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Abstract
Recursive systems of linear regressions is a consolidated methodology for mediation analy-
sis, allowing to determine causal effects of interest in a closed form based on the regression 
coefficients. In a dynamic perspective, distributed-lags can be added to each regression in 
order to represent causal effects persisting over several periods. However, mediation analy-
sis in the dynamic case is challenging, because causal effects depend on the time lag, and 
a general procedure to compute their lag distribution based on the regression coefficients 
is currently missing. In this paper, we formalize the rules to perform mediation analysis 
in recursive systems of distributed-lag linear regressions, here called Distributed-lag Lin-
ear Recursive Models (DLRMs). Firstly, mediation analysis is based on the Directed Acy-
clic Graph (DAG) representation of the DLRM, then a DAG-free algorithm is proposed to 
improve computational efficiency. Our DAG-free algorithm is applied to a DLRM repre-
senting the impact pathways of agricultural research expenditure towards poverty reduction 
in rural areas.

Keywords  Dynamic causal effects · Impact pathways · Lag attribution · Linear Markovian 
models · Multivariate time series

1  Introduction

The use of recursive systems of linear regressions for mediation analysis has a long history 
rooted to path analysis (Wright 1934) and enriched by several contributions from the 1940s 
to the 1980s (Haavelmo 1943; Koopmans et  al. 1950; Wold 1954, 1960; Duncan 1966; 
Wermuth 1980; Baron and Kenny 1986). The term ‘recursive’ means that the regressions 
imply an acyclic dependence structure, i.e., no variable can influence itself, and the random 
errors are uncorrelated, i.e., further variables are not important to describe the relationships 
among the considered ones. Recursive systems of linear regressions are known with sev-
eral different names, including simultaneous equation models (Greene 2008, Chapter 13), 
linear recursive equations (Wermuth 1980) and linear Markovian models (Pearl 2000; Wer-
muth and Cox 2015). Here, we refer to them as Linear Recursive Models (LRMs). In a 
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LRM, it is possible to determine causal effects of interest in a closed form based on the 
regression coefficients (Fox 1985; Sobel 1990; Chen 2017), making mediation analysis 
simple to perform. For this reason, LRMs are still very popular in many applied research 
fields, including econometrics, psychology, sociology and medicine.

In a dynamic perspective, lagged instances of the same explanatory variable (distrib-
uted-lags) can be added to each regression in order to represent causal effects persisting 
over several periods. The resulting model is here called Distributed-lag Linear Recursive 
Model (DLRM). The use of cross-sectional mediation models like LRMs for mediation 
analysis has been heavily criticized in recent years, because causal effects persisting over 
several periods may not be identified (Cole and Maxwell 2003; Maxwell and Cole 2007; 
Maxwell et  al. 2011; Mitchell and Maxwell 2013). Longitudinal mediation models like 
DLRMs represent an appropriate methodology in the dynamic case, but they still entail 
several critical issues threatening the consistency of the estimates and thus the identifica-
tion of causal effects. These issues include: (i) non-stationary time series, (ii) unmeasured 
confounding, (iii) lag attribution.

Non-stationary time series involve causal effects depending not only on the time lag, but 
also on the time point, thus they may not be identified. In order to ensure a consistent esti-
mation of causal effects in the dynamic case, the time series should be stationary at least in 
a weak sense, i.e., they should have expected value and autocorrelation function constant 
in time, a property often called stability (Cole and Maxwell 2003; Maxwell and Cole 2007; 
Mitchell and Maxwell 2013).

Unmeasured confounding is the most common source of inconsistency in cross-
sectional mediation analysis, which typically arises from omitted variables and/or omit-
ted relationships and may generate correlation between some random errors. Addressing 
unmeasured confounding in the dynamic case is more difficult, because omitting a variable 
or a relationship between two variables may also generate autoregressive effects or auto-
correlated errors (Cole and Maxwell 2003; Goldsmith et al. 2018).

A further potential source of inconsistency in longitudinal mediation models is the 
determination of the number of lags to consider for each direct causal effect, a problem 
known as lag attribution. Specifying an insufficient number of lags for a direct causal effect 
equates to the omission of relevant causes, which in this case are represented by specific 
temporal instances of a variable in the model. Such omission may lead to lack of identifica-
tion not only for the considered direct causal effect, but also for all the indirect and/or total 
causal effects deriving from it (Cain et al. 2018; Reichardt 2011; Goldsmith et al. 2018).

This paper contributes to the literature on dynamic mediation analysis by providing a 
general procedure for DLRMs to compute the lag distribution of causal effects of interest 
based on the regression coefficients. Borrowing from the methodology for the computation 
of causal effects in LRMs, mediation analysis in DLRMs is firstly based on the Directed 
Acyclic Graph (DAG) encoding the dependence structure among the variables. Secondly, 
since the DAG of a DLRM includes all the temporal instances of each variable, DAG-
based computation of causal effects may be extremely expensive for high time lags. For 
this reason, we also propose a DAG-free algorithm to improve computational efficiency. 
Our proposal assumes that the DAG and the coefficients are known a-priori or have been 
consistently estimated from data, thus topics like causal discovery and identification of 
causal effects go beyond the purpose of this paper.

This paper is organized as follows. In Sect.  2, the current methodology for media-
tion analysis in LRMs is refreshed. Although this section does not contain novelties with 
respect to existing literature, it is important to introduce the notation used throughout the 
paper and to provide a starting point for the definition of DLRMs. In Sect. 3, we formalize 
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the class of DLRMs, then we derive DAG-based rules for mediation analysis and present 
the DAG-free algorithm. In Sect. 4, our algorithm is applied to a DLRM representing the 
impact pathways of agricultural research expenditure towards poverty reduction in rural 
areas. Section 5 includes concluding remarks and considerations on future developments.

