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Abstract
We provide a novel approach for analysing the financial resilience of the insurance sector 
during coronavirus pandemic. To this end, we build temporal directed and weighted net-
works where the weights on the arcs take into account the tail dependence between couple 
of firms. To assess the resilience of the network, we provide a new global indicator, aimed 
at capturing the impact on the clustering coefficient of a shock affecting in turn each firm 
and diffusing in the network via shortest paths. A local measure of resilience is also pro-
vided by quantifying the contribution of each firm to the global indicator. In this way, we 
are able to detect most critical firms in the system. A numerical application has been devel-
oped in order to test the proposed approach. The results show that the proposed resilience 
measure appears able to detect main periods of financial crises. The first wave of COVID-
19 pandemic results as a extreme phenomenon in the market and the lowest resilience is 
associated to the period in which COVID-19 has been declared pandemic.

Keywords COVID-19 · Insurance market · Resilience · Complex networks · Clustering 
Coefficient

JEL classification G01 · D85 · G32 · G28

1 Introduction

Over last years, an increasing attention to the concept of financial resilience by both regula-
tors and academics has been paid. The New Economics Foundation defined it as a tool for 
dealing with long-term change and short-term shocks (Berry et al. 2015). In general, it is 
based on assessing the ability of a system to absorb shocks and it could be a very relevant 
task. Indeed, large fluctuations of a complex system could be generated by a very small 
impulse occurring in one of its components and the consequences of such instability might 
be devastating. In financial sector, particular attention has been devoted to strengthening 
the resilience by absorbing and adapting to shocks and disruptions.
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A recent example of a purely exogenous shock is represented by the pandemic event. 
As well-known, on December 2019, the outbreak of coronavirus (COVID-19) started in 
China and spread to countries and territories around the globe. On March 11, 2020, the 
World Health Organization (WHO) declared it a global pandemic. This pandemic has been 
not only the most serious global health crisis since the Spanish Flu, but according to the 
Bank of International Settlements it was likely to be one of the most economically costly 
pandemics in recent history due to the unprecedented and synchronised global sudden stop 
in economic activity induced by containment measures.

Many analysts and researchers have also linked the drop in global financial markets 
with the ongoing COVID-19 pandemic that leads to volatile and negative aggregate market 
reactions (see, e.g., Nikiforos 2020 and Ullah 2022). In this context, the analysis of the 
reactions and the resilience of the financial sector including stock markets, banking and 
insurance appears as a promising area of research (see, e.g., Ceron 2020 Goodell 2020 and 
So 2021).

While very few attempts have been made in this area (see Ashraf 2020; Zhang et  al. 
2020), resilience has been widely studied in complex network. Indeed, starting from 
(Albert et al. 2000), resilience has been theoretically analysed (Gao et al. 2000) and then 
extended by considering the effects of different vertex or link removal strategies on the 
network structure (see Clemente and Cornaro 2020; Ferraro and Iovanella 2017 and Iyer 
et al. 2013) or as a function of vertices’ mixing preferences (D’Agostino et al. 2011). Par-
ticular relevance in the assessment of the resilience of a financial network is related to the 
measurement of the effects of a shock propagation over a system as a transition from dif-
ferent firms through their connecting links. Many analyses of financial resilience have been 
made considering dynamic evolution (Peron et al. 2012), incomplete information (Cinelli 
et al. 2021), risk management (Nagurney and Ke 2006), the diffusion of contagion and its 
relationship with the network structure (Elliott et al. 2013; Glasserman and Young 2016) 
and the proposal of resilience measure based on shocks’ propagation (Cerqueti et al. 2022). 
In this framework we aim at evaluating the financial resilience of the insurance market by 
proposing a new measure of resilience applied to temporal directed and weighted networks. 
In particular, the proposed measure is based on the assessment of the effects on the clus-
tering coefficient, a topological indicator widely used in the context of systemic risk (see, 
e.g., Bongini et al. 2018; Cerqueti et al. 2020; Minoiu and Reyes 2013; Tabak et al. 2014), 
of the shocks occurring in one of the vertices and on its propagation over the links of the 
network. As in Cerqueti et al. (2019), we assume that the propagation of a shock from a 
vertex to another one occurs over the shortest paths and that the propagation of the shock 
is opportunely rescaled as the distance from the shocked nodes increases. In this way, in 
each time period, we obtain both a global resilience measure for the whole network and a 
local one for each insurance company. To this end, we can both provide an indication of the 
resilience of the whole system and a ranking of the more risky firms in the market. This 
second aspect could be also important for the identification of global systemically impor-
tant insurers (G-SIIs) (see IAIS 2013a and b for details).

Hence, the contribution of this paper to the existent literature is twofold. Firstly, few 
attention has been paid in the literature to the measurement of the resilience of the insur-
ance sector and to the identification of most relevant insurers. Indeed, a model for evaluat-
ing systemic risk of different financial firms has been provided in Acharya et al. (2016). 
Systemic risk for the U.S and the European insurance sectors has been instead explored in 
Bertin and Sottocornola (2015) and (Cummins and Weiss (2014). The importance related 
to the identification of G-SIIs has been stressed in Clemente and Cornaro (2020, 2022); 
Denkowska and Wanat (2020) and Guiné 2014), focused on the assessment of relevant 
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insurance companies. To the best of our knowledge, this work considers for the first time 
the financial resilience of the insurance market during COVID-19 pandemic by means of a 
network approach. Indeed, some preliminary analyses of the impact of COVID-19 on the 
insurance sector have been developed in Ramanasany (2020) and (Puławska 2021) using 
different approaches.

