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Abstract
In this paper, exploiting a geometric argument, a novel and intuitive approach to portfolio 
diversification is proposed. The risk-adjusted geometric diversified portfolio is obtained as 
the point that is equally distant, for a given distance, from the vertices of the simplex, as 
they represent the single asset portfolios, the worst portfolios in terms of diversification. 
The definition of risk-adjusted distance as a special case of weighted Euclidean distance 
permits to introduce the information on the risks of the assets composing the portfolio in 
a very general way. The closed form solution for the allocation problem is provided and 
interesting theoretical properties are proved. Further, a direct comparison with Rao’s Quad-
ratic Entropy maximization problem is outlined, thus yielding a different perspective to the 
use of such entropy as a diversification measure. Finally, the effectiveness of our proposal 
is emphasized through a comprehensive empirical out-of-sample exercise on real financial 
data.

Keywords Portfolio diversification · Risk-adjusted distance · Weighted Euclidean 
distance · Asset allocation · Rao’s quadratic entropy

Mathematics Subject Classification 91G10 · 52B99

JEL Classification C02 · G1 · G11

Maria-Laura Torrente and Pierpaolo Uberti have contributed equally to this work.

 * Maria-Laura Torrente 
 marialaura.torrente@economia.unige.it

 Pierpaolo Uberti 
 pierpaolo.uberti@unimib.it

1 Department of Economics, University of Genova, Via Vivaldi, 5, 19126 Genoa, Italy
2 Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Via Bicocca 

degli Arcimboldi, 8, 20126 Milan, Italy

http://orcid.org/0000-0001-8781-9278
http://crossmark.crossref.org/dialog/?doi=10.1007/s11135-023-01631-w&domain=pdf


36 M.-L. Torrente, P. Uberti 

1 3

1 Introduction

In this paper, we propose a novel asset allocation rule which takes into account the specific 
risk of the assets and whose strategy is based on an intuitive geometrical idea of diversifi-
cation. In the following, in order to provide an intelligible overview of the paper’s content, 
we briefly recall the fundamental concepts of risk measures and diversification, and intro-
duce the Risk-Adjusted Distances as a special case of the well-known weighted Euclidean 
distances.

Risk measurement is a leading topic in financial literature. Since the release of the fun-
damental paper of Artzner et al. (1999), many axiomatic approaches have been proposed in 
order to define the general theoretical properties a function needs to verify to be considered 
an eligible risk measure, see for example (Rachev et al. 2008). Among the others, we recall 
the convex risk measures proposed in Föllmer and Schied (2002), the spectral risk meas-
ures presented in Acerbi (2002), the downside risk measures introduced in Sortino and Van 
der Meer (1991) and the dynamic risk measures discussed in Acciaio and Penner (2011). 
Each axiomatic class contains an infinite number of risk measures; as a result, the universe 
of possible risk measures proposed in the literature is deeply intricate and risk measures 
are strongly interrelated each other, see (Frittelli and Rosazza Gianin 2002).

The concept of diversification in portfolio theory is central and accountable of the popu-
larity of Markowitz model, see (Markowitz 1952), where the idea has been first introduced. 
Despite its simplicity, no generally accepted unique definition of diversification is available 
in the literature, giving the rise to the production of many contributions on the topic (we 
refer to Koumou (2020) for a recent review on the topic). Several different papers deal with 
the asset allocation problem from the point of view of diversification; among the others, 
we enumerate the following contributions: in Choueifaty and Coignard (2008) and Chouei-
faty et al. (2013) the authors propose an allocation rule based on the maximization of the 
so called diversification ratio; in DeMiguel et al. (2009) the authors refer to the Equally 
Weighted Portfolio as naive diversification and compare its out-of-sample performance 
to alternative approaches; in Clarke et al. (2013); Maillard et al. (2010); Qian (2006) and 
Roncalli and Weisang (2016) the Equal Risk Contribution is proposed as the strategy that 
balances the risk exposure among the assets; in Meucci (2009) the author proposes to use 
principal component analysis to extract uncorrelated risk factors and diversify the portfo-
lio. For an axiomatic approach to portfolio diversification measures we refer to Koumou 
and Dionne (2019).

The Risk-Adjusted Distances (RADs) introduced in Sect. 3.1 play a prominent role 
in our proposal. From a strict mathematical point of view, a RAD is simply a weighted 
Euclidean distance (see (Dahlquist and Björck 2003)). We observe that in the present 
formulation the RADs do not take into account possible dependences between assets. 
Indeed, though in principle it is possible to generalise our approach to handle distances 
defined through non-diagonal matrices and incorporating assets dependences, such 
strategy would have required measuring the risk between assets pairs, a topic that, as 
far as we know, is not well-established in the financial literature and that would have set 
limits in the choice of employed risk measures. In the context of portfolio theory, the 
RAD allows to compute the distance between investment portfolios not only in terms 
of difference in the allocation but also considering the risk undertaken. In the finan-
cial literature, to the best of our knowledge, this is the first attempt to conceive this 
kind of notion, in contrast to the case of risk-adjusted performance measures which are 
well-known and widely accepted by the entire community. This evidence supports the 
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intuition behind our proposal to adjust a distance for the risk. Investors are conscious 
that, when evaluating the overall performance of an investment, both the return and the 
risk undertaken to realize that return need to be considered. The first and most famous 
risk-adjusted performance measure is the Sharpe Ratio, see (Sharpe 1966). Subse-
quently, more than one hundred alternative measures have been proposed, see (Caporin 
et al. 2014) and (Cogneau and Hübner 2009) for a comprehensive review. The majority 
of these proposals are defined as return over risk ratios, attempting to overcome the 
shortcomings of the Sharpe Ratio, which relies on the assumption of normal distribu-
tion for asset returns; we recall among the others, (Burke 1994; Dowd 2000; Farinelli 
and Tibiletti 2008; Kaplan and Knowles 2004; Kazemi et al. 2004; Shadwick and Keat-
ing 2002) and (Young 1991).

The main aim of this paper is to introduce and analyze, both theoretically and empiri-
cally, a novel asset allocation strategy based on RADs. We start representing the set of 
long-only admissible portfolios with n risky components by means of the standard simplex 
of ℝn , a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions, 
see (Chalkis and Emiris 2020). In this setting, the dimension of the space stands for the 
number of assets, while the vertices of the simplex are the single asset portfolios, which are 
considered the worst portfolios in terms of diversification, as pointed out in Koumou and 
Dionne (2019). In order to differentiate from such maximum concentrated extreme cases, 
we propose to invest in the portfolio, called Risk-Adjusted Geometric Diversified Portfolio 
(RAGDP), equally distant from the vertices of the simplex. Geometrically, the RAGDP 
is represented by the circumcenter of the simplex, whose position depends on the used 
distance. In order to take into account the specific risk of the assets, our approach is based 
on the RADs, resulting in a deformation of the geometrical space. The RAGDP shows the 
intuitive feature to underweight the allocation on the riskier asset classes while overweight-
ing the allocation on the less risky ones. If the Euclidean distance is used, being the sim-
plex a regular polytope, the circumcenter corresponds to the center of gravity, so that our 
proposal reduces to the Equally Weighted Portfolio (EWP). We also show that the EWP is 
something more than a special case when the Euclidean distance is used. Indeed, it repre-
sents a limit case when the number n of assets is extremely large, that is n → +∞.