2 � Mediation analysis in linear recursive models

Let X1,… ,Xp be a set of p ≥ 2 quantitative random variables. A Linear Recursive Model 
(LRM) on X1,… ,Xp is defined as:

where, for j = 1,… , p , variable Xj is regressed from X1,… ,Xj−1 , so that �j is the intercept, 
�j,i is the regression coefficient associated to Xi ( i = 1,… , j − 1 ), and �j is the random error. 
It is assumed that the random errors �1,… , �p have null expected value and are each other 
uncorrelated, i.e., E(�i) = Cov(�i, �j) = 0 ∀i, j . The system of equations in formula (1) can 
be written compactly as:

We see that this system of equations implies an acyclic structural dependence between 
X1,… ,Xp , i.e., there is no way to write any variable as a function of itself. As a conse-
quence, the structural dependence implied by a LRM can be represented by a Directed 
Acyclic Graph (DAG), where each variable is denoted by one node and, for each pair (i, j), 
an edge is directed from the node denoting Xi to the node denoting Xj if and only if �j,i ≠ 0 . 
The random errors can be omitted from the DAG of a LRM because they are each other 
uncorrelated (see Pearl 2000, page 30 and following).

Note that if �j,i ≠ 0 ∀j > i , then there is a direct dependence between each pair of vari-
ables, i.e., a saturated structural dependence holds between X1,… ,Xp , represented by a 
DAG where all the pairs of nodes are connected by an edge (Fig. 1, panel a). Instead, if 
�j,i = 0 for a given j > i , then there is no direct dependence between variables Xi and Xj , 
represented by the absence of an edge between Xi and Xj in the DAG (Fig. 1, panel b–d). 
In the remainder, we will refer to the parents of a variable in a LRM as the variables with 
non-zero coefficient in the regression for that variable, or, equivalently, to the direct prede-
cessors of that variable in the DAG.

Under the assumption that the regressions and the edges in the DAG have a causal inter-
pretation, it is possible to exploit coefficients �j,i to compute the effect of a unit increase in 
one variable, say Xi , on the expected value of another variable, say Xj (Fox 1985; Sobel 
1990; Chen 2017). Such effect is termed total effect and mediation analysis consists of its 
decomposition into the sum of several other effects, one for each path connecting Xi to Xj : 

(1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X1 = �1 + �1
X2 = �2 + �2,1X1 + �2
…

Xj = �j +
j−1∑
i=1

�j,iXi + �j

…

Xp = �p +
p−1∑
i=1

�j,iXi + �p

(2)Xj = �j +

p∑
i=1

�j,iXi + �j j = 1,… , p �j,i = 0 ∀j ≤ i
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the path composed by a single edge entails the direct effect, while each path composed by 
more than one edge entails an indirect effect.

In the following subsections, we illustrate the computation of causal effects of interest in 
a LRM based on the regression coefficients. Firstly, we illustrate the case with three varia-
bles (Sect. 2.1), then the general case with any number of variables is addressed (Sect. 2.2).

2.1 � Computation with three variables

Consider a LRM involving three variables X1 , X2 and X3 with DAG displayed in Fig. 1a:

From the properties of linear regression, we deduce that coefficient �2,1 represents the dif-
ference in the expected value of X2 for a unitary increase in the value of X1:

Instead, coefficient �3,1 represents the difference in the expected value of X3 for a unitary 
increase in the value of X1 at constant value of X2:

Similarly, coefficient �3,2 represents the difference in the expected value of X3 for a unitary 
increase in the value of X2 at constant value of X1:

Suppose that we are interested in the causal effect of X1 on X3 . In this case, we define the 
total effect as the difference in the expected value of X3 for a unit increase in the value of X1 
whichever the value of X2 , equating to:

(3)

⎧⎪⎨⎪⎩

X1 = �1 + �1
X2 = �2 + �2,1X1 + �2
X3 = �3 + �3,1X1 + �3,2X2 + �3

(4)�2,1 ≡ �E(X2 ∣ �X1 = 1)

(5)�3,1 ≡ �E(X3 ∣ �X1 = 1,�X2 = 0)

(6)�3,2 ≡ �E(X3 ∣ �X2 = 1,�X1 = 0)

Fig. 1   DAGs representing several LRMs over variables X
1
 , X

2
 and X

3
 . a Saturated structural dependence. b 

Absence of a direct structural dependence between X
2
 and X

3
 . c Absence of a direct structural dependence 

between X
1
 and X

2
 ; d absence of a direct structural dependence between X

1
 and X

3



1539Mediation analysis in recursive systems of distributed‑lag…

1 3

where:

is the direct effect of X1 on X3 , enatiled by the path < X1,X2 > , and:

is the indirect effect of X1 on X3 through (mediated by) X2 , entailed by the path 
< X1,X2,X3 > . The motivation beyond formula (7) is that a unitary increase in the value 
of X1 implies the activation of the two paths connecting X1 to X3 : < X1,X3 > (direct path) 
and < X1,X2,X3 > (indirect path through X2 ). The path < X1,X3 > is composed of a single 
edge, which, after a unit increase in the value of X1 , entails a difference in the expected 
value of X3 equal to �3,1 , thus DE(X1,X3) = �3,1 . Instead, the path < X1,X2,X3 > is com-
posed of two edges: (i) a first edge between X1 and X2 , which, after a unit increase in the 
value of X1 , entails a difference in the expected value of X2 equal to �2,1 ; (ii) a second edge 
between X2 and X3 , which, after an increase equal to �2,1 in the value of X2 , entails a differ-
ence in the expected value of X3 equal to �2,1�3,2 . Thus, we conclude that the indirect effect 
of X1 on X3 through X2 is equal to �2,1�3,2.

2.2 � Computation with any number of variables

In the general case p ≥ 2 , the causal effect of Xi on Xj may involve more than one indirect 
effect, and the path entailing each indirect effect may be composed of more than two edges. 
Also, Xj may have other parents besides all the variables involved in any path connecting 
Xi and Xj.