Secondly, the proposed resilience measure shows some advantages with respect to the 
existing ones. In the context of complex network, the most popular resilience measures 
evaluate the reaction of the overall system to an extreme shock based on vertex or edge 
removals (see Albert et  al. 2000). Here, as in Cerqueti et  al. (2022) and (Cerqueti et  al. 
2019) we analyse the direct reaction of the single firms to the shocks propagating from 
other firms. With respect to (Cerqueti et al. 2022) and (Cerqueti et al. 2019), we calibrate 
the weights in the network using market-based risk measures (as in Clemente et al. (2020)) 
and we assess the impact of the shock on the clustering coefficient, an indicator proved to 
be effective in measuring systemic risk in financial sector. The advantage is to be able to 
provide both a local and global measure of resilience.

An empirical analyses based on a very large set of insurance companies have been 
developed. The results show that networks’ weights appear to be strictly related to the 
financial condition of the market. We observe indeed larger weights in periods of stressed 
conditions due to a higher tail dependence between firms’ returns. Additionally, the pro-
posed resilience measure appears able to detect main periods of financial crises.

The first wave of COVID-19 pandemic results as a extreme phenomenon in the market, 
characterized by a very dense graph, higher weights and lower values of resilience. In par-
ticular, the methodology associates the lowest value of global resilience to the period in 
which COVID-19 has been declared pandemic (i.e. March 2020). These results are in line 
with other works in the literature that explored the same topic on different perspective. For 
instance, Fontana (2021) shows in March the fastest fall in global stock markets due to the 
impact of Covid-19 announcements on the financial market. Furthermore, the local meas-
ure of resilience shows that insurers, classified as G-SIIs, appear as key risk spreaders.

The paper is organized as follows. Preliminaries and notations are introduced in Sect. 2. 
In Sect. 3 we describe the methodology for building the network and we introduce the pro-
posed measure of resilience. In particular, in Sect. 3.1 we model the insurance market in 
different time periods using temporal directed weighted networks. In Sect. 3.2 we provide 
the methodology used for evaluating the resilience of the system and a local measure for 
identifying riskier firms. In Sect. 4 we describe how the sample of insurance companies 
has been selected over the period from 2000 to June 2022 and we present how we con-
struct the network in each time period. Then, results are presented and discussed. Section 5 
concludes.

2  Preliminary definitions and notations

We briefly introduce the mathematical definitions used in the paper (for further details we 
refer to Bang-Jensen and Gutin 2008 and Harary 1969). A graph G = (V ,E) is identified 
by a set V of n vertices and a set E of m unordered edges. Vertices i and j are adjacent (or 
neighbours) if ei,j ∈ E.

A path between two vertices i and j is a sequence of distinct vertices and edges between 
i and j. In this case, i and j are connected. The graph G is connected if every pair of vertices 
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is connected. A shortest path between two vertices is a path with the minimum number of 
edges.

The distance di,j is the length of any shortest path between i and j. If i and j are not 
connected, then di,j = ∞ . The diameter diam(G) of a connected graph is the length of any 
longest shortest path.

A graph G is weighted when a positive real number wi,j > 0 is associated with the edge 
ei,j . We set wi,j = 0 if nodes i and j are not adjacent. For weighted graphs, a shortest path is 
a path with the minimum sum of edge weights. A weighted distance dW

i,j
 can be also defined 

as the sum of weights of the shortest path. As for the unweighted case, if i and j are not 
connected, then dW

i,j
= ∞.

The adjacency relationships between vertices of G and the weights on the edges are 
described by a nonnegative, real n-square matrix W (the weighted adjacency matrix), with 
entries wi,j.

A directed graph D = (V ,E) is obtained from G by adding to its edges a direction and G 
is the underlying graph of D. In this case, the links connecting pairs of vertices are called 
arcs (or directed edges). Also in this case, a weight wi,j > 0 is associated with the arc ei,j 
and, in general, the matrix W is not symmetric. In fact, since two distinct arcs between a 
pair of vertices can exist, both wi,j and wji can be positive with wi,j ≠ wji.

A directed path from i to j is a sequence of distinct vertices and arcs from i to j such 
that every arc has the same direction; in this case, we say that j is reachable from i and we 
define this directed path as the out-path of the node i. The distance �⃗di,j from i to j is the 
length of the shortest out-path if any, otherwise �⃗di,j = ∞.

Since directed paths from j to i can also exist, we denote with �⃖di,j the length of the short-
est in-path of the node i based on the directed path from j to i. If i is not reachable from j, 
then �⃖di,j = ∞.

D is strongly connected if every two vertices are mutually reachable. D is instead weakly 
connected if the underlying graph G is connected. Weighted directed distances �⃖dW

i,j
 and �⃗dW

i,j
 

can be also defined as the sum of the weights of the weighted directed shortest paths.
In addition, we define the following sets in the directed graph:

– ��⃗Ni(l) = {j ∈ V| �⃗d(i, j) = l} , for each l = 1,… , diam(G);
– �⃖�Ni(l) = {j ∈ V| �⃖d(i, j) = l} , for each l = 1,… , diam(G).

The set ��⃗Ni(l) collects the vertices j that can be reached from i with a directed path of length 
l. Vice versa the set �⃖�Ni(l) considers the vertices j from which i can be reached with a 
directed path of length l.

3  Insurance network and financial resilience

We provide in this section the approach for describing the insurance market as a complex 
network. In particular, we construct temporal directed and weighted networks where, in 
each time period, insurance companies are vertices while the weights of the arcs measure 
the impact on the tail of the distributions of returns between insurers in the same time 
period.
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In particular, in Sect. 3.1, we describe how the network is built and how the weights 
of the arcs are calibrated using market-based risk measures. In Sect. 3.2, we provide the 
proposed methodology used for assessing both the resilience of the network and the most 
critical firms.

3.1  Risk network of the insurance market

We are interested in representing the insurance market as a network in each time period. In 
particular, we consider a set of n insurance companies and we split the whole time period 
in different non-overlapping windows t = 1, ..,T  of the same length.

In each window t, we denote the random variable (r.v.) equity returns of the insurance 
company i as Xt

i
 and the observed returns as xt

i
 . Therefore, for each window, we collect the 

realizations of this random variable (i.e. the empirical returns of each listed insurance com-
pany) and we compute a set of measures in order to build a directed and weighted network.