In the statistical framework a systematic approach to diversification dates back to the 
work of Rao (see (Rao 1982a, b; Rao and Nayak 1985; Rao 2010)) who introduced a meas-
ure of diversity through the so called Rao’s Quadratic Entropy (RQE). Later on, the use 
of RQE has been extended to modern portfolio theory by Carmichael et al. (2015), where 
the RQE portfolios are defined upon a dissimilarity function that measures the differences 
between any two assets. In this paper, we provide a clear statement of the relationship of 
our approach with RQE. In particular, we prove that the RAGDP is equivalent to the maxi-
mum of RQE when the information on the risk exposure is conveniently translated into a 
suitable dissimilarity matrix upon which the RQE is defined. The benefit of our point of 
view is twofold: our approach permits to introduce the risk measurement in the diversifica-
tion scheme through the RADs; further, our contribution reads as an independent alterna-
tive approach to the use of RQE as a diversification measure, allowing to highlight very 
interesting general properties and capable to shed new light on the concept of diversifi-
cation. For instance, our proposal yields the explicit solution for the RQE maximization 
problem and allows to prove that when the risky assets are no more than 3 the optimal 
allocation is a long-only strategy. Moreover, the RAGDP viewpoint permits to provide an 
explicit condition among the risks of the single assets to guarantee that the RAGDP and the 
corresponding RQE optimal portfolio are long-only investments. Due to the equivalence 
between the two approaches, this permits to identify the condition for the dissimilarity 
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matrix to give a solution belonging to the standard simplex when solving Rao’s optimiza-
tion problem.

The effectiveness of our proposal is finally highlighted through a real data out-of-sam-
ple experiment: empirical findings confirm and emphasize the goodness of our proposal, 
comparing its performance to the one of some very popular benchmark strategies.

The paper is organized as follows: since geometrical findings are valid in general, they 
are collected in a dedicated preliminary part, see Sect. 2, and then specified in the financial 
context of asset allocation in Sect. 3, where the RAGDP strategy is introduced and its main 
properties are discussed; Sect. 4 contains the comprehensive empirical study on real finan-
cial data while useful remarks and conclusive comments are summarized in Sect. 5; finally, 
technicalities and the complete proofs of the paper’s results are detailed in Appendix A.

2  Geometry of the standard simplex

In this section we analyze some geometric properties of the standard (n − 1)-simplex Sn−1 
of ℝn , n ≥ 1 , with respect to a generalized notion of Euclidean distance. In particular, we 
first recall the notion of distance defined by a symmetric positive definite matrix and the 
special case of weighted Euclidean distance. Next, we define the circumcenter of Sn−1 , we 
provide an explicit formula for its coordinates in the case of weighted Euclidean metric and 
prove some properties relevant for our proposal when applied to the portfolio allocation 
setting.

Let S
+
n
(ℝ) be the set of n × n real symmetric positive definite matrices and 

D
+
n
(ℝ) ⊂ S

+
n
(ℝ) be the set of n × n real diagonal matrices with strictly positive diagonal 

elements.

Definition 1 Let W ∈ S
+
n
(ℝ) . The map ⟨⋅, ⋅⟩W ∶ ℝ

n ×ℝ
n
→ ℝ such that ⟨x, y⟩W ∶= xtWy , 

for each x, y ∈ ℝ
n , defines an inner product on ℝn and induces the norm ‖ ⋅ ‖W ∶ ℝ

n
→ ℝ , 

where ‖x‖W ∶=
√⟨x, x⟩W =

√
xtWx , for each x ∈ ℝ

n , and the distance function (metric) 
dW ∶ ℝ

n ×ℝ
n
↦ ℝ defined by

In the special case W ∈ D
+
n
(ℝ) then the expression of dW , called W-weighted Euclidean 

distance function (metric), becomes

where wi > 0 , i = 1,… , n , are the diagonal elements of W.

The following remark recalls two special cases of Definition 1.

Remark 1 Note that in the case W = In , where In is the identity matrix of size n, the 
weighted distance dIn is the standard Euclidean distance. Further, if W is the inverse of the 
covariance matrix of a given set of data, the corresponding distance yields the Mahalano-
bis Distance, see (Mahalanobis 1936).

dW (x, y) ∶= ‖x − y‖W =
√
(x − y)tW(x − y), ∀x, y ∈ ℝ

n.

dW (x, y) =

(
n∑
i=1

wi(xi − yi)
2

) 1

2

, ∀x, y ∈ ℝ
n,
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We recall the definition of the standard simplex of ℝn and its circumcenter, see (Vander-
Zee et al. 2013).

Definition 2 Let e1,… , en be the standard basis of ℝn and let d be a distance on ℝn.

The standard (n − 1)-simplex Sn−1 of ℝn is the convex hull of e1,… , en , which are called 
the vertices of Sn−1 . Equivalently 

The circumcenter of Sn−1 with respect to d, denoted by cd(Sn−1) , is the unique point that, 
among all the points equidistant from the vertices of Sn−1 , minimizes its distance from 
each ei , i = 1,… , n.

It is relevant to remark that Sn−1 is a (n − 1)-dimensional object of ℝn lying on the hyper-
plane Γ ∶

∑n

i=1
xi = 1 , which also contains the circumcenter cd(Sn−1) . Further, unlike other 

classical “centers", such as the centroid and the incenter, which are always inside the sim-
plex, the circumcenter may lie outside Sn−1 , see (VanderZee et al. 2013).

We notice that cd(Sn−1) may equivalently be defined as the unique solution of the follow-
ing (convex) constrained minimization problem:

Further, given any W ∈ S
+
n
(ℝ) and the associated distance function  dW , we prove that 

cdW (Sn−1) is the unique point at which Rao’s Quadratic Entropy (see (Rao 1982a; Rao and 
Nayak 1985; Rao 2010)) associated to a suitable n × n dissimilarity matrix D assumes its 
maximum value.

Proposition 1 Let W ∈ S
+
n
(ℝ) , let dW be the associated distance function on  ℝn and 

D = (dij) be the n × n real matrix with entries

Let HD ∶ ℝ
n
→ ℝ , defined by HD(x) = xtDx , for each x ∈ ℝ

n , be Rao’s Quadratic Entropy 
associated to D ( Rao (1982a); Rao and Nayak (1985); Rao (2010)). The circumcenter 
cdW (Sn−1) is the unique solution of problem:

whose maximum value is HD(cdW (Sn−1)) = d2
W
(cdW (Sn−1), e

i) , i = 1,… , n.

Proof See Appendix A.   ◻

In the rest of the section we restrict to a given W-weighted Euclidean distance function 
dW of ℝn (see Definition 1). In this framework, Proposition 2 provides an explicit formula 
for the coordinates of the circumcenter cdW (Sn−1) . Indeed, we underline that, in the general 

Sn−1 =

{
x = (x1,… , xn) ∈ ℝ

n ∶ xi ≥ 0∀i = 0,… , n and

n∑
i=1

xi = 1

}
.

(1)Minimize
∑n

i=1

∑
j>i

�
d2(x, ei) − d2(x, ej)

�2
s.t.

∑n

i=1
xi = 1.

dij =

{
0 if i = j
1

2
(ei − ej)tW(ei − ej) if i ≠ j.