Consider the LRM with DAG shown in Fig. 2, and suppose that we are interested in 
the causal effect of X1 on X8 . We see that there is the direct effect, entailed by the path 
< X1,X8 > , and five indirect effects, entailed by paths < X1,X7,X8 > , < X1,X6,X8 > , 

(7)TE(X1,X3) ≡ �E(X3 ∣ �X1 = 1) = �3,1 + �2,1�3,2

(8)DE(X1,X3) = �3,1

(9)IE(X1,X3; < X1,X2,X3 >) = 𝛽2,1𝛽3,2

Fig. 2   The DAG of a LRM over 
eight variables
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< X1,X6,X7,X8 > , < X1,X5,X6,X8 > and < X1,X5,X6,X7,X8 > . The direct effect of X1 on 
X8 is equal to �8,1 , but the interpretation changes with respect to the previous example 
with three variables: since X8 has other parents besides X1 , precisely X4 , X6 and X7 , 
the direct effect �8,1 represents the difference in the expected value of X8 for a unitary 
increase in the value of X1 at constant values of X4 , X6 and X7:

Based on the same arguments for the computation of the indirect effect in the previous 
example with three variables, we find:

As a consequence, the total effect of X1 on X8 is:

equating to the difference in the expected value of X8 for a unitary increase in the value of 
X1 at constant values of the parents of X8 which are not involved in any path between X1 
and X8 (in this case, X4).

In general, the direct effect of Xi on Xj is entailed by the direct path between Xi and 
Xj , i.e., < Xi,Xj > , and is equal to the coefficient �j,i , as formalized in Definition 1. In 
this view, each coefficient in a LRM represents a direct effect, which is associated to a 
specific edge in the DAG.

Definition 1  (Direct effect in a LRM) Let M be the random vector including the variables 
in any path between Xi and Xj , excepting Xi and Xj , and W be the random vector including 
the parents of Xj which are not in M . The direct effect of Xi on Xj is defined as:

	�  ◻

Denote any indirect path between variables Xi and Xj as < Xi,Xd1
,… ,Xdm

,Xj > , 
where Xd1

,… ,Xdm
 are the mediating variables. For notational convenience, we set 

Xd0
≡ Xi and Xdm+1

≡ Xj . Note that, for m = 0 , the direct path < Xi,Xj > is obtained. The 
indirect effect of Xi on Xj through a specific set of mediating variables Xd1

,… ,Xdm
 is 

computed by multiplying the coefficients associated to each edge composing the path 
< Xi,Xd1

,… ,Xdm
,Xj > , as formalized in Definition 2.

Definition 2  (Indirect effect in a LRM) The indirect effect of Xi on Xj through variables 
Xd1

,… ,Xdm
 , is:

(10)DE(X1,X8) ≡ �E(X8 ∣ �X1 = 1,�X4 = 0,�X6 = 0,�X7 = 0) = �8,1

(11)

IE(X1,X8; < X1,X7,X8 >) = 𝛽7,1𝛽8,7

IE(X1,X8; < X1,X6,X8 >) = 𝛽6,1𝛽8,6

IE(X1,X8; < X1,X6,X7,X8 >) = 𝛽6,1𝛽7,6𝛽8,7

IE(X1,X8; < X1,X5,X6,X8 >) = 𝛽5,1𝛽6,5𝛽8,6

IE(X1,X8; < X1,X5,X6,X7,X8 >) = 𝛽5,1𝛽6,5𝛽7,6𝛽8,7

(12)
TE(X1,X8) ≡ �E(X8 ∣ �X1 = 1,�X4 = 0)

= �8,1 + �7,1�8,7 + �6,1�8,6 + �6,1�7,6�8,7 + �5,1�6,5�8,6 + �5,1�6,5�7,6�8,7

(13)DE(Xi,Xj) ≡ �E(Xj ∣ �Xi = 1,�M = 0,�W = 0) = �j,i
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where d0 = i and dm+1 = j.
	�  ◻

Note that, if applied to the direct path between Xi and Xj , i.e., < Xi,Xj > , formula (14) 
returns the direct effect in formula (13). Finally, the total effect of Xi on Xj is obtained by 
summing the direct and all the indirect effects, as formalized in Definition 3.

Definition 3  (Total effect in a LRM) Let W be the random vector including the parents 
of Xj which are not in any path between Xi and Xj . The total effect of Xi on Xj is defined as:

	�  ◻

3 � Mediation analysis in distributed‑lag linear recursive models

In a dynamic perspective, each of the random variables X1,… ,Xp has several instances, 
one for each time point. We denote the instance of variable Xj at time t as Xj,t . Under the 
assumption that time is a discrete variable and that the time series of X1,… ,Xp are weakly 
stationary, i.e., their expected value and autocorrelation function is constant in time, we 
define the dynamic version of a LRM, here called Distributed-lag Linear Recursive Model 
(DLRM), as:

Each model in a DLRM is a distributed-lag linear regression, thus, in contrast to a LRM, 
each coefficient depends on the time lag l. For j = 1,… , p , the set {�(l)

j,i
∶ l = 0, 1,… ,∞} 

includes the coefficients associated to all the lags of Xi in the regression of Xj , and is called 
lag distribution for the direct effect of Xi on Xj . Each lag distribution is assumed to have 
infinite cardinality (infinite lag distribution), but it can be truncated at lag l∗ by setting 
�
(l)

j,i
= 0 ∀l > l∗ (finite lag distribution). Note that, in a DLRM, the assumption of uncor-

related random errors implies the absence of autocorrelation in the errors of the same vari-
able, i.e., for j = 1,… , p , we have Cov(�j,s, �j,t) = 0 ∀s ≠ t.

The DAG of a DLRM, here denoted as full DAG, includes all the temporal instances 
of variables X1,… ,Xp (Fig. 3a). However, it is always possible to convert the DAG of a 
DLRM into a static representation to highlight the structural dependence among the vari-
ables, at the cost of disregarding the lag attribution. For example, from Fig. 3b it is clear 

(14)IE(Xi,Xj; < Xi,Xd1
,… ,Xdm

,Xj >) =

m+1∏
k=1

𝛽dk ,dk−1

(15)

TE(Xi,Xj) ≡ 𝛥E(Xj ∣ 𝛥Xi = 1,𝛥W = 0)

=
∑

<Xd0
,…,Xdm+1

>∶ d0=i∧dm+1=j

m+1∏
k=1

𝛽dk ,dk−1

(16)
Xj,t = �j +

p∑
i=1

∞∑
l=0

�
(l)

j,i
Xi,t−l + �j,t

j = 1,… , p t = 0,… ,∞ �
(l)

j,i
= 0 ∀j ≤ i
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that X1 has a direct effect on both X2 and X3 , but the time lags at which each effect operates 
are not shown.