Formally, we consider a set of directed and weighted networks Dt = (Vt,Et) where Vt 
is the set of nt vertices ( nt ≤ n ), represented by the insurance companies for which returns 
are available in the window t. Et ⊆ Vt × Vt is the set of mt arcs in period t. We associate to 
each arc et

i,j
∈ Et with i ≠ j , that connects adjacent nodes, a positive weight wt

i,j
∈ (0, 1] . 

For each network Dt , we represent the adjacency relations between pairs of nodes by a nt
-square symmetric matrix At (the adjacency matrix) with entries at

i,j
= 1 if et

i,j
∈ Et , 0 oth-

erwise. Similarly, the real nt-square matrix Wt with entries wt
i,j

 is the weighted adjacency 
matrix of the network Dt in the window t.

A key aspect is represented by the procedure for calibrating the weights. To this end, 
we adapt to our context the approaches provided in Clemente and Cornaro (2022) and Cle-
mente et al. (2020) that allow to consider the “tail effect ”between institutions by means 
of standard market-based measures of systemic risk. These approaches, based on equity 
returns, also have common points with correlation networks that are applied to the finan-
cial sector and their evolution (e.g. Billio et al. 2012; Kenett et al. 2012 and Onnela et al. 
2003).

Therefore, we set the weights in each period t as follows:

with rt
j|i =

ESt
j
−MESt

j|i
ESt

j
+E(Xt

j
)
.

In formula (1), the term rt
j|i considers the impact of the distress of an insurer i on the 

insurer j in the same window t. In particular, the numerator is the difference between the 
expected shortfall of the firm ( ESt

j
 ) and the marginal expected shortfall ( MESt

j|i ), given by 
ESt

j
−MESt

j|i = −E(Xt
j
|Xt

j
≤ VaRt

j
) + E(Xt

j
|Xt

i
≤ VaRt

i
) , where VaRt

i
 is the Value at Risk1 of 

the company i at time t. Notice that this difference is always non-negative and values close 
to zero indicate a stronger tail impact of i on j. Indeed, it could be interpreted as a proxy of 

(1)wt
i,j
=

{
1 − rt

j|i if i ≠ j and E(Xt
j
) ≥ −MESt

j|i
0 otherwise

.

1 The VaR of a generic firm j at a confidence level 1 − � is here defined as (see, e.g., Artzner et al. 1999):

where FXt
j
(xt

j
) is the cumulative distribution function of Xt

j
 . For a general definition of MES see Acharya 

et al. (2017). Please notice that we will neglect the reference to the confidence level (1 − �) in the text.

(2)VaRt
j
(1 − 𝛼) = inf {xt

j
∶ FXt

j
(xt

j
) > 𝛼}
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the risk of the insurer j that is not driven by the insurer i. Additionally, to assure compara-
bility among institutions, we scale this quantity by a measure of the whole individual risk 
of the insurer j, given by the difference between the unconditional expected return E(Xt

j
) 

and the tail expected return ESt
j
.

Hence the term rt
j|i is always non-negative since both the numerator and the denominator 

are non-negative. Additionally, when the inequality E(Xt
j
) < −MESt

j|i is satisfied, we have a 
positive reaction of j to the distress of the company i. Since we focus on risk propagation, 
we neglect these positive impacts assuring that the ratio is bounded between 0 and 1.

Therefore, since rt
j|i measures the portion of this risk of j that is not due to i, we define 

the weights wt
i,j

 as 1 − rt
j|i to reflect the impact of the insurer i on insurer j (see formula (1)).

A higher value of wt
i,j

 means a higher impact between institutions or, in other words, it 
corresponds to a lower portion of the risk of j not being driven by the company i. In other 
words, when wt

i,j
 is close to one, a high level of dependence between i and j is observed. 

We have indeed that the average returns on the left tail of the distribution of j are approxi-
matively the same when either the returns of i or the returns of j are lower than the corre-
spondent Value at Risks.

3.2  Assessing the relevance of insurance firms

In this section we introduce the measure of resilience that is used in order to analyse the 
network in different time periods.

We start considering a topological indicator, the clustering coefficient, that has been 
widely applied to study systemic risk and to identify periods of financial turbulence (see, 
e.g., Cerqueti et al. 2020; Minoiu and Reyes 2013 and Tabak et al. 2014). Since we deal 
with a directed graph, different patterns have to be considered in the computation of the 
coefficient (see Clemente and Grassi 2018 and Fagiolo 2007). However, in Tabak et  al. 
(2014), the authors argue that higher clustering of the “in ”and “out”types may reflect 
higher systemic risk because the failure of the focal vertex in a triangle can propagate the 
risk to its neighbours, and these, in turn, can be unable to honour their own obligations. 
The implications of the other types of clustering (cycle and middleman) are more unclear 
in this context. Also the authors in Cerqueti et al. (2021) focus on the in and out coeffi-
cients to provide two novel measures of systemic risk.

Since we are interested in measuring the effect on the network of a shock propagation, 
we consider here the out-clustering coefficient provided in Fagiolo (2007). For a generic 
node i and considering the weighted and directed network Dt , we recall here the definition:

where Ŵt =
[
Wt

] 1

3 is the matrix whose entries are the 3rd roots of wt
i,j

 , Ŵ
T

t
 is the transpose 

of Ŵt and dout,t
i

=
∑

j≠i a
t
i,j

 is the out-degree of the vertex i in the network Dt . In what fol-
lows, we use the convention Cout,t

i
= 0 when dout,t

i
= 0 or dout,t

i
= 1.

The overall out-clustering coefficient for the whole network Cout,t is obtained as the 
average of the out-coefficients Cout,t

i
 for all the vertices.

