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Abstract
Healthy life expectancy (HLE) is an indicator that measures the number of years individ-
uals at a given age are expected to live free of disease or disability. HLE forecasting is 
essential for planning the provision of health care to elderly populations and appropriately 
pricing Long Term Care insurance products. In this paper, we propose a methodology that 
simultaneously forecasts HLE for groups of countries and allows for investigating similari-
ties in their HLE patterns. We firstly apply a functional data clustering to the multivariate 
time series of HLE at birth of different countries for the years 1990–2019 provided by the 
Global Burden of Disease Study. Three clusters are identified for both genders. Then, we 
carry out the HLE simultaneous forecasting of the populations within each cluster by a 
multivariate random walk with drift. Numerical results and the statistical significance of 
the parameters of the identified multivariate processes are shown. Demographic evidences 
on the different evolution of HLE between countries are commented.
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1 Introduction

The rising in longevity is one of the most astonishing achievements of modern society, it 
is a result of continuous progress in medicine, nutrition, and technology (Riley 2001). This 
leads to a looming and rapid population aging, and a consequently increased prevalence 
of chronic diseases, especially among the elderly. Among bio-demographic theories, we 
found that morbidity was generally associated with diseases, and longevity with biological 
senescence (Manton 1982). In its seminal work, Fries (1980) theorized that the age at the 
onset of chronic degenerative diseases could be postponed compressing morbidity into a 
smaller portion of the life span, thus without significantly changing average life expectancy.

The rapid decrease in mortality at advanced ages suggested that a biological limit was 
not close, without indication of a deterioration in the health status of older people despite 
significant increases in life expectancy. By aiming at investigating the nature of these sce-
narios, it is useful to monitor both mortality and the incidence/ prevalence of morbidity 
over time. To address these issues, relevant research avenues have evolved recently, pro-
moting the creation of health expectancy indicators (Sanders 1964; Sullivan 1965, 1971) 
that measure the number of years that individuals at a given age are expected to live in 
good health under prevailing mortality and morbidity conditions. More precisely, HLE rep-
resents the expected number of years of remaining disability-free life a member of the life 
table cohort would experience if cohort age-specific rates of mortality and disability pre-
vailed throughout his/her lifetime. The basic idea is to merge the period life table, with the 
age-specific disability prevalence obtained from cross-sectional survey data. In particular, 
Sullivan’s method simply partitions the total number of person-years lived into the disabil-
ity and disability-free life expectancy.

According to Imai and Soneju (2007), similarly to life expectancy at birth, we are able to 
define HLE, denoted by h(a, t), which represents the expected remaining disability-free (DF) 
life of an individual age a born at time t. Formally, given the survival function l(a, t), and let 
�(a, t) be the proportion disabled at age a for the cohort born at time t, HLE is given by:

Since the theoretical definition is given within the continuous-time framework and the data 
are typically recorded in a discrete form, we exploit the period life table model in order to 
approximate the continuous-time mortality process and use Sullivan’s method. We then 
obtain the discrete counterpart of h(a, t), denoted by ha,t . A reliable estimation of HLE is 
fundamental for understanding whether additional years of life are spent in good health and 
whether life expectancy is increasing faster than the decline of disability. Besides Levan-
tesi et al. (2022) who contributed to underlined heterogeneity in longevity indicators from 
a global perspective, it is a common practice in life expectancy literature to model each 
population independently. Indeed, significant studies have been proposed on life expec-
tancy forecasting, see, e.g., Torri (2011) that bring forward a Geometric Brownian motion-
based model. Another relevant contribution comes from Raftery et al. (2013) who propose 
a hierarchical Bayesian model, finally Nigri et al. (2021a) bring forward a neural network 
approach to forecast longevity measures accounting for long and short term dynamics.

Nevertheless, after a long period of increasing life expectancy, researchers recorded 
some diverging trends in longevity, whit a situation of stagnation and deceleration (Nigri 
et  al. 2022, 2021b; Ho and Hendi 2018). Regularities have been observed also in HLE 
(Permanyer et al. 2022a) with a less optimistic picture obtained looking at life expectancy 

h(a, t) =
1

l(a, t) ∫
∞

a

[1 − �(r, t)]l(r, t)dr
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trends. Therefore, it seems appropriate to identify clusters of countries having common 
characteristics detected by life expectancy before conducting the forecast by a multi-pop-
ulation model. Aiming at providing for the first time an HLE forecasting, we analyze the 
patterns of HLE at birth time series by identifying different longevity phases and transi-
tions that allow clustering analysis of countries in line with their longevity dynamics. Lev-
eraging a functional cluster analysis, which allows us to analyze curves rather than scalar 
data we try to track similarities in HLE among countries. Indeed, if some countries share 
macrolevel common factors, such as similar improvements in public health or economic 
circumstances, joint forecasting can be appropriate. Therefore, using the obtained cluster 
information, we then perform a simultaneous HLE forecasting inside each specific cluster 
by implementing a multivariate random walk with drift, which is an econometric model 
able to provide multivariate simultaneous forecasting.