(2)
Maximize HD(x) = xtDx

s.t.
∑n

i=1
xi = 1
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case of any given distance (defined starting from a generic non-diagonal matrix), the 
computation of the closed form solution of problem (1) proves to be much more involved 
than the considered case, thus encouraging the authors to address it in a future designated 
research.

Proposition 2 Let dW be a W-weighted Euclidean distance function on ℝn . The circum-
center cdW (Sn−1) of Sn−1 has coordinates (c1,… , cn) such that

where MW−1 is the arithmetic mean of w−1
1
,… ,w−1

n
 , where w1,… ,wn are the diagonal ele-

ments of W.

Proof See Appendix A.   ◻

A first crucial remark on Proposition 2 regards the special cases n = 1 and n = 2 in 
which the circumcenter respectively coincides with the points  (1) and 

(
1

2
,
1

2

)
 , indepen-

dently of the chosen distance. While the case n = 1 is justified by simply observing that the 
standard (n − 1)-simplex itself degenerates to be a unique point, the peculiarity of the case 
n = 2 is related to the fact that, in general, the circumcenter’s computation yields coordi-
nates that only depend on the ratio of the weights associated to the vertices and thus cannot 
exceed the quantity 1

2
 (see Proposition 3, (iv)). For this reason, in the rest of the paper, we 

only consider n ≥ 3 , as the cases n = 1 and n = 2 , though possible and well-defined, by 
construction degenerate to trivial cases.

As additional remark and consequence of formula (3), we observe that as wi increases 
then also ci increases: this is intuitively justified by the fact that a larger weight associated 
to the ith vertex ei brings the circumcenter closer to it.

In the following proposition we gather some useful properties on the circumcenter of 
Sn−1.

Proposition 3 Let W ∈ D
+
n
(ℝ) with diagonal elements wi , i = 1,… , n , and dW be a W-weighted 

Euclidean distance function on ℝn . Let wmin = min{w1,… ,wn} , wmax = max{w1,… ,wn} 
and MW−1 be the arithmetic mean of w−1

1
,… ,w−1

n
 . Let cdW (Sn−1) = (c1,… , cn) be the circum-

center of Sn−1 with respect to dW . Then the following facts hold true. 

 (i) ci =
1

n
 , for each i = 1,… , n , if and only if W = �In.

 (ii) 1

n
−

n−2

2n

(
wmax

wmin

− 1

)
≤ ci ≤

1

n
+

n−2

2n

(
1 −

wmin

wmax

)
 for each i = 1,… , n and W ∈ D

+
n
(ℝ).

 (iii) ci =
1

n
 , for some i = 1,… , n , if and only if wi = MW−1 ; further, ci >

1

n
 ( ci <

1

n
 respec-

tively), for some i = 1,… , n , if and only if wi < MW−1 ( wi > MW−1 respectively).
 (iv) −

1

2
(n − 3) < ci <

1

2
 , for each i = 1,… , n and W ∈ D

+
n
(ℝ).

 (v) If n = 3 then ci > 0 , for each i = 1,… , n and W ∈ D
+
n
(ℝ).

 (vi) If n > 3 then ci ≥ 0 , for each i = 1,… , n , if and only if 

(3)ci =
1

2

(
1 −

n − 2

nwiMW−1

)
, ∀i = 1,… , n,

MW−1 ≥
n − 2

n
⋅

1

wmin

.
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 (vii) Assume that ci ≥ 0 for each i = 1,… , n ; if n → +∞ then each component ci goes to 
0 as 1

n
.

Proof See Appendix A.   ◻

We do not specify any interpretation to the results of Proposition 3 in this section, leav-
ing the comments to the contextualization in the framework of portfolio theory.

3  Risk‑adjusted geometric diversified portfolio

In this section we introduce the asset allocation rule, called Risk-adjusted geometric diver-
sified portfolio (RAGDP), based on the use of the Risk-adjusted distances (RADs).

3.1  Risk‑adjusted distances

Let n ≥ 3 be the number of risky assets available on a given market, let � be a given risk 
measure and �i , with i = 1,… , n , be the risk of the ith asset. We assume that 𝜌i > 0 for each 
i = 1,… , n ; such assumption is reasonable considering the minimal properties required for 
the axiomatic definition of a risk measure, see among the others (Rachev et al. 2008). In 
the following definition we arrange the risks of the assets in a diagonal matrix, called risk 
matrix, that contains the risk information that will be used to “adjust" the distance.

Definition 3 (Risk-Adjusted Distance—RAD)
Let 𝜌i > 0 , with i = 1,… , n , be the risk of the ith investment opportunity according 

to a given risk measure � . The matrix W� ∈ D
+
n
(ℝ) whose ith diagonal element is �−1

i
 , 

i = 1,… , n , is called the risk matrix (associated to � ) and the W�-weighted Euclidean dis-
tance function dW�

 is the corresponding Risk-adjusted distance.

3.2  The RAGDP strategy

We restrict the feasible portfolios, as usual in practice, to the set of vectors with unitary 
sum, such that they are represented in ℝn by the points of the hyperplane Γ ∶

∑n

i=1
xi = 1 . 

In Γ we also consider the standard (n − 1)-simplex Sn−1 of ℝn , see Definition  2. From 
a financial point of view the vertices of  Sn−1 , represented by the standard orthonor-
mal basis e1,… , en of ℝn , correspond to the portfolios characterized by the maximum 
level of concentration, that is the portfolios in which the total wealth is invested in 
one asset. The idea that supports the RAGDP strategy is to choose the portfolio cor-
responding to the point of Γ , not necessarily belonging to Sn−1 , that is equally distant 
from the vertices of the simplex, trying to maximize the distance from extreme alloca-
tions. Geometrically, we look for the circumcenter of the simplex, the center of the cir-
cumscribed hypersphere. Considering that the simplex is a regular polytope, if we solve 
the proposed problem using the standard Euclidean distance, the solution is the Equally 
Weighted Portfolio (EWP), that coincides with the circumcenter and the center of grav-
ity of the simplex. The use of alternative definitions of distance, the RADs introduced 
in Sect.  3, provides interesting solutions in which the circumcenter generally differs 
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from the center of gravity, providing an allocation that is different from the EWP. The 
approach described so far is formalized in the following definition.

Definition 4 (Risk-adjusted geometric diversified portfolio—RAGDP) Let dW�
 be the 

RAD associated to a given risk measure � . The Risk-adjusted geometric diversified portfo-
lio is represented by the portfolio x∗ = (x∗

1
,… , x∗

n
) ∈ ℝ

n such that

Proposition 4 Let � be a given risk misure, dW�
 be the associated RAD, �min , �max and M� 

be the minimum, the maximum and the arithmetic mean of the risks �1,… , �n of the assets. 
The RAGDP x∗ = (x∗

1
,… , x∗

n
) ∈ ℝ

n satisfies the following properties. 