(3)C
out,t

i
=

(
Ŵ

2

t
Ŵ

T

t

)
ii

d
out,t

i

(
d
out,t

i
− 1

) ,
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We now define the shocks, which are here modelled as local events occurring to a firm 
and that can propagate to other firms in the network. The entity of the shock plays a key 
role in the assessment of the resilience of the network and it is here defined by a posi-
tive parameter � ∈ (0,∞) . At a specific time period t, the shock starts from a given ver-
tex i ∈ Vt and propagates over the shortest paths with initial vertex i. It means that the 
firm becomes infected and the risk is propagated to the other firms that are connected to i 
through a directed shortest path. It is noteworthy that we assume that the vertex i does not 
react to subsequent solicitations given by the same shock. This assumption is in line with 
the approach provided in Cerqueti et al. (2022).

To model the propagation, we assume that in a period t the effect of the shock on a 
vertex i affects the network producing a new weighted matrix W̃t(i) , whose generic entries 
w̃t
h,k
(i) are defined as follows:

where l⃗i,h,i is the length of the shortest directed cycle starting from i and ending in i and 
where the last arc is et

h,i
 . In case this cycle is not present, we set l⃗i,h,i = ∞ . The length of the 

shortest directed cycle can be obtained as follows:

It is noteworthy that the proposed approach based on formula (4) assumes that the shock 
affecting the firm i propagates in the network via shortest paths. Therefore, the effect on the 
other nodes depends both on the entity of the shock � and on the distance with the infected 
firm. We have indeed that out-neighbours of the vertex i (i.e. vertices j ∈ ��⃗Ni(1) ) are fully 
affected by the shock receiving an increase of the weight of the arc et

i,j
 equal to (1 + �) . Far-

thest firms (i.e. vertices j ∈ ��⃗Ni(l) with l > 1 ) have instead a lower effect due to the presence 
of the reduction factor 1

d⃗i,j

.

Given the new matrix W̃t(i) , the out-clustering coefficient is computed for each node 
j ∈ Vt via formula (3). We denote the average value with respect to all the vertices as 
C̃out,t(i) . This coefficient represents the average out-clustering of all the vertices computed 
on the network obtained by applying a shock to a vertex i and modelling the related propa-
gation through formula (4).

Therefore, we introduce the following measure of resilience:

It is worth pointing out that St
i
∈ [0, 1] . We have indeed that formula (4) could lead to 

higher weights in the network but does not introduce new arcs. The out-clustering coef-
ficient defined in formula (3) considers at numerator the geometric mean of the weights 
involved in a out-triangle. The number of potential triangle at the denominator of the 
formula remains instead unchanged. Therefore, a higher value of weights could lead to a 
higher coefficient, when these weights are involved in a triangle.

(4)w̃t
h,k
(i) =

⎧
⎪⎪⎨⎪⎪⎩

min

�
wt
h,k

⋅

�
1 +

𝜆

���⃗di,k

�
, 1

�
if h, i ≠ k and k ∈ ��⃗Ni(l) for at least one l

min

�
wt
h,i
⋅

�
1 +

𝜆

l⃗i,h,i

�
, 1

�
if h ≠ k, k = i and l⃗i,h,i is finite

0 otherwise

(5)l⃗i,h,i =

{
�⃗di,h + 1 if and h ∈ ��⃗Ni(l) for at least one l and et

h,i
∈ Et

∞ otherwise
.

(6)St
i
= C̃out,t(i) − Cout,t.
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Additionally, it is noteworthy that St
i
 measures the systemic effect on the network due 

to a shock affecting a vertex i and its possible propagation in the network to other vertices. 
Given a specific choice of � , lower is St

i
 and more resilient is the network. Therefore, for a 

time period t the procedure is repeated assuming that the shock will affect in turn each ver-
tex i ∈ Vt obtaining a set St = [St

i
]i=1,...,nt.

Each element of the vector can be interpreted as a local measure of resilience, assessing 
the effect on the system of shocks affecting in turn each vertex at time t. Indeed, the analy-
sis of the heterogeneity between vertices can give information about the most critical firms 
in the network. The vertex with the higher value of St

i
 can be interpreted as the riskiest one 

for the network in case a shock occurs. At the same time, a global measure of resilience is 
provided by synthesizing the whole distribution. In particular, we introduce Rt =

nt−
∑nt

i=1
St
i

nt
 

as a global resilience measure. Notice that Rt ∈ [0, 1] and a higher value means a higher 
resilience of the network at time t. In the extreme case in which St

i
= 0 ∀i , we have Rt = 1 . 

Indeed, in this case, each vertex, when subject to a shock, has no effect on the clustering 
coefficient (i.e. C̃out,t(i) = Cout,t ∀i ) and therefore, the network is assumed to be fully 
resilient.

4  Numerical application

4.1  Network description and preliminary results

The proposed approach has been applied to a very large set of insurance companies in the 
world. In particular, 348 listed insurance companies have been considered. The companies 
that belong to the sample are listed in Table 1 in Appendix. For each firm, equity returns 
have been collected2 on daily basis from the beginning of January 2000 to the end of June 
2022.

Returns have been split in non-overlapping windows of 2 months and have been used 
to construct a directed time-varying weighted network in each period as described in 
Sect. 3.1. To compute weights as defined in formula (1), VaR, ES and MES at the 95% 
confidence level have been estimated for each firm. Alternative methods can be used to 
estimate these risk measures, we applied historical simulations in this application3.

For each window, we initially built a sequence of directed and weighted networks 
Dt = (Vt,Et) (with t = 1, ..., 135 ), where insurance companies are vertices and the weights 
of the arcs measure the directed MES-based impact between insurers. It is worth pointing 
out that the number of assets can vary over time, since some of the firms have no informa-
tion available for specific time periods. Therefore, in each window, to ensure a robust esti-
mation of weights, we considered only insurers with a number of observations higher than 
90% of trading days.