This work is structured as follows. Data and healthy measures are depicted in Sect. 2. 
The methodology is described in Sect. 3. The numerical application is offered in Sect. 4. 
Food for thought and Conclusions follow.

2  Data and healthy measures

HLE is a measure used by the World Health Organization (WHO) for assessing the health 
of a population in a country. According to the definition of the Global Burden of Disease 
Study (GBD), HLE1 is the number of years that a person at a given age can expect to live 
in good health, if the rates of all-cause mortality and all-cause disability would be constant 
into the future.

HLE is calculated by subtracting the Disability Adjusted Life Years (DALY) from life 
expectancy. DALYs are the sum of years of life lost (YLLs) and years lived with disability 
(YLDs). DALYs are the lost years of healthy life due to an early death caused by an ill-
ness or disability while still alive. YLLs are years lost due to premature mortality and are 
calculated by subtracting the age at death due to a given illness from the life expectancy at 
that age. Finally, YLDs are years lived with disability. This latter indicator is calculated as 
the product of the prevalence of a given condition that causes disability and the disability 
weight reflecting that condition’s severity.

If the comorbidity is ignored, the sum of YLDs across all causes may overestimate the 
total loss of health, especially at older ages. For this reason, in 2010, the Global Burden of 
Diseases, Injuries, and Risk Factors Study 2010 (Horton 2012) implemented adjustments 
for comorbidity so that the sum of YLDs across causes was equal to the sum of the overall 
lost health at a given age.

At first, the GBD calculated the YLDs following an incidence perspective, so that the 
number of incident cases in a given period was multiplied by the average duration of the 
disease and a weight reflecting the severity of the disease on a scale from 0 (perfect health) 
to 1 (dead). This approach had several drawbacks. For example, data related to the average 
duration of the disease are often unavailable, and taking into account comorbidities is rather 
complicated than a prevalence approach. While the incidence rate is the ratio of new cases of 
a disease divided by the number of exposure to the risk in a specific population over a par-
ticular period, the prevalence rate is the ratio of the number of cases of a disease divided by 
the number of exposure to the risk in a specific population over a particular period.

1 GBD usually refers to as Healthy Adjusted Life Expectancy (HALE).
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In 2010, GBD and WHO switched to a prevalence-based approach to the calculation of 
YLDs, estimating comorbidities under the assumption of independence within age-sex groups 
(see WHO (2020) for a detailed description of the methods and the weight’s calculation).

In this paper, we refer to the HLE data of the Global Burden of Disease Study (Wang 
et al. 2020) over the period 1990-2019 for the countries listed in Table 1. They have been 
downloaded at Global Health Data Exchange, http:// ghdx. healt hdata. org/ gbd- resul ts- tool 
(Institute for Health Metrics and Evaluation 2022).

3  Methodology

In this section, we describe the model for the multivariate forecasting of the HLE based on 
a multi-country clustering. We explore the evolution of HLE over time in different coun-
tries to outline a comparative analysis. We firstly implement a functional data clustering of 
the HLE trends, which can be described as curves over time observed for each country. The 
functional approach allows the clustering of HLE trends and the identification of countries 
that are evolving according to similar patterns. Then, we provide the fundamentals of the 
multivariate random walk with drift that we use to simultaneously forecast the populations’ 
HLE within each cluster.

3.1  Functional HLE data clustering

Describing data in a functional curve consists in assuming the existence of a continuous 
function for which the observed data constitute a discretization. Jacques et  al. (2014a) 
propose the first clustering procedure for multivariate functional time series to catch the 
similarities among curves. One of the methods proposed in the literature to perform the 
functional clustering is based on a two-step functional algorithm Abraham et al. (2003). In 
the first step, the functional curve is derived from discrete data, through the filtering step 
(James and Sugar 2003) aiming at approximating the curves by using a basis expansion of 
cubic B-splines functions. In particular, B-splines are widespread because they allow the 
analysis of the non-linear effects in the covariates and are locally susceptible to data (De 

Table 1  List of the countries used in this study and related International Standards Organization (ISO) 
3-digit alphabetic codes