The computation of causal effects of interest in a DLRM is analogous to the one in 
LRMs, with the difference that it is conditioned to the time lag. Specifically, one can com-
pute the direct effect, the indirect effects and the total effect of any variable to another one 
at specific time lags by applying the rules for LRMs detailed in Sect. 2 to the full DAG.

DAG-based computation of causal effects of interest in a DLRM is illustrated in 
Sect. 3.1. Since it requires to search for paths in the full DAG, DAG-based computation 
may become extremely expensive when performed at high time lags. Our DAG-free algo-
rithm, detailed in Sect.  3.2, is equivalent to DAG-based computation but more efficient, 
because searching for paths is not required. Section 3.3 includes a discussion on mediation 
analysis in partially causal DLRMs, i.e., DLRMs including autoregressive effects.

3.1 � DAG‑based computation

Consider the DLRM with full DAG in Fig.  3a. The direct effect of X1 on X3 at lag 0, 
say DE0(X1,X3) , is composed of the effects entailed by all the paths in the full DAG 
between X1,t and X3,t passing through no instances of X2 . There is a single path satisfy-
ing such condition: < X1,t,X3,t > , entailing an effect equal to �(0)

3,1
 , thus we conclude that 

DE0(X1,X3) = �
(0)

3,1
.

Instead, the direct effect of X1 on X3 at lag 1 is composed of the effects entailed by all 
the paths in the full DAG between X1,t and X3,t+1 passing through no instances of X2 . The 
only path satisfying such condition is < X1,t,X3,t+1 > , entailing an effect equal to �(1)

3,1
 , thus 

we have DE1(X1,X3) = �
(1)

3,1
.

Fig. 3   The DAG of a DLRM over three variables X
1
 , X

2
 and X

3
 . a Full DAG. b Static DAG
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We proceed similarly to compute the direct effect of X1 on X3 at lag 2, concluding that 
DE2(X1,X3) = �

(2)

3,1
 . Rule 1 generalizes the computation of the direct effect of Xi on Xj at a 

given time lag l in any DLRM.

Rule 1  (Direct effect in a DLRM) The direct effect of Xi on Xj at time lag l is equal to the 
sum of the effects entailed by each path in the full DAG between Xi,t and Xj,t+l containing 
no instances of variables besides Xi and Xj.

The indirect effect of Xi on Xj through mediating variables Xd1
,… ,Xdm

 at time lag l, 
denoted as IEl(Xi,Xj; < Xi,Xd1

,… ,Xdm
,Xj >) , is computed analogously to the direct effect, 

with the difference that we must consider only the paths in the full DAG between Xi,t and Xj,t+l 
containing at least one instance of each variable Xd1

,… ,Xdm
 , as stated by Rule 2.

Rule 2  (Indirect effect in a DLRM) The indirect effect of Xi on Xj through variables 
Xd1

,… ,Xdm
 at time lag l is equal to the sum of the effects entailed by each path in the full 

DAG between Xi,t and Xj,t+l containing at least one instance of each variable Xd1
,… ,Xdm

.

For example, Tables 1 and 2 show the addenda of the indirect effect of X1 on X3 mediated 
by X2 at lag 1 and 2 in the DLRM with DAG in Fig. 3.

Finally, the total effect of Xi on Xj at time lag l is the sum of the direct and of all the indirect 
effects of Xi on Xj at time lag l, equating to the sum of the effects entailed by all the possible 
paths between Xi,t and Xj,t+l in the full DAG, as stated by Rule 3.

Rule 3  (Total effect in a DLRM) The total effect of Xi on Xj at time lag l is equal to the 
sum of the effects entailed by each path in the full DAG between Xi,t and Xj,t+l.

For example, the total effect of X1 on X3 at time lag 2 in the DLRM with DAG in Fig. 3 is 
obtained by summing the effect entailed by the direct path, i.e., �(2)

3,1
 , to all the effects entailed 

by the paths listed in Table 2.

Table 1   Addenda of 
IE

1
(X

1
,X

3
; < X

1
,X

2
,X

3
>) in the 

DLRM with DAG in Fig. 3

Path Entailed effect

< X
1,t
,X

2,t
,X

3,t+1 > �
(0)

2,1
�
(1)

3,2

< X
1,t
,X

2,t+1,X3,t+1 > �
(1)

2,1
�
(0)

3,2

Table 2   Addenda of 
IE

2
(X

1
,X

3
; < X

1
,X

2
,X

3
>) in the 

DLRM with DAG in Fig. 3

Path Entailed effect

< X
1,t
,X

2,t
,X

3,t+2 > �
(0)

2,1
�
(2)

3,2

< X
1,t
,X

2,t+1,X3,t+2 > �
(1)

2,1
�
(1)

3,2

< X
1,t
,X

2,t+2,X3,t+2 > �
(2)

2,1
�
(0)

3,2
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3.2 � DAG‑free computation

DAG-based computation requires to search for paths in the full DAG, thus it may become 
extremely expensive when performed at high time lags. Thus, we propose an alternative 
method, detailed in Algorithm 1, to compute any direct or indirect effect at the desired time 
lag in a DLRM without requiring to search for paths in the DAG.

Algorithm 1 Computation of causal effects in a DLRM

Input: the starting variable Xi; the ending variable Xj; a set of mediating variables
{Xd1 , . . . , Xdm} which may be empty; a time lag l.

1. Find all the possible ordered combinations of m+1 non-negative integers with
sum equal to l, say U = {(u1, . . . , um+1) :

∑m+1
k=1 uk = l}.

2. Initialize S = 0.
3. For each combination (u1, . . . , um+1) in U , compute S = S +

∑m+1
k=1 β

(uk)
dk,dk−1

,
with d0 = i and dm+1 = j.

