This debate is still rela-
tively new but potentially crucial for the future developments of the Multiverse paradigm. 
Slez’s proposal, specifically, converges towards a supposedly excessive focus on a few 
specifications. If that is the case, it may be concerning if these ‘strong’ estimates do not 
reflect a theoretical coherence, i.e. they are strings with a high mutual Hamming’s dis-
tance. Generally, the employment of prior distance to evaluate the coherence of a weight-
ing scheme seems a valuable contribution.

Muñoz and Young (2018a) suggest, instead, to amplify the relevance of those specifica-
tions that have a great impact on the estimate. Following this line of thinking (the authors 
prefer to not connect the proposal to a specific functional form), the theoretical develop-
ments of this manuscript could be important for reconsidering the concept of ‘impact’ 
or ‘importance’ on local portions of the multiverse, instead of global. Referencing Eq. 7, 
rather than considering the global function Δ , it can be considered a local function �d in 
the subset of specifications at a certain d Hamming distance to j (see, Fig. 5). For those 
who refute weighting on fit or information statistics, other local statistics can be considered 
instead of I.

Of particular relevance is the subset for d = 1 , because it would reflect a specific 
explicating model for the misspecification error: p-hacking. The most parsimonious and 

(7)w� =
exp

�

−0.5 ⋅ Δ(Ij)
�

∑J

j=1
exp

�

−0.5 ⋅ Δ(Ij)
�
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less detectable method to drive results towards the desired agenda is to alter minimally 
the specification of the model. In the exemplary application, it is demonstrated that the 
choice of treating fixed Zg as random values, not opting for FE estimation, would have a 
huge impact on raising the estimate, to the point to allow significant positive estimates. In 
addition, Burnham and Anderson (2002) deter to compare information criteria with their 
‘quasi’ counterparts. This is an occurrence in the application, whereas Negative Binomial 
is compared to Quasi Poisson. Although this suggestion is arguable, adjusted local statis-
tics may overcome the strict imposition of a unique argmin(I) in Eq. 7.

Considering that the number of zeroes in a specification string counts as a measure of 
the complexity of the model, these proposals should be in line with advanced frameworks 
for sensitivity analysis. Another future direction of multiverse analysis is towards under-
standing heterogeneity variance across the features involved in multiversal modelling (Sal-
telli and Annoni 2010; Veroniki et  al. 2016; Saltelli et  al. 2021; Langan et  al. 2019). A 
natural development would focus on conditional modalities ( mq1

∣ mq2
).

5.2  Multi‑teams multiverses

The value of representing specifications as strings is most evident in multi-teams multi-
verses (Breznau et al. 2022). These multiverses are identified by pooling together other sets 
of specifications (and fit statistics) which are provided by different but coordinated, teams 
of analysts. The structure of the pooled sample of specifications across multi-teams fol-
lows the guidelines mandated by the coordinator, who can ask teams to follow strictly the 
rules reported in Sect. 3.3, or not. In the latter case, a team could decide to include strings 
“0AA” and “0AB” but not “0A0”.

The temptation is to interpret the frequency of a modality within the pool of multiverses 
as an indication of its scientific relevance as if a prior weight emerges from the equiva-
lence with this frequency. It is important to exercise prudence with this interpretation of 
the pooled multiverse. The frequency of certain modalities may be influenced by factors 
other than the nature of the scientific problem at hand. A potential issue is that teams may 
have the freedom to select more than one unique q set of analytical decisions. To address 
this, the absence of a certain q in a team’s multiverse can be interpreted as if the value of 
the corresponding modality is set to 0. In this case, there may be an over-representation of 
modalities set to 0. This would reflect a tendency of teams to provide simpler models.

It is easier for a team to overlook a possible q, rather than to mistakenly add a q that they 
did not actually intend to include. For example, let’s consider two scientific hypotheses. 
The first hypothesis asserts that (1) “vaccination plans reduce deaths in infected individu-
als”, while the second hypothesis asserts that (2) “a vaccine shot reduces the probability 
of dying after infection”. Suppose that the most appropriate specification for hypothesis 
(1) is a regression model that includes the number of vaccine shots (x) adjusted by a third 
variable (z) as control, with the number of infected deaths (y) as the dependent variable. 
On the other hand, the correct specification for hypothesis (2) would exclude controlling 
for z. Now, suppose that one team correctly includes a logical q regarding the presence and 
absence of z in the model for (i), while another team interprets “vaccination plan” as some-
thing that can be proxied by x alone. Thus they only always exclude z in the model. As a 
result, the pooled multiverse would show an inflated frequency of the analytical qz = 0.