Country ISO3 code Country ISO3 code Country ISO3 code

Australia AUS France FRA Norway NOR
Austria AUT Germany DEU Poland POL
Belarus BLR Hungary HUN Portugal PRT
Belgium BEL Iceland ISL Russian Federation RUS
Bulgaria BGR Ireland IRL Slovakia SVK
Canada CAN Italy ITA Spain ESP
Czechia CZE Japan JPN Sweden SWE
Denmark DEN Latvia LVA Switzerland CHE
Estonia EST Lithuania LTU Ukraine UKR
Finland FIN Netherlands NLD United Kingdom GBR

United States of America USA

http://ghdx.healthdata.org/gbd-results-tool
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Boor 1978). In the second step, the selected clustering tool is implemented. We refer to the 
two-step functional algorithm. We consider the basis expansion of hj(t):

where Bl(t) with L ≥ 1 ( L ∈ ℕ ) is the selected number of basis functions, �jl ∈ ℝ are the 
basis coefficients estimated from the observed data using the classical least square estimation. 
We observe that Eq. 1 provides a functional representation of the observed values of HLE.

Given the discrete observations hjk of each sample path hj(t) at a finite set of knots 
{tjk ∶ k = 1, ...,mj} , we reconstruct the HLE functional form through the functional predictor:

with �jk independent and identically zero mean distributed errors. The spline coefficients of 
each sample path hj(t) are estimated by

with 𝛽j = (𝛽j1, ..., 𝛽jL)
� , Bj = (Bl(tjk))1≤k≤mj,1≤l≤L and ĥj = (ĥj1, ..., ĥjmj )� . The approximation 

of the functional curves of HLE for each population is performed through the fda package 
(version 5.1.9) of the R software using a cubic spline, where the number of knots is equal 
to the number of the available observations.

Once the functional form of each curve is reconstructed, we implement the k-means 
cluster to the fitted basis coefficients of all expanded curves. As it is well known, the 
k-means is an iterative clustering method, according to which a data point is assigned to a 
cluster minimizing the squared distance between each data point and the arithmetic mean 
of all data points in the cluster. We frame our choice within the existing literature, start-
ing from the contributions of Singhal and Seborg (2005) and Ieva et al. (2011) that use a 
k-means algorithm on distances between multivariate functional data. Kayano et al. (2010) 
implement Self-Organizing Maps on the coefficients of orthonormalized Gaussian basis 
expansions of multivariate curves. Jacques et  al. (2014a) consider the use of non ortho-
normal basis functions. In literature, other functional data clustering approaches have been 
proposed (James and Sugar 2003; Tarpey and Kinateder 2003; Chiou et al. 2007; Bouvey-
ron and Jacques 2011), like the hierarchical non-parametric clustering (Ferraty and Vieu 
2006) or the model-based approach that assumes a given density probability on a finite 
number of parameters describing the curves (Bouveyron and Jacques 2011). In this paper, 
we have selected the two-step filtering procedure to describe the HLE multivariate time 
series, to show how similar dynamic behaviours emerge among countries, by performing 
clustering on the time series. On the other hand other types of probabilistic models could 
be useful to address the aforementioned problem. For instance, Mixture Models (see Con-
sonni et al. 1995; Giudici 2003), are often used for data clustering being an efficient imple-
mentation framework by means of the Expectation–Maximization algorithm.

3.2  HLE multivariate modeling

Considering the groups of populations obtained through the functional clustering, we now 
work on the cluster-related HLE discrete observations.

(1)hj(t) =

L∑
l=1

�jl ⋅ Bl(t)

hjk = hj(tjk) + �jk k = 1, ...,mj

𝛽j =
[
(Bj)�Bj

]−1
(Bj)�ĥj
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Let C the number of clusters obtained from the previous step, and ni the number of popula-
tions within the generic cluster i ∈ {1, 2, ...,C} . Hence, the total number of populations is the 
sum of the populations belonging to each cluster, n =

∑C

i=1
ni . We denote h(i,j)t  the observed 

value of HLE at birth (for simplicity, age a has been omitted) for population j ∈ [1, ..., n] in 
cluster i for year t ∈ [t1, t2, .., t� ] . For the generic cluster i, we define the matrix of HLE as:

where the row indicates the population in the cluster i and the column indicates the time. 
Therefore, 