Hence, we consider 135 different networks, that, on average, have more than 230 verti-
ces and more than 36,000 arcs. But in several windows, the networks are composed by all 
the firms with more than 75,000 edges. We plot in Fig. 1 the density of the networks over 

2 The equity returns and the companies have been collected from Yahoo finance only for firms for which 
that information was available in that period. We take into account all firms that are classified in the insur-
ance sector.
3 Risk measures are here computed under the real-world probability measure.
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time. In particular, for each graph Dt we computed the ratio between the observed arcs and 
the maximum number of arcs that the graph can contain. We have on average networks 
very dense (the average density is indeed equal to 0.62) that confirms a significant depend-
ence between firms. It is also interesting that the density increases in periods of financial 
turbulence due to a higher tail dependence in the returns’ distributions. A relevant peak is 
indeed observed in 2008. This is mainly due to a very dense subgraph characterized by a 
subset of insurers (mainly U.S. firms) highly correlated and with higher values of ES. It is 
also noticeable the effect of the first wave of COVID-19 pandemic. We have indeed that the 
density has a relevant increase in the first bimester of 2020 moving from 0.57 at the end of 
2019 to 0.75. The highest peak is reached in March-April 2020 with a density of 0.80 also 
higher than the values observed during the financial crises.

To better focus on this behaviour we start studying the patterns of the returns and of the 
weights. Main elements that are involved in the assessment of rj|i are displayed in Figures 2 
and 3, where the distributions of average returns and Expected Shortfall are plotted over 
time.

In Fig.  2 the fluctuations of average returns of the companies in the sample can be 
noticed. As expected, the average returns are negative in the second semester 2007 and in 
2008 because of the financial crisis. Also a higher volatility among firms is observed in the 
same periods. A slightly negative expected return is also observed in 2011 due to the sov-
ereign debt crisis, that mainly affected the European firms in the sample. Furthermore, it is 
evident the impact of coronavirus on the financial market in the first semester of 2020 with 

Fig. 1  Density of the networks over time. On the x-axis, we use the notation “Year-Bimester”. For instance 
“2000 - 6” means the six bimester of 2000 (i.e. November–December 2000)
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Fig. 2  Distributions of average returns at various time periods. On the x axis, we use the notation “Year-
Bimester”. For instance “2000 - 6” means the six bimester of 2000 (i.e. November–December 2000)

Fig. 3  Distributions of Expected Shortfall at various time periods. On the x axis, we use the notation “Year-
Bimester”. For instance “2000 - 6” means the six bimester of 2000 (i.e. November–December 2000)
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an average return close to the values observed in 2008 and with a lower variability between 
firms due to a common behaviour in the period.

According to the ES distribution (Fig. 3), the 2007-2008 crisis is outstanding in terms 
of size and frequency of the extreme daily market losses. In the last months of 2007 and in 
the first semester of 2008, the median of this distribution reaches values close to 6%, higher 
than the average median in the whole period equal to 4.5%.

It is noticeable again the effect of the first wave of COVID-19 on the market with a 
higher turmoil in the first semester of 2020, when international investors start getting wor-
ried about the coronavirus spread outside of China and its impact on the global economy. 
For instance, between February and April 2020, it has been observed the fastest fall in 
global stock markets since 1929, identified by multiple daily drops (see, e.g., Fontana 2021 
and Wagner 2020). This effect is fully reflected by the ES distributions. We have indeed 
that the median value at the end of 2019 is equal to 3.9%, while in the first and second 
bimesters of 2020 it increases to 5.7 and 11.6% respectively. The median goes down to 6% 
in May-June 2020 and then returns to quiet values in the second semester of the same year.

As described in previous Section, average returns and risk measures represent the ele-
ments used for calibrating the weights of the arcs in the network. To this end, we display in 
Fig. 4 the distributions of arcs’ weights over time. Since weights wt

i,j
 measure the impact of 

the institution i on the insurers j at time t, distributions in Fig. 4 fully capture the increased 
distress that already affected the market in 2007 and reached a peak in 2008. Another 
important effect can be detected in 2011 during the sovereign crisis. We have indeed an 
average increase in the weights because MES is growing faster than ES.

A specific focus on the weights distributions during the first and second wave of 
COVID-19 pandemic has been reported in Fig. 5. In particular, it is noticeable the signifi-
cant increase in the average value in the first and second bimester of 2020. In the period 
March-April 2020, the average weights are very close to 0.5, with the highest value in the 
whole period. Also in this case, we have a similar pattern between firms with a lower vola-
tility of the distribution with respect to periods of financial crisis (e.g., 2007 and 2008). 

Fig. 4  Distributions of arc weights at different time periods, i.e. for the networks D
t
 previously introduced
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These results are mainly due to negative performances and significant tail dependences 
between firms. They are consistent with the findings in Zhang et  al. (2020) that showed 
a significant increase in returns correlation in March 2020 when a pandemic has been 
announced by the World Health Organization.

Fig. 5  Comparison of distributions of arcs weights in 2008 and 2020

Fig. 6  Average clustering coefficients of the out, in and total type (see Fagiolo 2007 for details) over time
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4.2  Financial resilience of insurance network

As described in Sect. 3.2, we now focus on the financial resilience of the insurance network 
during different periods. In particular, we start reporting in Fig. 6, the pattern of the clus-
tering coefficients over time. As said before, this indicator has been widely used in the con-
text of systemic risk. To this end, as in Holló et al. (2012) and Minoiu and Reyes (2013), 
we check if peaks can be plausibly associated with well-known crisis events. We observe 
that the coefficients’ pattern evolves consistently with the underlying financial events. They 
tend to be lower in calm periods and rise before crises. Sharper spikes occur around highly 
popular events that caused severe stress in the global financial system. In particular, the 
2008 financial crisis and the 2011 sovereign debt crisis stand out as unusually large per-
turbations to the network. Although based on a different dataset, these findings are in line 
with (Clemente et al. 2020). Finally, it is really noticeable the highest peak in the second 
bimester of 2020 during the fist wave of COVID-19 pandemic. As noticed before in Figs. 1 
and 5, both the weights and the density of the network reach the highest values in that win-
dow providing a very high level of interconnectedness.