 (i) The RAGDP is unique and its components x∗
i
 satisfy 

 for each i = 1,… , n and for any risk measure �.
 (ii) The RAGDP coincides with the EWP, that is, x∗

i
=

1

n
 , for each i = 1,… , n , if and only 

if the risks of all the investment opportunities coincide.
 (iii) For any risk measure � and each i = 1,… , n it holds 

 (iv) x∗
i
=

1

n
 , for some i = 1,… , n , if and only if �i = M� ; further, x∗

i
>

1

n
 ( x∗

i
<

1

n
 respec-

tively), for some i = 1,… , n , if and only if 𝜌i < M𝜌 ( 𝜌i > M𝜌 respectively).
 (v) The RAGDP is a long-only portfolio if and only if n = 3 or n > 3 and M� ≥

n−2

n
�max

.
 (vi) Let n > 3 and assume that M� ≥

n−2

n
�max ; if n → +∞ then the RAGDP tends to the 

EWP.

Proof The results immediately follow from Propositions 2 and 3.   ◻

Remark 2 We summarize interesting observations on RAGDP strategy. 

 (i) The allocation weights of the RAGDP strategy cannot exceed the value 1
2
 (it follows 

from Proposition 4, item (i)).
 (ii) The RAGDP strategy never returns the maximum concentrated portfolio represented 

by a single asset’s investment (it immediately follows from item (i)).
 (iii) The RAGDP is a long-short strategy in which the allocation on one or more assets 

is null if and only if the corresponding risks are equal to the quantity 
(
1 +

2

n−2

)
M� 

(a consequence of Proposition 4, item (i)).
 (iv) The allocation weights of the RAGDP strategy are in reverse order with respect to 

the assets risks (see Proposition 4, item (i)). In particular, if �i ≤ �j then x∗
i
≥ x∗

j
 , 

n∑
i=1

x∗
i
= 1 and dW�

(x∗, ei) = dW�
(x∗, ej), ∀i, j,∈ {1,… , n}.

(4)x∗
i
=

1

2

(
1 −

n − 2

nM�

�i

)
,

1

n
−

n − 2

2n

(
�max

�min

− 1

)
≤ x∗

i
≤

1

n
+

n − 2

2n

(
1 −

�min

�max

)
.
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meaning that the RAGDP allocates more resources on less risky assets and less on 
riskier ones.

 (v) If the risk of only one asset increases (decreases) then the RAGDP strategy allocates 
less (more) on that asset and more (less) over all the remaining assets. Let’s consider 
the case in which �k , for some index k ∈ {1,… , n} , increases of the positive quantity 
Δ�k whereas all the other risks �i , i ∈ {1,… , n} , i ≠ k , remain the same. The kth 
component x∗

k
 of the RAGDP decreases of the quantity 1

2

n−2

n

Δ�k

M�

nM�−�k

nM�+Δ�k
 , whereas the 

generic ith component x∗
i
 , i ≠ k , increases of the quantity 1

2

n−2

n

�j

M�

Δ�k

nM�+Δ�k
.

 (vi) An immediate comparison between the RAGDP strategy x∗ and the EWP can be 
outlined as follows: the two approaches coincide when the risks are equal over all 
the assets (see Proposition 4, items (ii) and (vi)) and they asymptotically coincide 
when n → +∞ . In the remaining cases, the ith allocation weight x∗

i
 is greater, equal 

or less than 1
n
 if and only if the corresponding asset risk �i is smaller, equal or greater 

than the arithmetic mean M� of all the assets risks (see Proposition 4, item (iv)).

As pointed out in the introduction, the construction of RAGDP intuitively resembles the 
approach introduced in Carmichael et al. (2015) based on Rao’s Quadratic Entropy (RQE). 
In order to shed light on their relationship the following result is proved.

Proposition 5 Let dW�
 be the RAD associated to a given risk measure � , let D = (dij) be the 

n × n real matrix with entries

and HD ∶ ℝ
n
→ ℝ , defined by HD(x) = xtDx , for each x ∈ ℝ

n , be the RQE associated to D. 
Then, the RAGDP coincides with the RQE optimal portfolio associated to HD.

Proof See Appendix A.   ◻

The above proposition clearly states the relationship between RAGDP and RQE optimal 
portfolio. In particular, once the information on the risk exposure is conveniently translated 
into the dissimilarity matrix D, the two approaches are proved to be equivalent. As a conse-
quence, formula (4) provides the explicit solution for the RQE maximization problem and 
Proposition 4, item (v), yields a conditoin among the single assets’ risks to guarantee that 
the RQE optimal portfolio is a long-only investment.

3.3  Long‑only RAGDP strategy

As highlighted by the previous results, the RAGDP strategy may return a portfolio with 
short positions. In this section we propose a long-only RAGDP strategy based on the fol-
lowing idea: given a risk measure � and the corresponding values �i , i = 1,… , n , for the 
n risky assets, it is always possible to define a transformation that maintains the order in 
terms of risk of the assets and provides a long-only allocation. This transformation, intro-
duced in Definition 5, modifies the dispersion of the tuple �1,… , �n and preserves the rela-
tive proportions in terms of risk among the assets (see Remark 3).

dij =

{
0 if i = j
1

2
(
1

�i
+

1

�j
) if i ≠ j.
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Definition 5 (� -RAGDP) Let n > 3 , let � be a given risk misure, �max and M� be the maxi-
mum and the arithmetic mean of the risks �1,… , �n of the assets. Assume that 
𝜌max > M𝜌 ≥

n−2

n
𝜌max . Let d ∶=

2

n

�max

�max−M�

 , let � be a real number such that 0 ≤ � ≤ 1 and 
�1(�),… , �n(�) be defined as follows:

Let W�(�) ∈ D
+
n
(ℝ) whose ith diagonal element is (�i(�))−1 , i = 1,… , n , and dW�(�)

 
be the associated RAD. The �-RAGDP strategy is represented by the portfolio 
x∗ = (x∗

1
,… , x∗

n
) ∈ ℝ

n such that

Remark 3 We briefly point out some main peculiarities of the transformation 
�1(�),… , �n(�) of �1,… , �n introduced in Definition 5, which are obtained as direct conse-
quences of expression (5). 

 (i) �(�)max = �max;
 (ii) �i ≤ �j if and only if �i(�) ≤ �j(�) , for each i, j = 1,… , n;
 (iii) �max−�i(�)

�max−�j(�)
=

�max−�i

�max−�j
 , for each i, j = 1,… , n.

In the following proposition we prove that the �-RAGDP strategy effectively returns 
a long-only portfolio.

Proposition 6 The �-RAGDP returns a long-only portfolio.

Proof See Appendix A.   ◻

Remark 4 We gather some observations regarding the parameter � used in the �-RAGDP 
strategy. The possible values of � range in [0, 1], which guarantee to obtain a long-only 
portfolio. Within such interval, increasing � yields an increase in the differences among the 
modified tuple of the assets’ risks �1(�),… , �n(�) and, consequently, a growing dispersion 
in the tuple of weights of the portfolio strategy. In particular, in the special extreme case 
� = 0 , all the risks of the assets are equal to the maximum of the original risks �max , so that 
the �-RAGDP strategy coincides with the EWP (see Remark 2, item (vi)). On the other 
hand, the opposite extreme case � = 1 yields the least concentrated long-only RAGDP 
strategy. From the equality �(�)max =

(
1 +

2

n−2

)
M�(�) (see (7), Appendix A) and Remark 2, 

item (iii), it follows that the allocation on the most risky asset is null, so that the �-RAGDP 
strategy results in a n − 1 assets portfolio. Note that the long-only case corresponding to 
� = 1 will be employed in the empirical application (see Sect. 4).