(
H

(i)

t

)
t∈{t1,...,t�}

 is the multivariate time series of HLE at birth of the populations 

in cluster i that we simultaneously model by a multivariate random walk with drift 
(MRWD):

where �(i) is the vector of drift parameters driving the dynamics of the populations in clus-
ter i, and 𝚺(i) is the ni × ni variance-covariance matrix of the multivariate white noise �(i)

t
 in 

cluster i.
Using data in the in-sample period, we calculate one-step-ahead and two-step-ahead and five-

step-ahead point forecasts. We follow an expanding window approach, increasing the in-sample 
period by one year (two or five years) and calculating one-step-ahead (two-step-ahead or five-
step-ahead) forecasts. We determine the out-of-sample forecast accuracy by comparing the fore-
casts with the actual out-of-sample data. A similar approach has been followed by, e.g., Shang 
and Yang (2021) for jointly modeling Australian sub-populations using one-step-ahead and five-
step-ahead forecast, and Shang and Hyndman (2017) that provided one- to ten-step-ahead fore-
casts for grouped functional time series using the regional age-specific mortality rates in Japan.

Considering t� the forecast origin and r the forecast horizon, the r-step-ahead forecast of 
HLE of the populations in the generic cluster i is given by:

The r-step-ahead forecast for MRWD in Eq. 3 can be written as:

3.3  Performance measures

We measure the performance of the model by the Mean Absolute Error (MAE) and the 
Root Mean Square Error (RMSE). Given tT the final year of the forecast, we calculate 
MAE and RMSE for each population j within cluster i as:

(2)H
(i)

t
=

⎡
⎢⎢⎢⎢⎣

h
(i,1)
t1

h
(i,1)
t2

… h
(i,1)
t�

h
(i,2)
t1

h
(i,2)
t2

… h
(i,2)
t�

⋮ ⋮ ⋮ ⋮

h
(i,ni)

t1
h
(i,ni)

t2
… h

(i,ni)

t�

⎤
⎥⎥⎥⎥⎦

(3)H
(i)

t
= H

(i)

t−1
+ �

(i) + �
(i)

t
, �

(i)

t
∼ N(0,𝚺(i))

(4)Ĥ
(i)

t�
(r) = E

[
H

(i)

t�+r
|H(i)

t�
,H

(i)

t�−1
, ...,H

(i)

1

]

(5)Ĥ
(i)

t�
(r) = H

(i)

t�
+ �

(i)r

(6)MAE(i,j) =

∑tT
t=t𝜏+1

∣ h
(i,j)

t − ĥ
(i,j)

t ∣

(tT − t𝜏 − 1)
,
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And, their average values for each cluster i as:

Furthermore, to compare the predictive accuracy of two competing forecasts we use the 
Diebold Mariano (DM) test (see Diebold and Mariano 1995). In a nutshell, given the fore-
cast error eit defined as the difference between the values predicted by a certain model i 
and the actual values at time t, the loss associated with forecast from model i is assumed 
to be g(eit) = e2

it
 . The two forecasts have equal accuracy if and only if the loss differential 

between the two forecasts, dt = g(e1t) − g(e2t) , has zero expectation for all t. The DM test 
statistic is defined as follows:

where d̄ is the sample mean of the loss differential, s is the variance, and N the sample 
size. The null hypothesis of this test is that the models have the same forecast accuracy, 
i.e. H0 ∶ E[dt] = 0, ∀t , while the alternative hypothesis is that H1 ∶ E[dt] ≠ 0, ∀t . If H0 is 
true, then the DM statistic is asymptotically distributed as a normal standard normal distri-
bution with 0 mean and standard deviation equal to 1.

4  Numerical application

We remind that the proposed methodology consists of two stages. The first one is the 
functional data clustering of the HLE at birth of the countries listed in Table  1. The 
second one consists of simultaneously forecast HLE at birth of the countries inside the 
cluster by a multivariate random walk with drift.

We apply this methodology to the data on HLE for the period 1990-2019, where the 
first 15 years, 1990-2009, represent the in-sample period, and years 2010-2019 the out-of-
sample period.

The optimal number of clusters C is chosen according to the Elbow and Silhouette 
methods (see Figs. 14-16 in Appendix A). From Figs. 15-16, we have chosen C = 3 as the 
optimal number of clusters for both genders.

The results of the application of the functional data clustering to the HLE data can 
be visualized in the world map in Fig.  1 for females and in Fig.  2 for males. Focusing 
on female populations, cluster 1 shows a strong geographical connotation as mainly col-
lects former Soviet Union countries (Belarus, Latvia, Russia, and Ukraine). The other two 

(7)
RMSE(i,j) =

�����
∑tT

t=t𝜏+1

�
h
(i,j)

t − ĥ
(i,j)

t

�2

(tT − t𝜏 − 1)
.

(8)MAE(i) =
1

ni

ni∑
j=1

MAE(i,j)
,

(9)RMSE(i) =
1

ni

ni∑
j=1

RMSE(i,j)
.