We also notice that to the same periods is associated, on average, a lower level of resil-
ience of the firms. As shown in Fig. 7, the median value of St

i
 is higher than 6% between 

May and December 2008, in July-August 2011 and during the first semester of 2020. In 
particular, when the COVID-19 has been declared pandemic, the highest median value, 
equal to 8% , has been reached. Although, in general, the insurance market has proved to 

Fig. 7  Distributions of St
i
 over time computed assuming � = 0.3



S164 A. Cornaro 

1 3

be resilient during the first wave of COVID-19 pandemic, this result shows that the effect 
of a shock propagation could undermine the stability of the system. It is also interesting to 
note that in this period a lower volatility between firms is observed with respect to financial 
crises, but, at the same time, the lowest skewness (equal to -1.72) has been obtained. This 
patten can be motivated with a general common behaviour between firms and the presence 
of very few insurers that reacted in a different way with respect to the market.

In terms of global resilience, Fig. 8 shows the pattern of Rt over time4. The resilience 
measure proves to be effective in capturing periods of financial crises showing signifi-
cant reductions both in 2008 and 2011. Again, the most considerable effect is observed 
in March-April 2020 during the first phase of COVID-19 when the panic reaction of the 
global financial markets was primarily expected due to the high uncertainty surrounding 
the economic shock.

We also focus on the behaviour of each firm in terms of local resilience. In particular, in 
each period we rank firms on the basis of the value of St

i
 . We display in Fig. 9 the ranking 

of the insurance companies that have been classified as G-SIIs. Since Aegon has replaced 
Generali Assicurazioni on the list in November 2015, we consider as G-SIIs all firms that 
belong to the list at any time during the period.

Since we are considering measures computed on a network whose weights depend on 
the tail dependence between equity’ returns, we can interpret firms in the top ranking as 

Fig. 8  Distributions of Rt over time computed assuming � = 0.3

4 For the sake of simplicity, we report the results only for � = 0.3 but the proposed approach has been 
tested also for alternative values of � . Most important patterns detected holds also for different values.
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the most relevant in spreading risk in the system. The methodology used by International 
Association of Insurance Supervisors (IAIS) for identifying systemic important insurers 
depends on several aspects, but the sizes of the firms and their interconnectedness with the 
system are two relevant issues. However, other elements, as global activity, asset liquida-
tion and substitutability, have been considered (see, e.g., [25] and [36]). In our analysis, 
we assess the relevance of the firm mainly on its interconnections in the system measured 
through the tail of the returns distributions. Hence, the proposed approach cannot be inter-
preted as a replacement of the methodology provided by IAIS, but more as a complement 
that focuses on a specific issue.

It is worth pointing out that insurance companies, that are classified as G-SIIs, are pre-
sent in Fig. 9 in the top ranking. The main exception is represented by Ping An Insurance, 
that, although is classified as a G-SII, belongs to very low quartiles of the distributions. 
However, the presence of Ping An Insurance in the G-SIIs list is mainly justified by its 
size5 that is not considered in our approach.

These results are in line with (Clemente and Cornaro 2022) and (Denkowska and Wanat 
2020). Although a smaller sample of firms has been considered in Denkowska and Wanat 
(2020) and different approaches have been used in Clemente and Cornaro (2022) and (Den-
kowska and Wanat 2020), a common point is represented by the use of market-based indi-
cators computed on equity returns and by the application of methodologies to catch the 

Fig. 9  Ranking based on St
i
 for G-SIIs. Rankings have been divided in four quartiles. Darker red means that 

the firm belongs to the top quartile. The blue lines highlight two key periods (June 2007–June 2008 and 
January 2020–August 2020)

5 The company has been classified as the third insurer in the world in terms of net premiums and in the top 
ten in terms of non-banking assets by AM Best in 2018.
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dependence in the tails. As in our case, the authors confirmed the relevance of several firms 
that belong to the list.

It is also interesting to note that both during the financial crises and the first wave of 
COVID-19, G-IIs behave as key firms in spreading risks.

5  Conclusions

In this paper we study the financial resilience of the insurance market with particular focus 
on the COVID-19 pandemic period. To this end, we provide a methodology based on a 
combination of market-based measures and a network approach for assessing the resilience 
of the market.

In particular, we provide a novel resilience measure for the whole network, calibrated 
considering the effect of a shock that, in turn, affects each vertex of the network and propa-
gate over shortest paths. Indeed, the proposed measure considers which is the effect of a 
shock propagation on the clustering coefficient, a topological indicator widely used in the 
field of systemic risk.

We also evaluate the contribution of each firms to the resilience providing a suitable 
tool for assessing the riskier insurance companies in the market.

The empirical analysis shows that the global resilience indicator evolves consistently 
with the main crisis events observed in the market. In particular the first wave of COVID-
19 emerges as a unusual perturbation in the network and it has been detected by the pro-
posed resilience measure.

Additionally, we find that the insurers, present in the G-SIIs list by the IAIS, are clas-
sified as relevant firms with very few exceptions. Further researches will regard the use 
of community detection approaches to investigate how insurance company tend to cluster 
togheter in different periods. This analysis should allow to identify the presence of com-
mon patterns in period of financial crises or in stressed conditions as during the COVID-19 
pandemic period.