4. Return S as the causal effect of Xi on Xj mediated by Xd1 , . . . , Xdm at time
lag l.

As an illustration, consider IEl(X1,X3; < X1,X2,X3 >) in the DLRM with DAG in 
Fig. 3. According to Algorithm 1, for all l, we have Xd1

= X2 and Xdm+1
= Xd2

= X3 . For 
l = 0 , we get U = {(0, 0)} , leading to IE0(X1,X3; < X1,X2,X3 >) = 𝛽

(0)

2,1
𝛽
(0)

3,2
 , as previ-

ously obtained with DAG-based computation. For l = 1 , we get U = {(0, 1), (1, 0)} , lead-
ing to IE1(X1,X3; < X1,X2,X3 >) = 𝛽

(0)

2,1
𝛽
(1)

3,2
+ 𝛽

(1)

2,1
𝛽
(0)

3,2
 , as obtained with DAG-based 

computation shown in Table  1. For l = 2 , we get U = {(0, 2), (1, 1), (2, 0)} , leading to 
IE2(X1,X3; < X1,X2,X3 >) = 𝛽

(0)

2,1
𝛽
(2)

3,2
+ 𝛽

(1)

2,1
𝛽
(1)

3,2
+ 𝛽

(2)

2,1
𝛽
(0)

3,2
 , as obtained with DAG-based 

computation shown in Table 2.
As a further illustration, consider the indirect effect of X1 on X8 mediated by X6 and 

X7 at time lag 3, i.e., IE3(X1,X8; < X1,X6,X7,X8 >) , in the DLRM with static DAG in 
Fig. 2. According to Algorithm 1, we have Xd1

= X6 , Xd2
= X6 and Xdm+1

= Xd3
= X8 , and 

we obtain the ten addenda shown in Table 3. Note that, in the DLRM with static DAG in 

Table 3   Addenda of 
IE

3
(X

1
,X

8
; < X

1
,X

6
,X

7
,X

8
>) in 

the DLRM with DAG in Fig. 2 
obtained using Algorithm 1

Combination Path in the full DAG Entailed effect

(0,0,3) < X
1,t
,X

6,t
,X

7,t
,X

8,t+3 > �
(0)

6,1
�
(0)

7,6
�
(3)

8,7

(0,1,2) < X
1,t
,X

6,t
,X

7,t+1,X8,t+3 > �
(0)

6,1
�
(1)

7,6
�
(2)

8,7

(0,2,1) < X
1,t
,X

6,t
,X

7,t+2,X8,t+3 > �
(0)

6,1
�
(2)

7,6
�
(1)

8,7

(0,3,0) < X
1,t
,X

6,t
,X

7,t+3,X8,t+3 > �
(0)

6,1
�
(3)

7,6
�
(0)

8,7

(1,0,2) < X
1,t
,X

6,t+1,X7,t+1,X8,t+3 > �
(1)

6,1
�
(0)

7,6
�
(2)

8,7

(1,1,1) < X
1,t
,X

6,t+1,X7,t+2,X8,t+3 > �
(1)

6,1
�
(1)

7,6
�
(1)

8,7

(1,2,0) < X
1,t
,X

6,t+1,X7,t+3,X8,t+3 > �
(1)

6,1
�
(2)

7,6
�
(0)

8,7

(2,0,1) < X
1,t
,X

6,t+2,X7,t+2,X8,t+3 > �
(2)

6,1
�
(0)

7,6
�
(1)

8,7

(2,1,0) < X
1,t
,X

6,t+2,X7,t+3,X8,t+3 > �
(2)

6,1
�
(1)

7,6
�
(0)

8,7

(3,0,0) < X
1,t
,X

6,t+3,X7,t+3,X8,t+3 > �
(3)

6,1
�
(0)

7,6
�
(0)

8,7
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Fig. 2, the indirect effect of X1 on X8 mediated by X6 and X7 differs from the indirect effect 
of X1 on X8 mediated by X6 only, i.e., IE3(X1,X8; < X1,X6,X8 >) , as well as from the indi-
rect effect of X1 on X8 mediated by X5 , X6 and X7 , i.e., IE3(X1,X8; < X1,X5,X6,X7,X8 >).

Finally note that, if Algorithm 1 is applied to compute any direct effect, say DEl(Xi,Xj) , 
it correctly returns �(l)

j,i
.

3.3 � Partially causal distributed‑lag linear recursive models

So far, we have excluded autoregressive effects in the definition of DLRMs, i.e., the lagged 
direct effects of one variable on itself, represented by all the coefficients �(l)

j,i
 such that i = j 

and l > 0 . We now discuss their inclusion in a DLRM.
In general, autoregressive effects for a certain variable can arise from two distinct situ-

ations: (i) the variable has a stochastic trend, (ii) some causes with lagged direct effects 
on the considered variable are omitted. In the first situation, autoregressive effects reflect 
the law of the temporal evolution of the variable, thus they have a causal interpretation. 
Instead, the interpretation of autoregressive effects in the second situation is more com-
plex, thus a detailed illustration is provided below.

Consider the DAG of a causal DLRM over two variables X1 and X2 displayed in Fig. 4, 
panel a. The rules for arc reversal in DAGs (Shachter 1990) can be exploited to marginal-
ize out variable X1 . In essence, before reversing the edge connecting two nodes, some other 
edges should be added to make the two nodes share their parents. Firstly, all the edges con-
necting each instance of X1 to any instance of X2 at the same time point are reversed from the 
maximum to the minimum time point, leading to the creation of all the possible autoregressive 
effects for X1 (Fig. 4, panel b). Secondly, all the remaining edges connecting each instance of 
X1 to any instance of X2 are reversed from the minimum to the maximum time point, leading 
to the creation of all the possible autoregressive effects for X2 (Fig. 4, panel c). Thirdly, the 

Fig. 4   Illustration of the creation of autoregressive effects when a variable is marginalized out based on arc 
reversal rules (Shachter 1990). a The DAG of a causal DLRM over two variables X

1
 and X

2
 . b All the edges 

connecting each instance of X
1
 to any instance of X

2
 at the same time point are reversed from the maximum 

to the minimum time point. c All the remaining edges connecting each instance of X
1
 to any instance of 

X
2
 are reversed from the minimum to the maximum time point. d The instance of X

1
 at the maximum time 

point has no descendants, thus it can be deleted from the DAG, and the same holds recursively for all the 
remaining instances of X

1
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instance of X1 at the maximum time point has no descendants, thus it can be deleted from 
the DAG, and the same holds recursively for all the remaining instances of X1 (Fig. 4, panel 
d). In the resulting DAG, X1 is omitted and X2 is represented by an autoregressive process. 
We conclude that autoregressive effects arising from the omission of variables with lagged 
direct effects on some other variables have not a causal interpretation, but only a predictive 
one coherently with the concept of Granger-Sims causality (Eichler 2013).