(10)DM =
d̄√
s

N
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clusters collect both European countries and North America, while Australia is in cluster 2. 
Looking at male populations, cluster 2 gathers the same countries as cluster 1 for females 
plus the remaining Baltic States (Estonia, Lithuania) and some Eastern Europe countries 
(Hungary, Poland, Slovakia). Male cluster 3 is similar to female cluster 2, collecting the 
same countries except for Austria, Belgium, Germany, and Finland.

To test the statistical significance of the drift, we used the Augmented Dickey-Fuller Test 
(ADF) Unit Root Test, analyzing whether the drift term is needed in the regression model. 
The null hypothesis means that our process is a random walk with drift. The results of the 
ADF test are reported in Table 2 and Table 3 for males and females, respectively. We can 
deduce that the values of test statistic are greater than critical values at levels 1%, 5%, and 
10% for all the clusters and both genders with the exception of cluster 2 males and cluster 
1 females. Therefore, we conclude that the null hypothesis (the process is a random walk 

Fig. 1  Clustered populations. Females

Fig. 2  Clustered populations. Males
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with drift) can be accepted in all the cases except for cluster 2 males and cluster 1 females. 
Tables 2–3 also show the values of the drift parameters for the populations whose HLE time 
series follows a random walk with drift, estimated over the in-sample period 1990-2009. 
We observe positive values of � for all the countries. The � values for male populations are 
higher than those for female populations highlighting an improvement in the men’s health 
in the period 1990-2009. Indeed, men live less than women but spend a lower proportion of 
their total life expectancy in poor health. This phenomenon is known as the “male-female 
health-survival paradox” (Oksuzyan et al. 2009), and is not constant and universal, depend-
ing on different health domain indicators as argued by Di Lego et al. (2020).

Table 2  List of male populations by cluster number, results of the ADF test (null: random walk with drift), 
and drift parameter

Years 1990–2009. Critical values for test statistics: *** 7.88 for p < 0.01 , ** 5.18 for p < 0.05 , * 4.12 for 
p < 0.1.

Population ISO3 code Cluster Test statistic Drift value

Austria AUT 1 74.9166 0.003011
Belgium BEL 1 60.5093 0.002979
Czechia CZE 1 32.5735 0.002932
Denmark DEN 1 29.1165 0.003018
Finland FIN 1 84.5433 0.003235
Germany DEU 1 66.6388 0.003337
Ireland IRL 1 27.8705 0.003347
Portugal PRT 1 34.8772 0.003158
United Kingdom GBR 1 75.0947 0.002847
United States of America USA 1 18.8464 0.002514
Belarus BLR 2 2.5781*** –
Bulgaria BGR 2 1.2940*** –
Estonia EST 2 0.8428*** –
Hungary HUN 2 6.5325 –
Latvia LVA 2 0.3435*** –
Lithuania LTU 2 0.5894*** –
Poland POL 2 9.2137 –
Russia RUS 2 1.7521*** –
Slovakia SVK 2 10.1347 –
Ukraine UKR 2 2.3312*** –
Australia AUS 3 76.2945 0.003232
Canada CAN 3 95.0936 0.003108
France FRA 3 55.8375 0.002990
Iceland ISL 3 9.9812 0.002903
Italy ITA 3 81.6075 0.002785
Japan JPN 3 20.5208 0.002817
Netherlands NLD 3 52.9665 0.002908
Norway NOR 3 85.3316 0.003073
Spain ESP 3 50.0970 0.003222
Sweden SWE 3 114.2692 0.003406
Switzerland CHE 3 53.1291 0.003570
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Finally, we apply the ADF test for testing whether HLE time series is a random walk 
(without drift) for the populations included in cluster 2 males and cluster 1 females. The 
results, provided in Tables 4 and 5, show that for both the clusters above mentioned a ran-
dom walk is appropriate.

In conclusion, we model all the clusters with a MRWD, with the exception of cluster 2 
males and cluster 1 females that are modeled as a MRW.

The results of the out-of-sample test over the years 2010-2019 for each female popula-
tion cluster are depicted in Fig. 3, 4 and 5 for cluster 1, 2, and 3 respectively.