The latter can be accounted as a stochastically erratic occurrence: sometimes teams 
misinterpret the research questions. However, given the definition of hypothesis (2), much 
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simpler and clean-cut than (i), it would be bizarre if one of the teams could opt to include 
qz . So, it is much more unlikely that the frequency of qz = 1 is inflated, compared to qz = 0 . 
A more comprehensive list of arguments regarding the correct interpretations of multiver-
sal modelling in multi-teams is in Auspurg and Brüderl (2021).

6  Supplementary information

The contents of the manuscript can be reproduced by executing in R Studio the RMark-
down scripts downloadable at https://figshare.com/s/cb9767ce5fd-
19c0c0c10. The first author re-coded some commands from the package specr, Ver-
sion 0.2.2 (Masur and Scharkow 2020).

To fully reproduce the results, firstly execute all the code-chunks of Preprocess-
ing.Rmd, then execute all the code-chunks of Multiverse_preprocessing.Rmd.

The output of these pre-processing files should be the same contained in the file mul-
tiverse.Rdata; so, a shortcut is just to load multiverse.Rdata in R Studio. 
Finally, proceed to execute Results.Rmd to reproduce figures and tables of results.

Appendix: Poisson coefficients as hazard ratios

Relative risk R of binary outcome (y) after administration of a binary treatment (x) is:

Probabilities can be estimated with empirical frequencies, so R can be estimated with a 
hazard ratio h:

This assumption allows y to be a count variable instead of a binary outcome. The assump-
tion that allows to estimate ĥ through the b̂ of a Poisson regression is that x is not a binary 
input but a relative frequency that can assume any value in the unit interval. The technical 
assumption is: for a large population the response of a partial treatment on a full population 
is technically the same as the response of a full treatment on a part of the population. If this 
assumption holds, then the effect of the full treatment can be estimated through the differ-
ence of expectation in the count response in two hypotheses: 

1. all population is treated ( y1)
2. nobody in the population is treated ( y0)

that is already expressed in Eq. 9. Since y is a count, it holds the Poisson assumption that 
the link function between response and treatment is exp(b ⋅ x) , which allows further techni-
cal operations of simplification:

(8)R =
Pr.(y = 1) ∣ x = 1

Pr.(y = 1) ∣ x = 0

(9)R ∼ ĥ =
ŷ ∣ x = 1

ŷ ∣ x = 0

(10)ĥ =
ŷ1

ŷ0
∼

exp(b ⋅ x1)

exp(b ⋅ x0)
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and because

then from Eqs. 9, 10, and 11, it follows

This is the full set of assumptions to derive that the exponentiation of the Poisson coef-
ficient is a hazard ratio h. If this is true, to facilitate interpretation of the regression, it is 
adopted the relative risk reduction of treatment:

Interpretation of risk reduction is straightforward because it can be reconnected to the indi-
vidual case: the null is 0 (not 1 as for h) and the value is the likelihood of a reduction in 
unit outcome after a condition is switched from untreated to treated. A negative risk reduc-
tion would imply that one additional treatment would induce a surge of outcomes.

In presence of overdispersion in the counts of y, it is suggested to adopt an advanced 
estimator of the variance of y in the regression engine. The two standards in the literature 
are Negative Binomial (NB) and Quasi-Poisson (QP).

The negative Binomial’s assumption of Variance in the count of y is:

Quasi-Poisson’s assumption of Variance in the count of y is:

The method of estimation of phi is different between the two: Negative Binomial allows 
Maximum Likelihood Estimation (MLE), but Quasi-Poisson recurs to a quasi-Maximum 
Likelihood Estimation (qMLE). As a result, Information Criteria cannot be correctly com-
puted, and usually, they are estimated through their quasi-Information Criteria counter-
parts (Gay and Welsch 1988; Burnham and Anderson 2002). Yet, in the scientific literature 
about modelling, these corrected estimators are treated as equivalent, even if generally QP 
is reported to be slightly more robust (Land et al. 1996; Ver Hoef and Boveng 2007; Ibarra-
Espinosa et al. 2022).
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