In presence of autoregressive effects, the definition of a DLRM in formula (16) becomes:

Since the time series in a DLRM are assumed to be weakly stationary, autoregressive 
effects can arise only from the omission of variables with lagged direct effects on some 
other variables, thus they have not a causal interpretation. For this reason, we refer to the 
model in formula (17) as partially causal DLRM. Figure 5 shows the DAG of the partially 
causal version of the DLRM in Fig. 3. We see that the full DAG includes a number of non-
causal edges besides the causal ones. As an example, Tables 4 and 5 show the addenda of 
the direct effect of X1 on X3 for l = 1, 2 , while Table 6 shows the addenda of the indirect 
effect of X1 on X3 mediated by X2 for l = 1 . Note that causal addenda are the same as in 
the strictly causal DLRM with DAG in Fig. 1, but the total number of addenda increases 
faster as higher time lags are considered. Unfortunately, our DAG-free algorithm does not 

(17)

Xj,t = 𝛼j +

p∑
i=1

∞∑
l=0

𝛽
(l)

j,i
Xi,t−l + 𝜀j,t

j = 1,… , p t = 0,… ,∞

𝛽
(l)

j,i
= 0 ∀j < i 𝛽

(0)

j,i
= 0 ∀i = j

Fig. 5   The DAG of a partially causal DLRM over three variables X
1
 , X

2
 and X

3
 . a Full DAG. b Static DAG
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work for partially causal DLRMs, thus one should rely on DAG-based mediation analysis 
described in Sect. 3.1, which works indistinctly for both strictly causal and partially causal 
models. However, in the partially causal case, it involves a higher computational burden.

Note that the omission of a variable with lagged direct effects on another variable can 
also be represented through autocorrelated random errors (see, for example, Goldsmith 
et al. 2018), but this would lead to a non-recursive model, thus this case is not addressed 
here.

4 � Empirical application

We apply our DAG-free algorithm to a hypothesized causal structure representing the 
impact pathways of agricultural research expenditure towards poverty reduction in rural 
areas. Our objective is not to develop a new theory on the impacts of agricultural research 
expenditure, but to illustrate the practical application of our DAG-free algorithm for medi-
ation analysis. As a consequence, the proposed causal structure is a simplified version that 
maintains enough complexity for an effective illustration of our algorithm. Qualitative and 

Table 4   Causal and non-causal 
addenda of DE

1
(X

1
,X

3
) in the 

partially causal DLRM with 
DAG in Fig. 5

Path Causal Entailed effect

< X
1,t
,X

3,t+1 > Yes �
(1)

3,1

< X
1,t
,X

1,t+1,X3,t+1 > No �
(1)

1,1
�
(0)

3,1

< X
1,t
,X

3,t
,X

3,t+1 > No �
(0)

3,1
�
(1)

3,3

Table 5   Causal and non-causal 
addenda of DE

2
(X

1
,X

3
) in the 

partially causal DLRM with 
DAG in Fig. 5

Path Causal Entailed effect

< X
1,t
,X

3,t+2 > Yes �
(2)

3,1

< X
1,t
,X

1,t+1,X3,t+2 > No �
(1)

1,1
�
(1)

3,1

< X
1,t
,X

1,t+2,X3,t+2 > No �
(2)

1,1
�
(0)

3,1

< X
1,t
,X

3,t
,X

3,t+2 > No �
(0)

3,1
�
(2)

3,3

< X
1,t
,X

3,t+1,X3,t+2 > No �
(1)

3,1
�
(1)

3,3

< X
1,t
,X

1,t+1,X1,t+2,X3,t+2 > No (�
(1)

1,1
)2�

(0)

3,1

< X
1,t
,X

1,t+1,X3,t+1,X3,t+2 > No �
(1)

1,1
�
(0)

3,1
�
(1)

3,3

< X
1,t
,X

3,t
,X

3,t+1,X3,t+2 > No �
(0)

3,1
(�

(1)

3,3
)2

Table 6   Causal and 
non-causal addenda of 
IE

1
(X

1
,X

3
; < X

1
,X

2
,X

3
>) in 

the partially causal DLRM with 
DAG in Fig. 5

Path Causal Entailed effect

< X
1,t
,X

2,t
,X

3,t+1 > Yes �
(0)

2,1
�
(1)

3,2

< X
1,t
,X

2,t+1,X3,t+1 > Yes �
(1)

2,1
�
(0)

3,2

< X
1,t
,X

1,t+1,X2,t+1,X3,t+1 > No �
(1)

1,1
�
(0)

2,1
�
(0)

3,2

< X
1,t
,X

2,t
,X

2,t+1,X3,t+1 > No �
(0)

2,1
�
(1)

2,2
�
(0)

3,2

< X
1,t
,X

2,t
,X

3,t
,X

3,t+1 > No �
(0)

2,1
�
(0)

3,2
�
(1)

3,3
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quantitative specifications of the causal structure are detailed in Sects. 4.1 and 4.2, respec-
tively, while mediation analysis using the DAG-free algorithm is performed in Sect. 4.3.