3.4  Comparison with EWP

We end the section with a comparison of the in-sample variance of RAGDP, �-RAGDP 
and EWP strategies.

(5)�i(�) ∶= �max − �d(�max − �i), for each i = 1,… , n.

n∑
i=1

x∗
i
= 1 and dW�(�)

(x∗, ei) = dW�(�)
(x∗, ej), ∀i, j,∈ {1,… , n}.



45Risk-adjusted geometric diversified portfolios  

1 3

Proposition 7 Let dW�
 be the RAD associated to a given risk measure � , let �max and M� be 

the maximum and the arithmetic mean of the risks �1,… , �n of the assets. Let � ∈ [0, 1] 
and Var(RAGDP) , Var(�-RAGDP) and Var(EWP) be the in-sample variance of RAGDP, �
-RAGDP and EWP respectively. Let V be the covariance matrix, 1n = (1,… , 1)t ∈ ℝ

n and 
denote M�1n − � by D� . Then 

 (i) 

 (ii) 
 where 

Proof See Appendix A.   ◻

4  Empirical results

In this section we provide a comprehensive empirical study to evaluate the out-of-sample 
performance of the following portfolio strategies.

• EWP strategy. The EWP is the portfolio that allocates the equal proportion to each 
asset, that is the constant quantity 1

n
.

• ERC strategy. The ERC is the portfolio that equalizes the risk contribution of each 
asset; for more details see (Maillard et al. 2010). In the rest of the section we refer to 
ERCd and ERC to identify the ERC portfolio in the special case of diagonal covariance 
matrix and in the general case respectively.

• RAGDP strategy. We refer to the RAGDP as the portfolio whose components are 
expressed by formula (4) and the variances of the assets are used to define the RAD; 
we denote this strategy by RAGDPV . To fully evaluate the RAGDP, we also imple-
ment the strategy for different very common risk measures: standard deviation (StDev), 
mean absolute deviation (MAD), Value at risk (V@R) computed at a significance 
level of 5% , maximum drawdown (MDD); we denote the corresponding strategies by 
RAGDP

StDev , RAGDPMAD , RAGDPV@R and RAGDPMDD . In Sect. 3.3 the �-RAGDP 
strategy, a long-only version of the RAGDP depending on an additional parameter � , 
has been introduced. In the application we will also consider such strategies, setting 
� = 1 and using the aforementioned risk measures. The corresponding strategies will be 
denoted by RAGDPV

1
 , RAGDPStDev

1
 , RAGDPMAD

1
 , RAGDPV@R

1
 and RAGDPMDD

1
.

• GMV strategy. The Global Minimum Variance portfolio is the solution to the classical 
Markowitz problem, the vertex of the efficient frontier in the mean-variance plane; we 
denote by GMV and GMVlo the long-short and long-only strategies respectively, see 
(Constantinides and Malliaris 1995).

The analysis is performed through a rolling-window exercise: given a T observations 
dataset of asset returns, we set the estimation window length equal to we . Then, starting 

Var(RAGDP) ≤ Var(EWP) ⟺ nDt
�
VD� + 2(M2

�
1
t
n
V1n − �tV�) ≤ 0,

Var(𝛽-RAGDP) ≤ Var(EWP) ⟺

{
0 ≤ 𝛽 ≤ min{1, 𝛽} if 𝛽 > 0

𝛽 = 0 if 𝛽 ≤ 0

� =
1

d

4�maxD
t
�
V1n

4�maxD
t
�
V1n − [nDt

�
VD� + 2(M2

�
1
t
n
V1n − �tV�)]

.
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from we + 1 , the previous we observations are used to calculate the portfolio on the base 
of the given strategy while observation we + 1 is used to calculate the out-of-sample 
return of the portfolio. This out-of-sample return is then reduced taking into account 
the transaction costs, that are introduced in a proportional way and set equal to 50 basis 
points per transaction as assumed in DeMiguel et al. (2009). The described process iter-
atively continues dropping the first return in the dataset and adding the return of the 
subsequent period, resulting in a T − we length series of out-of-sample returns. The per-
formance criteria used to compare the effectiveness of the considered allocation strate-
gies are principally calculated on the base of the out-of-sample returns or, alternatively, 
considering the variation in the allocation of a portfolio after rebalancing at the end of 
the period. We now enumerate and, when necessary, briefly explain, the performance 
criteria taken into account.

• Average Return (AR): arithmetic mean of the out-of-sample returns.
• Standard Deviation (StDev): standard deviation of the out-of-sample returns.
• Sharpe Ratio (SR): ratio of the previous quantities, see (Sharpe 1966).
• Average Portfolio TurnOver (TO): a measure of the stability over time of the allocation 

strategy defined by 

 where xi,t+1 is the share invested in the ith asset at the beginning of the trading period 
that ranges from t + 1 to t + 2 , while xi,(t+1)− is the allocation on the ith asset at the end 
of the previous trading period from t to t + 1 , resulting from the initial allocation xi,t in 
combination to the variation of the prices in the period. The TO quantifies the average 
amount of portfolio rebalancing that is necessary to implement a given strategy, provid-
ing an immediate information about the impact of transaction costs on the performance 
of a strategy.

• Average Leverage (L): a measure of the leverage of a portfolio defined as: 

 We note that in the case of long-only portfolios L = 1 while for long-short portfo-
lios L > 1 . The average leverage puts the accent on the macroscopic differences among 
long-only and long-short portfolios: in particular, long-short portfolios benefit of a 
potential extra diversification opportunity based on the negative weights that are able to 
create artificial negative correlations among the assets. In mean-variance analysis this 
translates in a reduced risk. Taking into account the leverage of a portfolio is needful 
to highlight the presence of further sources of risk that potentially remain hidden in the 
mean-variance approach.

• Value at Risk (V@R): the well-known risk measure of losses calculated at 0.01 level, 
see (Jorion 2006).

The dataset is composed by the daily returns from January 3, 2000 to September 17, 2020 
of the ten sectors portfolios of the S &P index obtained using the Global Industry Clas-
sification Standard (GICS): Energy, Material, Industrials, Consumer-Discretionary, Con-
sumer-Staples, Healthcare, Financials, Information-Technology, Telecommunications, and 

TO =
1

T − we

T−we∑
t=1

n∑
i=1

|xi,t+1 − xi,(t+1)− |,

L =
1

T − we

T−we∑
t=1

n∑
i=1

|xi,t|
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Utilities. The window length is set equal to we = 60 or we = 120 that, using daily data, is 
equivalent respectively to 3 or 6 working months.