Table 3  List of female populations by cluster number, results of the ADF test (null: random walk with 
drift), and drift parameter

Years 1990–2009. Critical values for test statistics: *** 7.88 for p < 0.01 , ** 5.18 for p < 0.05 , * 4.12 for 
p < 0.1

Population ISO3 code Cluster Test statistic Drift value

Belarus BLR 1 0.1716*** –
Bulgaria BGR 1 2.5783*** –
Latvia LVA 1 0.8040*** –
Russia RUS 1 0.8103*** –
Ukraine UKR 1 0.2365*** –
Australia AUS 2 49.2964 0.001927
Austria AUT 2 49.7918 0.001921
Belgium BEL 2 25.1095 0.001930
Canada CAN 2 64.1297 0.001944
Finland FIN 2 28.2506 0.001949
France FRA 2 25.3753 0.002047
Germany DEU 2 59.5543 0.002176
Iceland ISL 2 24.8225 0.002225
Italy ITA 2 76.4003 0.002204
Japan JPN 2 57.9446 0.002173
Netherlands NLD 2 20.7369 0.002105
Norway NOR 2 27.6603 0.002016
Spain ESP 2 72.4959 0.001929
Sweden SWE 2 41.4797 0.001851
Switzerland CHE 2 31.0529 0.001779
Czechia CZE 3 13.1897 0.002860
Denmark DEN 3 17.7256 0.002881
Estonia EST 3 2.0890*** 0.002861
Hungary HUN 3 13.2208 0.002864
Ireland IRL 3 38.4853 0.002704
Lithuania LTU 3 0.6153*** 0.002703
Poland POL 3 26.8252 0.002680
Portugal PRT 3 36.0128 0.002688
Slovakia SVK 3 7.3036 0.002277
United Kingdom GBR 3 52.0672 0.001763
United States of America USA 3 6.7399 0.001223
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The results of the out-of-sample test for each male population cluster are depicted in 
Fig. 6, 7 and 8 for cluster 1, 2, and 3 respectively.

We can trace some reflections starting from the analysis of Figs. 3–8. We choose to provide 
specific qualitative comments for U.S. and Russia, which show some interesting health and 
longevity dynamics supported by the literature. The health disadvantage of the United States 
(National Research Council 2013) is clear for both males and females: HLE in the U.S. is sig-
nificantly lower than that of other countries. In particular, from the WHO data, it emerges that 
the U.S. is the only developed country in the world that has experienced a decrease in healthy 
life expectancy since 2010, despite it having the highest GDP in the world and is one of the 
wealthiest countries in per capita GDP. The decreasing trend in HLE occurs parallel to the 
decreasing trend in life expectancy. As early as the 1990s, a slowdown in improving longevity 
was observed and the life expectancy of Americans fell below the average for developed coun-
tries. This trend continued until around 2010 when the average death age in the U.S. stabilized. 
In 2011, the U.S. recorded the highest health expenditure as a proportion of GDP but the low-
est coverage (Lorenzoni et  al. 2014). This is mainly due to the fragility of a health system 
strongly biased in favor of private assistance and to the inequalities that it generates in health 
care for the poorest sections of the population. In the literature, it has been asked whether the 
deficiency in the U.S. health system is the sole cause of health disadvantage. McGinnis and 
Foege (1993) emphasized the important role of health behaviors. Mokdad et al. (2005) high-
lighted that 40 percent of all deaths in the U.S. are associated with four poor health behaviors: 
tobacco use, unhealthy diet, physical inactivity, and drinking problems.

Another evidence that emerges from Figs. 3–8 is the particular volatility that character-
ized the trend in health expectancy in the Russian Federation and Eastern European coun-
tries. Russia is another exception to the well-known Preston curve relationship. After an 

Table 4  List of male populations 
by cluster number, results of the 
ADF test (null: random walk)

Years 1990–2009. Critical values for test statistics: *** -2.66 for 
p < 0.01 , ** -1.95 for p < 0.05 , * -1.6 for p < 0.1.

Population ISO3 code Cluster Test statistic

Belarus BLR 2 −0.4945
Bulgaria BGR 2 1.5253
Estonia EST 2 1.3047
Hungary HUN 2 3.6627
Latvia LVA 2 0.7710
Lithuania LTU 2 0.4015
Poland POL 2 4.2912
Russia RUS 2 −0.1592
Slovakia SVK 2 4.2340
Ukraine UKR 2 −0.0744

Table 5  List of female 
populations by cluster number, 
results of the ADF test (null: 
random walk). Years 1990–2009. 
Critical values for test statistics: 
∗∗∗ −2.66 for p < 0.01 , ∗∗ −1.95 
for p < 0.05, ∗ −1.6 for p < 0.1

Population ISO3 code Cluster Test statistic

Belarus BLR 1 0.5952
Bulgaria BGR 1 2.0904
Latvia LVA 1 1.3048
Russia RUS 1 0.1463
Ukraine UKR 1 0.4444
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improvement in health conditions in 1985-87 due to Gorbachev’s anti-alcohol campaign, 
the 1990s saw a return to easy access to alcohol and economic tensions with the end of 
the Soviet Union. Unlike what happened in the U.S., however, a growing trend has been 
consolidated in these countries since 2010. Despite this, the great volatility recorded in the 
previous period actually has repercussions on higher forecast errors for these countries for 
both genders as shown in Figs. 9–10, which illustrate the values of the error measures on 
the single population for females and males, respectively.