4.1 � Qualitative specification

The causal structure here proposed, shown in Fig.  6, is a readaptation of the model in 
Alene and Coulibaly (2009) to developed countries based on theoretical arguments in Ren-
kow (2011). It is assumed that an increase in public research expenditure ( X1 ) can stimulate 
research activities towards the development of new technologies, which, once adopted by 
agricultural producers, can improve agricultural productivity ( X2 ). In turn, improved agri-
cultural productivity ( X2 ) can stimulate firms in rural areas to increase employment and 
wages, thus leading to: (i) a decrease of unemployment in rural areas ( X3 ), (ii) an increase 
of the median familiar income in rural areas ( X4 ), (iii) a decrease of the price of agri-
cultural products ( X5 ). Improved agricultural productivity ( X2 ) can increase the median 
familiar income in rural areas ( X4 ) both directly, for example due to increased wages, and 
indirectly through a decrease of unemployment in rural areas ( X3 ), for example due to the 
availability of new job positions. Finally, increased median familiar income in rural areas 
( X4 ) and decreased price of agricultural products ( X5 ) can lead to a reduction of the at-risk-
of-poverty rate in rural areas ( X6).

All the dependence relationships represented by the hypothesized causal structure in 
Fig. 6 are likely to persist over several periods, thus the use of a DLRM is definitely moti-
vated. The DAG in Fig. 6 is the static DAG of the DLRM.

4.2 � Quantitative specification

We assume that the time series of variables X1,… ,X6 are measured yearly and are weakly 
stationary when expressed as chained proportional variations or, equivalently, as first order 
difference of logarithmic values. As a consequence, the coefficients in the DLRM represent 
elasticities at specific time lags (years).

In order to efficiently represent the coefficients associated to the lags of the same varia-
ble, we exploited the Gamma lag distribution (Schmidt 1974). The direct effect of variable 

Fig. 6   Causal structure repre-
senting the impact pathways of 
agricultural research expendi-
ture towards poverty reduction 
in rural areas. X

1
 : agricultural 

research expenditure. X
2
 : agricul-

tural productivity. X
3
 : unemploy-

ment in rural areas. X
4
 : median 

familiar income in rural areas. 
X
5
 : price of agricultural products. 

X
6
 : at-risk-of-poverty rate in 

rural areas
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Xi on variable Xj as a function of the time lag, i.e., {�(l)
j,i

∶ l = 0, 1,… ,∞} , follows the 
Gamma lag distribution if:

where:

and we write:

Parameters � and � define the shape of the lag distribution, while parameter � defines its 
scale. Since 

∑∞

l=0
�
(l)

j,i
= � , we can interpret � as the long-term effect of Xi on Xj . Note that 

the normalization constant at denominator in formula (19) is not closed form but con-
vergent, and can be easily computed through numerical approximation. Futher details on 
the Gamma lag distribution, including maximum likelihood estimation, can be found in 
Magrini (2021, forthcoming).

We specified the effect of agricultural research expenditure ( X1 ) on agricultural produc-
tivity ( X2 ) as a Gamma lag distribution based on the empirical results for the United States 
of America in Alston et al. (2011):

This lag distribution has mode (peak) at 24 years, 99th percentile at 52 years and long-term 
elasticity equal to 0.32, meaning that agricultural productivity is expected to increase by 
0.32% after 50 years that agricultural research expenditure has grown by 1%.

Unfortunately, estimates based on empirical evidence are not available for the lag dis-
tributions of the other direct effects in the DLRM, thus, in order to illustrate our algorithm 
in a context as realistic as possible, we provided a provisional specification based on the 
Gamma family. Precisely, for each direct effect in the DLRM, we determined the Gamma 
lag distribution based on a guess of long-term elasticity, median and 99th percentile, say 
𝜃̂ , q̂0.5 and q̂0.99 , respectively. At this purpose, we solved the following system of equations 
with respect to � , � and � through numerical approximation:

The resulting lag distributions are shown in Table 7. Note that some Gamma lag distribu-
tions have a negative long-term elasticity reflecting an inverse relationship, for example the 
one between agricultural productivity ( X2 ) and unemployment in rural areas ( X3 ) (Fig. 7). 

(18)�
(l)

j,i
(�, �, �) = � wl(�, �)

(19)
wl(𝛿, 𝜆) =

(l + 1)
𝛿

1−𝛿 𝜆l

∑∞

k=0
(k + 1)

𝛿

1−𝛿 𝜆k

𝜃 ∈ ℝ 0 ≤ 𝛿 < 1 0 ≤ 𝜆 < 1

(20){�
(l)

j,i
∶ l = 0, 1,… ,∞} ∼ Gamma(�, �, �)

(21){�
(l)

2,1
∶ l = 0, 1,… ,∞} ∼ Gamma(� = 0.32, � = 0.90, � = 0.70)

(22)

⎧⎪⎪⎨⎪⎪⎩

𝜃 = 𝜃̂
q̂0.5∑
l=0

wl(𝛿, 𝜆) = 0.5

q̂0.99∑
l=0

wl(𝛿, 𝜆) = 0.99
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4.3 � Mediation analysis

From the hypothesized causal structure in Fig.  6, we see that agricultural research 
expenditure ( X1 ) influences at-risk-of-poverty rate in rural areas ( X6 ) through three indi-
rect paths: (i) a first path < X1,X2,X5,X6 > , passing through agricultural productivity 

Table 7   Specification of the 
lag distribution of each direct 
effect in the DLRM with DAG in 
Fig. 6. Each lag distribution was 
determined by solving the system 
of equations in formula (22) 
based on a guess of long-term 
elasticity � , median and 99th 
percentile

� � � Mode Median 95% 99% 99.9%

{�
(l)

2,1
} 0.32 0.90 0.70 24.2 25.6 42.5 51.2 62.0

{�
(l)

3,2
} − 0.45 0.80 0.35 2.8 2.9 7.2 9.6 12.6

{�
(l)

4,2
} 0.35 0.80 0.35 2.8 2.9 7.2 9.6 12.6

{�
(l)

4,3
} − 1.00 0.90 0.05 2.0 1.7 3.8 4.8 6.0

{�
(l)

5,2
} − 0.40 0.80 0.35 2.8 2.9 7.2 9.6 12.6

{�
(l)

6,4
} − 0.90 0.80 0.35 2.8 2.9 7.2 9.6 12.6

{�
(l)

6,5
} 0.60 0.90 0.30 1.6 6.5 11.6 14.1 17.4

Fig. 7   Lag distributions of the direct effects in the DLRM with DAG in Fig. 6 and coefficients in Table 7
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( X2 ) and price of agricultural products ( X5 ); (ii) a second path < X1,X2,X4,X6 > , pass-
ing through agricultural productivity ( X2 ) and median familiar income in rural areas 
( X4 ); (iii) a third path < X1,X2,X3,X4,X6 > , passing through agricultural productivity 
( X2 ), unemployment in rural areas ( X3 ) and median familiar income in rural areas ( X4).