Tables 1 and 2 collect the values of the performance criteria for each considered invest-
ment strategy when an estimation rolling window of length we = 60 and we = 120 is 
considered. Within each table, we arranged the long-only and long-short portfolios into 
separate sub-tables. While the Sharpe Ratios balances the return on the risk undertaken 

Table 1  Performance criteria 
for each investment strategy 
( w

e
= 60)

AR StDev SR TO L V@R

GMVlo
−0.000089 0.0101 −0.0088 0.01920 1 0.0301

EWP 0.000139 0.0118 0.0117 0.00056 1 0.0345
ERCd 0.000152 0.0111 0.0137 0.00112 1 0.0328
ERC 0.000148 0.0113 0.0131 0.00055 1 0.0332
RAGDP

V

1
0.000180 0.0107 0.0169 0.00233 1 0.0320

RAGDP
StDev

1
0.000178 0.0106 0.0168 0.00250 1 0.0316

RAGDP
MAD

1
0.000180 0.0106 0.0170 0.00282 1 0.0319

RAGDP
V@R

1
0.000157 0.0106 0.0149 0.00323 1 0.0321

RAGDP
MDD

1
0.000145 0.0109 0.0133 0.00279 1 0.0325

GMV 0.000089 0.0085 0.0104 0.02489 2.34 0.0255
RAGDP

V 0.000382 0.0137 0.0280 0.00829 1.95 0.0436

RAGDP
StDev 0.000223 0.0100 0.0223 0.00396 1.24 0.0295

RAGDP
MAD 0.000230 0.0100 0.0230 0.00456 1.25 0.0295

RAGDP
V@R 0.000196 0.0101 0.0195 0.00636 1.34 0.0296

RAGDP
MDD 0.000195 0.0108 0.0180 0.00695 1.53 0.0313

Table 2  Performance criteria 
for each investment strategy 
( w

e
= 120)

 AR  StDev  SR  TO  L  V@R

GMVlo 0.000035 0.0101 0.0035 0.01318 1 0.0296
EWP 0.000139 0.0118 0.0117 0.00055 1 0.0343
ERCd 0.000154 0.0111 0.0139 0.00072 1 0.0328
ERC 0.000147 0.0113 0.0130 0.00054 1 0.0335
RAGDP

V

1
0.000179 0.0107 0.0167 0.00136 1 0.0323

RAGDP
StDev

1
0.000178 0.0106 0.0168 0.00143 1 0.0315

RAGDP
MAD

1
0.000176 0.0106 0.0165 0.00158 1 0.0316

RAGDP
V@R

1
0.000168 0.0106 0.0159 0.00210 1 0.0313

RAGDP
MDD

1
0.000149 0.0109 0.0136 0.00183 1 0.0325

GMV 0.000146 0.0083 0.0177 0.01179 2.11 0.0257
RAGDP

V 0.000364 0.0124 0.0293 0.00468 1.87 0.0379

RAGDP
StDev 0.000224 0.0099 0.0227 0.00212 1.22 0.0291

RAGDP
MAD 0.000231 0.0099 0.0233 0.00238 1.23 0.0291

RAGDP
V@R 0.000205 0.0100 0.0206 0.00362 1.28 0.0296

RAGDP
MDD 0.000174 0.0106 0.0164 0.00390 1.44 0.0321
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permitting to directly compare any portfolio strategy in terms of risk-adjusted perfor-
mances, we underline the necessity to consider the leverage to fully compare the results 
of the strategies. Since the leverage of a portfolio impacts both on the magnitude of the 
returns and their standard deviation, it can happen that standard performance indicators 
like the Sharpe Ratio do not highlight the leverage. For this reason we decided to separate 
long-only portfolios from long-short portfolios to fully show how the performances of the 
allocation strategies are influenced by the leverage.

An initial analysis highlights that the results of Tables 1 and 2 do not significantly differ 
from a qualitative point of view. This suggests that the length of we only has a mild effect 
on the performances of the considered strategies and that comments and remarks are com-
mon to both cases.

We consider first the long-only strategies. An important evidence is the fact that the 
RAGDP strategies show the best performances in term of out-of-sample Sharpe Ratio. 
This implies that the proposed strategies are able to control the risk without penalizing the 
returns. In fact, all the considered RAGDP require to implement active investment portfolio 
strategies as showed by their higher level of TO with respect to EWP, ERCd and ERC; the 
extra investment activity with the related increased impact of the transaction costs is able 
then to produce good results both in terms of average (net) returns and standard deviation. 
On the opposite, the EWP, ERCd and ERC strategies mainly base their competitiveness on 
the stability in time of the allocation and the subsequent low impact of transaction costs.

We note that the considerations on the risk of the strategies made on the base of the 
standard deviation are still valid if we refer to the V@R. Further, the results obtained by 
the RAGDP strategies appear to be robust with respect to the use of different risk meas-
ures to evaluate the results. In our opinion this reflects the fact that the proposed allocation 
strategy highly depends on the ordering of the portfolio’s assets induced by the values of 
the single asset’s risk, allocating more on the less risky asset, as explained in the theoretical 
part of the paper, see Remark 2 item (iv).

One specific comment is needed for the GMV strategies, including both the long-only 
and the long-short cases. By our results, the global minimum variance portfolios show to 
be very competitive in reducing the risk with respect to the other strategies. Despite of 
this, the performance in terms of Sharpe Ratios is very poor because the risk reduction is 
obtained without preserving the average return; in this case, the active investment strat-
egy requires a frequent and severe rebalancing of the portfolio, as testified by the level of 
TO, that strongly impacts the average return through the transaction costs. An effective 
representation of the magnitude of the TO is given by Fig. 1 which reports the daily varia-
tions of each asset’s weights in the whole duration (left panel) and in the time period from 
September 03, 2001 to October 29, 2001 (right panel) for the EWP, RAGDPV

1
 and GMVlo 

strategies. The shorter period of two months has been arbitrarily chosen in order to better 
visualize the time evolution of the weights for the strictly active investment strategies. The 
GMVlo portfolio shows a highly unstable behavior, since both the portfolio’s weights and 
its composition in terms of asset classes dramatically change. The figure provides a graphi-
cal immediate intuition on the impact of transaction costs when comparing active and pas-
sive investment strategies.

Finally, we consider the long-short RAGDP strategies. They are competitive with 
respect to the alternative long-only strategies and, in general, superior for all the cri-
teria: their Average Portfolio TurnOver is small enough not permitting the transaction 
costs to erode the returns. Their risk, both measured through the Standard Deviation and 
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the Value at Risk, is generally lower than the one of the other considered approaches, 
while the Average Return is higher, resulting in a significant higher Sharpe Ratio. As a 
general conclusive remark on the empirical experiment, Tables 1 and 2 highlight how 
the strategies based on geometric diversification constitute a competitive alternative to 
well-known allocation strategies.

PWE)ii(PWE)i(

(iii) RAGDPV
1 (iv) RAGDPV

1

(v) GMVlo (vi) GMVlo

Fig. 1  Daily variations of the portfolio assets weights in the whole duration (left panel) and in the shorter 
time period of two months (right panel) for the EWP, RAGDPV

1
 and GMVlo strategies
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5  Conclusions

In this paper a novel allocation strategy based on the intuitive idea of geometric diversifica-
tion is presented. Theoretical results and properties of the proposed allocation strategy are 
derived together with the closed form solution in the general case of RADs. The approach 
permits to include any given risk measure to define a geometric diversified portfolio 
adjusted for that specific risk measure, thus taking advantage of the huge number of risk 
measures proposed in the literature. Further, if compared to portfolios constructed using 
Entropy-based diversification methods defined upon existing risk measures, geometric 
diversified portfolios appear to be extremely intuitive. Under suitable assumptions, a direct 
comparison with RQE optimal portfolios is provided; this makes the RAGDP an alterna-
tive approach to the use of Rao’s Quadratic Entropy as a maximum diversification measure, 
thus yielding a new formulation and an explicit solution to the entropy maximization prob-
lem. Moreover, the empirical out-of-sample exercise provides the ultimate proof support-
ing the effectiveness of the proposal, showing that RAGDPs are a competitive alternative 
to the other investment strategies. Such empirical evidence is promising and suggests a 
fruitful employ of the proposed novel approach even in practice. As further research, the 
authors plan to investigate a much more general case of Risk-Adjusted Distances, in which 
the risk information carried by the risk matrix could also consider the amount of risk asso-
ciated to each assets’ pair.