A List of Insurance Companies in the sample

See Table 1.
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Table 1  List of insurance companies in the sample

Admiral Group plc Markel Corporation
Advance Create Co., Ltd. Marsh & McLennan Companies, Inc.
Aegon N.V. (AEG) Max Financial Services Limited
Aflac Incorporated MBIA Inc.
ageas SA/NV Medibank Private Limited
Agesa Hayat ve Emeklilik A.S. Mediolanum S.p.A.
AIA Group Limited Menora Mivtachim Holdings Ltd
AIG Mercuries Life Insurance Co., Ltd.
Aksigorta A.S. Mercury General Corporation
Al Alamiya for Cooperative Insurance Company Meritz Fire & Marine Insurance Co., Ltd.
Al Khaleej Takaful Insurance Company Q.P.S.C. MetLife
Al Rajhi Company for Cooperative Insurance Metromile, Inc.
AlAhli Takaful Company MGIC Investment Corporation
Al-Etihad Cooperative Insurance Company Midwest Holding Inc.
Alinma Tokio Marine Company Migdal Insurance and Financial Holdings Ltd.
Aljazira Takaful Taawuni Company Min Xin Holdings Limited
Alleghany Corporation Mirae Asset Life Insurance Co., Ltd.
Allianz Ayudhya Capital Public Company Limited Momentum Metropolitan Holdings Limited
Allianz SE MS &AD Insurance Group Holdings, Inc.
Alm. Brand A/S Muang Thai Insurance Public Company Limited
Amana Cooperative Insurance Company Munich.Re
Ambac Financial Group, Inc. Nam Seng Insurance Public Company Limited
American Equity Investment Life Holding Company National Western Life Group, Inc.
American Financial Group, Inc. Net Insurance S.p.A.
American National Group, Inc. New China Life Insurance Company Ltd.
AMERISAFE, Inc. NFC Holdings, Inc.
AmTrust Financial Services, Inc. nib holdings limited
Anadolu Anonim Türk Sigorta Sirketi NMI Holdings, Inc.
Anadolu Hayat Emeklilik Anonim Sirketi NN Group N.V.
Anicom Holdings, Inc. NobleOak Life Limited
Aplus Asset Advisor Co. Ltd Novus Acquisition & Development Corp.
Arabia Insurance Cooperative Company Oicintra, Inc.
Arabian Shield Cooperative Insurance Company Old Mutual Limited
Arch Capital Group Ltd. Old Republic International Corporation
Argo Group International Holdings, Ltd. Oxbridge Re Holdings Limited
Asia Financial Holdings Limited Palomar Holdings, Inc.
Aspen Insurance Holdings Limited Personal Group Holdings Plc
ASR Nederland N.V. Phoenix Group Holdings plc
Assicurazioni Generali S.p.A. (G.MI) PICC Property and Casualty Company Limited
Assurant, Inc. Ping An Insurance (Group) Company of China, Ltd.
Assured Guaranty Ltd. Power Corporation of Canada
Athene Holding Ltd. Power Financial Corporation
Atlantic American Corporation Powszechny Zaklad Ubezpieczen SA
Atlas Financial Holdings, Inc. Primerica, Inc.
Aviva Principal Financial Group, Inc.
AXA ProAssurance Corporation
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Table 1  (continued)

AXIS Capital Holdings Limited Protector Forsikring ASA
Ayalon Holdings Ltd Prudential Financial plc
Bajaj Finserv Limited Prudential.plc
Bâloise Holding AG PT Asuransi Bina Dana Arta Tbk
Bangkok Life Assurance Public Company Limited PT Asuransi Bintang Tbk
BB Seguridade Participações S.A. PT Asuransi Jasa Tania Tbk
Beazley plc PT Asuransi Jiwa Sinarmas MSIG Tbk
Berkshire Hathaway Inc. (BRK-B) PT Asuransi Kresna Mitra Tbk
Brighthouse Financial, Inc. PT Asuransi Multi Artha Guna Tbk
Broad-minded Co.,Ltd. PT Asuransi Ramayana Tbk
Brookfield Asset Management Reinsurance Partners 

Ltd.
PT Asuransi Tugu Pratama Indonesia Tbk

Bupa Arabia for Cooperative Insurance Company PT Equity Development Investment Tbk
Buruj Cooperative Insurance Company PT Lippo General Insurance Tbk
CASH.LIFE AG PT Malacca Trust Wuwungan Insurance Tbk
Cathay Financial Holding Co., Ltd. PT Maskapai Reasuransi Indonesia Tbk
Central Reinsurance Corporation PT Panin Financial Tbk
Challenger Limited PT Paninvest Tbk
Charan Insurance Public Company Limited PT Victoria Insurance Tbk
Chesnara plc Public joint-stock company Asko-Strakhovanie
China Development Financial Holding Corporation Qatar General Insurance & Reinsurance Company 

Q.P.S.C.
China Life Insurance Company Limited (LFC) Qatar Insurance Company Q.S.P.C.
China Pacific Insurance (Group) Co., Ltd. Qatar Islamic Insurance Group Q.P.S.C.
China Taiping Insurance Holdings Company Limited QBE Insurance Group Limited
Chubb Limited QLM Life & Medical Insurance Company Q.P.S.C.
Chuou International Group Co., Ltd. Quad M Solutions, Inc.
CIG Pannónia Életbiztosító Nyrt Quálitas Controladora, S.A.B. de C.V.
Cincinnati Financial Corporation Radian Group Inc.
Citizens Financial Group, Inc. Rand Merchant Investment Holdings Limited
Clal Insurance Enterprises Holdings Ltd. Randall & Quilter Investment Holdings Ltd.
Clientèle Limited Ray Sigorta Anonim Sirketi
CNA Financial Corporation Reinsurance Group of America
CNO Financial Group, Inc. RenaissanceRe Holdings Ltd.
CNP Assurances SA (CNP.PA) RheinLand Holding AG
COFACE SA RLI Corp
Companhia de Seguros Alianca da Bahia Root, Inc.
Conifer Holdings, Inc. Rosgosstrakh Insurance Company
CTBC Financial Holding Co., Ltd. RSA Insurance Group plc
Dai-ichi Life Holdings, Inc. (DLICY) Ryan Specialty Group Holdings, Inc.
DB Insurance Co., Ltd. SABB Takaful Company
DFV Deutsche Familienversicherung AG Safety Insurance Group, Inc.
Dhipaya Group Holdings Public Company Limited Saga plc
Direct Line Insurance Group plc Sagicor Financial Company Ltd.
Discovery Limited Sampo Oyj
Doha Insurance Group Q.P.S.C. Samsung Fire & Marine Insurance Co., Ltd.
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Table 1  (continued)