In Table 6, we show the average RMSE and MAE values, by cluster, of both the one-
step-ahead and two-step-ahead forecasts. On average one-step-ahead forecast outperforms 
the two-step-ahead prediction in all the clusters (both for males and females).

Figures 11 and 12 displays the boxplots of the distribution of the performance meas-
ures for females and males, respectively.

The two-step-ahead prediction interquartile range is larger than one of the one-step-ahead 
forecasts, consistent with the errors reported in Table 6. This is especially true for the male 
cluster 3, while for the other two clusters this quantity is comparable across the two forecast-
ing horizons. For females, the cluster 3 interquartile range is the lowest for both forecasting 

Fig. 3  Out-of-sample results for 
cluster 1, females. Observed 
values (solid line), one-step-
ahead forecast (dotted line), and 
two-step-ahead (dash-dotted line)

Fig. 4  Out-of-sample results for cluster 2, females. Observed values (solid line), one-step-ahead forecast 
(dotted line), and two-step-ahead (dash-dotted line)



S201Multi‑country clustering‑based forecasting of healthy life…

1 3

horizons. On average in all box plots, we observe larger upper-whiskers compared with the 
lower ones suggesting higher asymmetries for larger values of the forecast distributions.

We apply the DM test for comparing the accuracy of forecast performance between 1-step 
ahead, 2-step ahead and 5-step ahead forecasts. The results of the DM test are reported in 
Table 7. When the null hypothesis is accepted at the certain level of significance, the differ-
ences between the two models compared are significant and the forecasting accuracy of first 
model is higher than that of the second model. Therefore, from Table 7, we observe that the 
accuracy of 1-step-ahead forecasts is always better than the accuracy of the other two mod-
els, and that 2-step-ahead forecasts are more accurate than 5-step-ahead ones.

Fig. 5  Out-of-sample results for cluster 3, females. Observed values (solid line), one-step-ahead forecast 
(dotted line), and two-step-ahead (dash-dotted line)

Fig. 6  Out-of-sample results for cluster 1, males. Observed values (solid line), one-step-ahead forecast 
(dotted line), and two-step-ahead (dash-dotted line)
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5  Discussion

While life expectancy is an essential indicator for pension and health care systems to 
plan health spending to manage disease events that occur as the population ages, HLE is 
also an important measure to plan health care costs to prevent the onset of diseases. If the 
first indicator necessarily leads to considerations of coexistence between the lengthening 

Fig. 7  Out-of-sample results for cluster 2, males. Observed values (solid line), one-step-ahead forecast 
(dotted line), and two-step-ahead (dash-dotted line)

Fig. 8  Out-of-sample results for cluster 3, males. Observed values (solid line), one-step-ahead forecast 
(dotted line), and two-step-ahead (dash-dotted line)
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of average life and morbidity, the second focuses on the years of life lived in full health. 
A choice of economic and social planning is thus posed: there is a trade-off between the 
expenditure destined to improve healthy life expectancy and that necessary to manage 
morbidity in senescence. Correct management of the former can have reductive effects 
on the latter.

In this work, we have focused on healthy life expectancy and have proposed a com-
bined model based on functional clustering and multivariate time series forecasting to 
offer an overall picture of the evolution of life expectancy on a global level and coher-
ently depict the country-specific life expectancy based on the cluster mortality profiles 
analyzing its possible future evolution. As regards the cluster methodology, numerous 
insights can be gathered from recent literature contributions. Since Mixture Model-
based clustering, usually applied to multidimensional data, has become a popular 
approach in many data analysis problems, both for its good statistical properties and 
for the simplicity of implementation of the Expectation–Maximization algorithm, our 
future research will involve the development of a framework for dealing with mortal-
ity data time series which combines function data analysis and mixture models, where 
each cluster will be described by a regression in which the polynomial coefficients vary 
according to a discrete hidden process. Regarding the modeling and forecasting, as in 
the classical longevity approach, we have followed the assumption according to which 
the extrapolation of past trends of healthy life expectancy can provide accurate forecast-
ing. Despite the simplicity of the forecasting model, the performance measures showed 
satisfactory accuracy results. Future proposals may refer to model flexibility, assuming 
forecasting also conditionally on a cluster latent variable. This would lead to a mixture 
of a random walk-with-drift model, thus embedding the two steps in a one-stage estima-
tion as in Fraley and Raftery (2002) Moreover, the valuable contribution of this work 
can be framed in the 2030 Agenda for the achievement of Sustainable Goal n. 3 “Good 
Health and Well Being”, under which countries are required to obtain universal health 
coverage, access to essential health services of quality, and accessible to all to pursue 
the improvement of healthy living conditions globally. Starting from the updated data 
that will be available in the next future, further research will be able to monitor the 
degree of satisfaction of the Sustainable Goal leveraging the analysis outlined in this 
work on the healthy life expectancy.