A Proofs of the paper’s results

This is a technical appendix giving the complete proofs of the results stated in the paper.

Proof of Proposition 1 The proof is based on (Pavoine et al. 2005, Proof of Proposition 1) 
which has been adapted here to the case of a general distance dW on ℝn . By definition of 
D the n × n real matrix (

√
dij) is Euclidean so that dij is a conditionally negative definite 

function (see (Rao 1982b; Rao and Nayak 1985; Critchley and Fichet 1997; Pavoine et al. 
2005)). Using the expression of dij and simply denoting the circumcenter cdW (Sn−1) by c, 
Rao’s Quadratic Entropy HD(x) can be rewritten as follows:

Letting zk = ek − c , for each k = 1,… , n , the previous expression becomes

HD(x) =x
tDx =

n∑
i,j=1

dijxixj =
1

2

n∑
i,j=1

xixj(e
i − ej)tW(ei − ej)

=
1

2

n∑
i,j=1

xixj((e
i − c) − (ej − c))tW((ei − c) − (ej − c)).
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Further, letting R be the distance of c from any point ek , k = 1,… , n , and using the con-
straint 

∑n

i=1
xi = 1 , we have:

so the result follows.

  ◻

Proof of Proposition 2 In the case n = 1 by Definition 2 we trivially get that the unique 
coordinate of the circumcenter is equal to 1; therefore, for the rest of the proof, we let 
n ≥ 2 . Let i ∈ {1,… , n} ; according to Definition 2 the circumcenter cdW (Sn−1) must satisfy 
the following system of equations:

Using Definition 1, system (6) can also be rewritten as follows:

that is

from which we get

and consequently

HD(x) =
1

2

n∑
i,j=1

xixj((z
i)tWzi + (zj)tWzj − 2(zi)tWzj)

=
1

2

n∑
i,j=1

(
2xixj(z

i)tWzi − 2xixj(z
i)tWzj

)

=

n∑
i,j=1

(
xixj(z

i)tWzi − xixj(z
i)tWzj

)
.

HD(x) =

n∑
i=1

xi(z
i)tWzi −

n∑
i,j=1

xi(e
i − c)tWxj(e

j − c)

=

n∑
i=1

xiR
2 −

(
n∑
i

xie
i − c

)t

W

(
n∑
j=1

xje
j − c

)

=

n∑
i=1

xiR
2 − (x − c)tW(x − c) = R2 − d2

W
(x, c),

(6)
�

dW (c, e
j) = dW (c, e

i), ∀j = 1,… , n, j ≠ i∑n

i=1
ci = 1.

�∑
k≠j wkc

2

k
+ wj(cj − 1)2 =

∑
k≠i wkc

2

k
+ wi(ci − 1)2, ∀j = 1,… , n, j ≠ i∑n

i=1
ci = 1

�
cj =

1

2

�
1 −

wi

wj

�
+ 2

wi

wj

ci, ∀j = 1,… , n, j ≠ i∑n

i=1
ci = 1

1

2

n∑
j=1,j≠i

(
1 −

wi

wj

)
+ 2

n∑
j=1,j≠i

wi

wj

ci + ci = 1
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so that the result follows.

  ◻

Proof of Proposition 3 

 (i) We assume that ci =
1

n
 , for each i = 1,… , n ; then, from formula (3), it follows 

 that is all the diagonal elements wi , i = 1,… , n , are equal to a positive real value � , 
thus W = �In . On the other hand, suppose that wi = � , i = 1,… , n ; then, MW−1 =

1

�
 

and consequently (3) yields 

 (ii) The inbetweeness property of the arithmetic mean yields 1

wmax

≤ MW−1 ≤
1

wmin

 , and 
consequently wmin ≤

1

M
W−1

≤ wmax . Using such inequality in expression (3) we obtain 

 which yields 

 (iii) It is an immediate consequence of formula (3).
 (iv) Let i ∈ {1,… , n} . From formula (3) it is straightforward to get ci <

1

2
 . Further 

nMW−1 >
1

wi

 , from which, using again (3), we get: 

 (v) The assertion immediately follows from item (iv).
 (vi) Using formula (3) the condition ci ≥ 0 , for each i = 1,… , n , can equivalently be 

rewritten as follows: 

 from which, computing the maximum of its right-hand side, the result follows.
 (vii) From item (vi) and the inbetweeness property of the arithmetic mean we have 

ci =
1

2

⎛
⎜⎜⎝
1 −

n − 2

wi

∑n

j=1

1

wj

⎞
⎟⎟⎠
,

MW−1 =
1

wi

,

ci =
1

2

(
1 −

n − 2

n

)
=

1

n
, for each i = 1,… , n.

1

2

(
1 −

n − 2

n

wmax

wi

)
≤ ci ≤

1

2

(
1 −

n − 2

n

wmin

wi

)

1

n
−

n − 2

2n

(
wmax

wmin

− 1

)
≤ ci ≤

1

n
+

n − 2

2n

(
1 −

wmin

wmax

)
.

ci =
1

2

(
1 −

n − 2

nwiMW−1

)
> −

1

2
(n − 3).

MW−1 ≥
n − 2

n
⋅

1

wi

,
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 from which, if n → +∞ , then MW−1 →
1

wmin

 . Finally, applying item (i), the result 
follows.

  ◻

Proof of Proposition 5 From Carmichael et al. (2015), if the each function dij is condition-
ally negative definite, the RQE optimal portfolio is the unique solution of the constrained 
optimization problem (2). Consequently, by Definition 2 and 4 and Proposition 1 the result 
follows.

  ◻

Proof of Proposition 6 Let �(�)max and M�(�) be the maximum and the arithmetic mean of 
�1(�),… , �n(�) and d =

2

n

�max

�max−M�

 as given in Definition 5. By Remark 3, item (i), 
�(�)max = �max ; further

Using in the above expression the assumption � ≤ 1 we get

from which, by Proposition 4-(v), the result follows.

  ◻

Proof of Proposition 7 We rewrite the RAGDP solution x∗ (see formula (4)) as follows:

and, by some computations, we express the quantity Var(RAGDP) = x∗tVx∗ as follows:

from which item (i) immediately follows.
To prove item (ii), using formula (5), we express

n − 2

n
⋅

1

wmin

≤ MW−1 ≤
1

wmin

(7)

M�(�) =
1

n

n∑
i=1

�i(�) =
1

n

n∑
i=1

(
�max − �d(�max − �i)

)

=�max

(
1 −

2

n
�
�max −M�

�max −M�

)
= �max − �d(�max −M�).

M�(�) ≥ �max −
2

n
�max =

n − 2

n
�max =

n − 2

n
�(�)max

x∗ =
1

n
1n +

n − 2

n

(
1n −

�

M�

)

x∗tVx∗ =
1

n2
1
t
n
V1n+

+
n − 2

4n2M2
�

[
n(M�1n − �)tV(M�1n − �) + 2(M2

�
1
t
n
V1n − �tV�)

]
,
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By some computations, the condition expressed in item (i) with � = �(�) , M� = M�(�) and 
D� = D�(�) given above yields:

from which item (ii) follows.