Donegal Group Inc. Samsung Life Insurance Co., Ltd.
Ecclesiastical Insurance Office plc Sanlam Limited
E-L Financial Corporation Limited Santam Ltd
Employers Holdings, Inc. Saudi Indian Company for Cooperative Insurance 

(Wafa Insurance)
Enact Holdings, Inc. Saudi Re for Cooperative Reinsurance Company
Enstar Group Limited SBI Life Insurance Company Limited
Equitable Holdings, Inc. SCOR SE
Everest Re Group, Ltd. Selective Insurance Group, Inc.
Fairfax Financial Holdings Limited Shin Kong Financial Holding Co., Ltd.
Farglory Life Insurance Co., Ltd. Shinkong Insurance Co., Ltd.
FBD Holdings plc SHL Holdings Ltd.
Federal Life Group, Inc. SiriusPoint Ltd.
FedNat Holding Company SJVN Limited
FG Financial Group, Inc. Società Cattolica di Assicurazione
Fidelity National Financial, Inc. Sompo Holdings, Inc.
First Acceptance Corporation Standard Life Aberdeen PLC Reg
First American Financial Corporation State Auto Financial Corporation
Fubon Financial Holding Co., Ltd. Stewart Information Services Corporation
General Insurance Corporation of India Storebrand ASA
Genworth Financial, Inc. Sul América S.A.
Gjensidige Forsikring ASA Sumitomo Mitsui Financial Group, Inc.
Global Indemnity Group, LLC Sun Life Financial Inc.
Globe Life Inc. Suncorp Group Limited
Goosehead Insurance, Inc Sundance Strategies, Inc.
Great Eastern Holdings Limited Swiss Life Holding AG
GREAT WEST LIFECO PREF SERIES M Swiss Re AG
Great-West Lifeco Inc. Syn Mun Kong Insurance Public Company Limited
Greenlight Capital Re, Ltd. T &D Holdings, Inc.
Grupo Catalana Occidente, S.A. Talanx AG
Grupo Nacional Provincial, S.A.B. Target Insurance (Holdings) Limited
GWG Holdings, Inc. Thai Reinsurance Public Company Limited
Hallmark Financial Services, Inc. Thaire Life Assurance Public Company Limited
Hannover Rück SE The Allstate Corporation
Hansard Global plc The Company for Cooperative Insurance
Hanwha Life Insurance Co., Ltd. The Hanover Insurance Group, Inc.
Harel Insurance Investments & Financial Services 

Ltd
The Hartford Financial Services Group, Inc.

HCI Group, Inc. The Mediterranean and Gulf Cooperative Ins. and 
Reins. Company

HDFC Life Insurance Company Limited The National Security Group, Inc.
Health Assurance Acquisition Corp. The Navakij Insurance Public Company Limited
Health Revenue Assurance Holdings, Inc. The New India Assurance Company Limited
Helios Underwriting Plc The People’s Insurance Company (Group) of China 

Limited
Helvetia Holding AG The Phoenix Holdings Ltd.
Heritage Insurance Holdings, Inc. The Progressive Corporation
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Table 1  (continued)

Heungkuk Fire & Marine Insurance Co., Ltd. The Thai Setakij Insurance Public Company Limited
Hippo Holdings Inc. The Travelers Companies, Inc.
Hiscox Ltd Till Capital Corporation
Horace Mann Educators Corporation Tiptree Inc.
HORAI Co., Ltd. Tokio Marine Holdings, Inc.
Hyundai Marine & Fire Insurance Co., Ltd. Tong Yang Life Insurance Co., Ltd.
iA Financial Corporation Inc. Topdanmark A/S
ICC Holdings, Inc. Tower Limited
ICICI Lombard General Insurance Company Limited TQR Public Company Limited
ICICI Prudential Life Insurance Company Limited Trean Insurance Group, Inc.
ICPEI Holdings Inc. Triad Guaranty Inc.
Independence Holding Company Trisura Group Ltd.
Industrial Investment Trust Limited Trupanion, Inc.
Insr Insurance Group ASA Trustco Group Holdings Limited
Insurance Australia Group Limited Tryg A/S
Intact Financial Corporation Türkiye Sigorta Anonim Sirketi
Inversiones La Construcción S.A. Unico American Corporation
ipet Holdings,Inc. Union Insurance Co., Ltd.
IRB-Brasil Resseguros S.A. Unipol Gruppo S.p.A.
IRRC Corporation UNIQA Insurance Group AG
James River Group Holdings, Ltd. United Cooperative Assurance Company
Japan Post Insurance Co., Ltd. (7181.T) United Fire Group, Inc.
Just Group plc United Insurance Holdings Corp.
Kansas City Life Insurance Company United Overseas Insurance Limited
Kemper Corporation Universal Insurance Holdings, Inc.
Kingstone Companies, Inc. Unum Group
Kinsale Capital Group, Inc. UTG, Inc.
Korean Reinsurance Company Vaudoise Assurances Holding SA
Lancashire Holdings Limited Vericity, Inc.
Legal & General Group Plc Vienna Insurance Group AG
Lemonade, Inc. Voya Financial, Inc.
Liberty Holdings Limited W. R. Berkley Corporation
Lifenet Insurance Company Walaa Cooperative Insurance Company
Lincoln National Corporation Wataniya Insurance Company
Loews Corporation Waterdrop Inc.
Lotte Non - Life Insurance Co., Ltd. Wesure Global Tech Ltd
LPI Capital Bhd White Mountains Insurance Group, Ltd.
Maiden Holdings, Ltd. Wüstenrot & Württembergische AG
Malath Cooperative Insurance Company ZhongAn Online P & C Insurance Co., Ltd.
Manulife Financial Corporation Zur Shamir Holdings Ltd
Mapfre, S.A. Zurich Insurance Group AG
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