Table 6  Average RMSE and 
MAE values by cluster, years 
2010–2019. One-step-ahead and 
two-step-ahead forecasts

Cluster Model Males Females

RMSE MAE RMSE MAE

1 One-step-ahead 0.13 0.11 0.35 0.24
Two-step-ahead 0.20 0.27 0.42 0.33
Five-step-ahead 0.29 0.34 0.77 0.62

2 One-step-ahead 0.47 0.25 0.09 0.08
Ttwo-step-ahead 0.57 0.48 0.14 0.11
Five-step-ahead 1.40 1.17 0.20 0.25

3 One-step-ahead 0.13 0.11 0.12 0.10
Two-step-ahead 0.19 0.26 0.18 0.14
Five-step-ahead 0.29 0.41 0.27 0.35
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6  Conclusions

Although the demographic literature is rich in contributions on the analysis and forecasting 
of life expectancy, only recently has attention been paid to the HLE indicator, focusing on 
the descriptive analysis of the variable rather than on the forecast. The proposed work tries 
to help bridge this gap by extending the predictive analysis in a multi-population perspec-
tive to obtain more accurate information by exploiting the similarities between countries 
that have shown similar trends. Our paper thus opens the way to a line of research with 
interesting practical implications, which can act as a guide both for governments, grappling 
with public spending, and for private operators, such as insurers and pension funds, which 
aim to grasp the challenges of the market of health and life insurance policies.

Appendix A: Optimal number of clusters

See Figs. 13, 14, 15 and 16.

Table 7  DM test by cluster, gender, and the forecast horizon h 

Evaluation period 2010–2019. Asterisks ∗∗∗ and ∗∗ indicate two-side significance at 1% and 5% level, 
respectively

Cluster r-step-ahead Males Females

models’ comparison h = 1 h = 2 h = 5 h = 1 h = 2 h = 5

1 1-step vs. 2-step −4.75∗∗∗ −3.36∗∗∗ – −2.37∗∗ −2.27∗∗ –
1-step vs 5-step −5.52∗∗∗ – −2.41∗∗∗ −4.39∗∗∗ – −2.59∗∗∗

2-step vs. 5-step – −3.67∗∗∗ −2.29∗∗ – −2.69∗∗∗ −2.28∗∗

2 1-step vs. 2-step −2.06∗∗ −2.03∗∗ – −5.21∗∗∗ −3.89∗∗∗ –
1-step vs. 5-step −6.03∗∗∗ – −3.84∗∗∗ −6.51∗∗∗ – −3.08∗∗∗

2-step vs. 5-step – −4.86∗∗∗ −3.47∗∗∗ – −4.76∗∗∗ −2.97∗∗∗

3 1-step vs. 2-step −4.41∗∗∗ −3.37∗∗∗ – −3.30∗∗∗ −2.96∗∗∗ –
1-step vs. 5-step −5.11∗∗∗ – −2.34∗∗ −6.16∗∗∗ – −2.49∗∗∗

2-step vs. 5-step – −3.37∗∗∗ −2.22∗∗ – −3.78∗∗∗ −2.38∗∗∗

Fig. 13  Silhouette Females
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Fig. 14  Silhouette Males

Fig. 15  Elbow Female

Fig. 16  Elbow Males
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Appendix B: Five‑step‑ahead forecast

See Figs. 17, 18, 19, 20, 21 and 22.

Fig. 17  Out-of-sample results for 
cluster 1, females. Observed val-
ues (solid line), five-step-ahead 
forecast (dotted line)

Fig. 18  Out-of-sample results for cluster 2, females. Observed values (solid line), five-step-ahead forecast 
(dotted line)
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Fig. 19  Out-of-sample results for cluster 3, females. Observed values (solid line), five-step-ahead forecast 
(dotted line)

Fig. 20  Out-of-sample results for cluster 1, males. Observed values (solid line), five-step-ahead forecast 
(dotted line)
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