  ◻

Author Contributions The authors equally contributed to the design and implementation of the research, the 
analysis of the results and the writing of the manuscript.

Funding Open access funding provided by Università degli Studi di Genova within the CRUI-CARE Agree-
ment. The authors declare that no funds, grants, or other support were received during the preparation of 
this manuscript.

Data availability The datasets analysed in the current study are available from the corresponding author on 
reasonable request.

Declarations 

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Acciaio, B., Penner, I.: Dynamic risk measures. In: Di Nunno, G., Aksendal, B. (eds.) Advanced mathemati-
cal methods for finance. Springer, Berlin, Heidelberg (2011)

Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Financ. 
26, 1505–1518 (2002)

Artzner, P., Delbaen, F., Eber, J., Heath, D.: Coherent measures of risk. Math. Financ. 9, 203–228 (1999)
Burke, G.: A sharper sharpe ratio. Futures 23(3), 56–57 (1994)
Caporin, M., Jannin, G.M., Lisi, F., Maillet, B.B.: A survey on the four families of performance measures. J. 

Econ. Surv. 28, 917–942 (2014)
Carmichael, B., Koumou, G.B., Moran, K.: Unifying Portfolio Diversification Measures Using Rao’s Quad-

ratic Entropy. CRREP Working Paper 2015-02. Available at https:// ssrn. com/ abstr act= 26108 14 (2015)
Chalkis, A., Emiris, I.Z.: Modeling asset allocation strategies and a new portfolio performance score. Avail-

able at https:// arxiv. org/ pdf/ 2012. 05088. pdf (2020)
Choueifaty, Y., Coignard, Y.: Toward maximum diversification. J. Portf. Manag. 35, 40–51 (2008)
Choueifaty, Y., Froidure, T., Reynier, J.: Properties of the most diversified portfolio. J. Invest. Strateg. 2, 

49–70 (2013)

�(�) =(1 − �d)�max + �d�

M�(�) =(1 − �d)�max + �dM�

D�(�) =M�(�)1n − �(�) = �dD�.

�d[(−4�maxD
t
�
V1n + nDt

�
VD� + 2(M2

�
1
t
n
V1n − �tV�))�d + 4�maxD

t
�
V1n] ≤ 0

http://creativecommons.org/licenses/by/4.0/
https://ssrn.com/abstract=2610814
https://arxiv.org/pdf/2012.05088.pdf


55Risk-adjusted geometric diversified portfolios  

1 3

Clarke, R., De Silva, H., Thorley, S.: Risk parity, maximum diversification, and minimum variance: an ana-
lytic perspective. J. Portf. Manag. 39, 39–53 (2013)

Cogneau, P., Hübner, G.: The (more than) 100 ways to measure portfolio performance. J. Perform. Meas. 
13, 56–71 (2009)

Constantinides, G.M., Malliaris, A.G.: Portfolio Theory. In: Jarrow, R. et al., (eds.) Handbooks in OR & 
MS, (1995)

Critchley, F., Fichet, B.: On (super-)spherical distance matrices and two results from Schoenberg. Linear 
Algebra Appl. 251, 145–165 (1997)

Dahlquist, G., Björck, A.: Numerical methods. Dove Publications Inc. (2003)
DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: how inefficient is the 1/N port-

folio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2009)
Dowd, K.: Adjusting for risk: an improved sharpe ratio. Int. Rev. Econ. Financ. 9(3), 209–222 (2000)
Farinelli, S., Tibiletti, L.: Sharpe thinking in asset ranking with one-sided measures. Eur. J. Oper. Res. 

185(3), 1542–1547 (2008)
Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Financ. Stoch. 6, 429–447 (2002)
Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Financ. 26, 1473–1486 (2002)
Jorion, P.: Value at risk, 3rd edn. McGraw-Hill, Singapore (2006)
Kaplan, P., Knowles, J.: Kappa: a generalized downside risk-adjusted performance measure. J. Perform. 

Meas. 8(3), 42–54 (2004)
Kazemi, H., Schneeweis, T., Gupta, B.: Omega as a performance measure. J. Perform. Meas. 8, 16–25 

(2004)
Koumou, G.B.: Diversication and portfolio theory: a review. Financ. Markets Portf. Manag. 34, 267–312 

(2020)
Koumou, G.B., Dionne, G.: Coherent Diversification Measures in Portfolio Theory: An Axiomatic Founda-

tion. https:// ssrn. com/ abstr act= 33514 23 (2019). Accessed 12 Mar 2019
Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2(1), 49–55 (1936)
Maillard, S., Roncalli, T., Teiletche, J.: The properties of equally weighted risk contribution portfolios. J. 

Portf. Manag. 36(4), 60–70 (2010)
Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
Meucci, A.: Managing diversification. Risk 22, 74–79 (2009)
Pavoine, S., Ollier, S., Pontier, D.: Measuring diversity from dissimilarities with Rao’s quadratic entropy: 

are any dissimilarities suitable? Theor. Popul. Biol. 67, 231–239 (2005)
Qian, E.: On the financial interpretation of risk contributions: Risk budgets do add up. J. Invest. Manag. 

(2006)
Rachev, S., Ortobelli, S., Stoyanov, S., Fabozzi, F.J., Biglova, A.: Desirable properties of an ideal risk meas-

ure in portfolio theory. Int. J. Theor. Appl. Financ. 11(01), 19–54 (2008)
Rao, C.R.: Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982)
Rao, C.R.: Diversity: its measurement, decomposition, apportionment and analysis. Sankhya Indian J. Stat. 

Ser. A 44(1), 1–22 (1982)
Rao, C.R.: Quadratic entropy and analysis of diversity. Indian J. Stat. Ser. A 72(1), 70–80 (2010)
Rao, C., Nayak, T.: Cross entropy, dissimilarity measures, and characterizations of quadratic entropy. IEEE 

Trans. Inf. Theory 31(5), 589–593 (1985)
Roncalli, T., Weisang, G.: Risk parity portfolios with risk factors. Quant. Financ. 16, 377–388 (2016)
Shadwick, W.F., Keating, C.: A universal performance measure. J. Perform. Meas. 6, 59–84 (2002)
Sharpe, W.F.: Mutual fund performance. J. Bus. 39(1), 119–138 (1966)
Sortino, F., Van der Meer, R.: Downside risk. J. Portf. Manag. 17(4), 27–31 (1991)
VanderZee, E., Hirani, A.N., Guoy, D., Zharnitsky, V., Ramo, E.A.: Geometric and combinatorial properties 

of well-centered triangulations in three and higher dimensions. Comput. Geom. 46, 700–724 (2013)
Young, T.: Calmar ratio: a smoother tool. Futures 20(11), 40–41 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://ssrn.com/abstract=3351423

	Risk-adjusted geometric diversified portfolios
	Abstract
	1 Introduction
	2 Geometry of the standard simplex
	3 Risk-adjusted geometric diversified portfolio
	3.1 Risk-adjusted distances
	3.2 The RAGDP strategy
	3.3 Long-only RAGDP strategy
	3.4 Comparison with EWP

	4 Empirical results
	5 Conclusions
	A Proofs of the paper’s results
	References