It is possible to anticipate duration and sign of any indirect effect in the DLRM on 
the basis of duration and sign of the direct effects shown in Table 7. For example, the 
indirect effect of X1 on X6 passing through X2 and X5 is composed by the direct effect of: 
(i) X1 on X2 , with positive sign and 99th percentile equal 51.2 years; (ii) X2 on X5 , with 
negative sign and 99th percentile equal to 9.6 years; (iii) X5 on X6 , with positive sign 
and 99th percentile of 14.1 years. Thus, we conclude that the indirect effect of X1 on X6 
passing through X2 and X5 has negative sign and 99th percentile approximatively equal 
to 51.2 + 9.6 + 14.1 ≈ 75 years. Based on analogous arguments, we conclude that the 
indirect effect of X1 on X6 mediated by X2 and X4 has negative sign and 99th percentile 
approximatively equal to 70 years, while the one mediated by X2 , X3 and X4 has negative 
sign and 99th percentile approximatively equal to 75 years.

The lag distributions of these three indirect effects and of the total one computed 
using Algorithm 1 are displayed in Fig. 8 and summarized in Table 8. Coherently with 
the anticipations above, the magnitudes of the effects become negligible above lag 75, 
as it is apparent from the similarity between the cumulative effects up to 75 and up to 
90 lags (fifth ad sixth row in Table 8). Even the sign of the effects is negative as antici-
pated, meaning that agricultural research expenditure ( X1 ) is able to reduce the at-risk-
of-poverty rate in rural areas ( X6 ). In particular, the total effect at lags 30, 45 and 60 
resulted, respectively, equal to −0.0870, −0.2563, and −0.3029, meaning that a unitary 
percentage increase in agricultural research expenditure ( X1 ) is expected to entail an 
overall decrease by 0.09%, 0.26% and 0.30% of the at-risk-of-poverty rate in rural areas 
( X6 ) after 30, 45 and 60 years.

Fig. 8   Lag distributions of the three indirect effects of X
1
 on X

6
 and of the total one in the DLRM with 

DAG in Fig. 6 and coefficients in Table 7
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5 � Concluding remarks

We have proposed an efficient DAG-free algorithm to perform mediation analysis in 
recursive systems of distributed-lag linear regressions, here called Distributed-lag Linear 
Recursive Models (DLRMs). The generality of our algorithm is clearly emphasized by 
the empirical application to a simplified, but not trivial, real-world causal structure with 
paths composed of three or four edges and direct effects characterized by an infinite lag 
distribution.

The proposed algorithm works for DLRMs with strict causal interpretation, i.e., not 
including autoregressive effects. Nevertheless, the class of DLRMs supports autoregres-
sive terms, although they have a predictive interpretation coherently with the concept of 
Granger-Sims causality, thus implying a partially causal model. Mediation analysis in the 
partially causal case is still possible by making use of DAG-based computation, but, com-
pared to our DAG-free algorithm, the computational burden increases faster as higher time 
lags are considered. Future work will include a simulation study to assess the efficiency of 
DAG-based computation in the partially causal case compared to the strictly causal one, as 
well as the efficiency of our DAG-free algorithm compared to DAG-based computation.

Weak stationarity is a necessary condition for distributed-lag linear regression in order 
to make coefficients not depend on the time point but only on the time lag. However, the 
class of DLRMs can be applied to non-stationary processes without loss of generality if the 
time series are preliminarily differenced to eliminate unit roots.

Linearity characterizing DLRMs is not a limitation from an empirical point of view, as 
it is possible to transform the variables through non-linear (but monotonic) functions while 
maintaining linearity with respect to parameters. For example, the logarithmic transforma-
tion of strictly positive variables is often used in empirical applications of linear regression 
to deal with power law relationships while maintaining interpretability of coefficients: on 
the logarithmic scale, absolute variations become percentage changes.

Recursivity of DLRMs, equating to uncorrelation between the random errors, is a sim-
plification that excludes processes with autocorrelated errors, like MA ones. However, note 
that, due to the equivalence between MA(1) and AR(∞ ), the class of DLRMs could reason-
ably approximate processes with autocorrelated errors if autoregressive effects are mod-
elled through an infinite parametric lag distribution, like the Gamma lag exploited in our 
empirical application.

Our proposal assumes that the DAG of a DLRM is known a-priori, for instance it may 
have been specified based on domain knowledge. However, it is worth noting that, in case 
of unavailability of domain knowledge, the DAG can be estimated from data by making use 
of causal discovery algorithms for time series (see, for example, Deng et al. 2013; Peters 
et al. 2013; Malinsky and Spirtes 2018).

Table 8   Cumulative effects of 
X
1
 on X

6
 in the DLRM with 

DAG in Fig. 6 and coefficients in 
Table 7. 𝛱

1
=< X

1
,X

2
,X

5
,X

6
> ; 

𝛱
2
=< X

1
,X

2
,X

4
,X

6
> ; 

𝛱
3
=< X

1
,X

2
,X

3
,X

4
,X

6

Time lag IE(X
1
,X

6
;�

1
) IE(X

1
,X

6
;�

2
) IE(X

1
,X

6
;�

3
) TE(X

1
,X

6
)

0 to 15 − 0.0001 − 0.0006 − 0.0002 − 0.0009
0 to 30 − 0.0167 − 0.0362 − 0.0340 − 0.0870
0 to 45 − 0.0610 − 0.0883 − 0.1070 − 0.2563
0 to 60 − 0.0753 − 0.0999 − 0.1277 − 0.3029
0 to 75 − 0.0767 − 0.1007 − 0.1295 − 0.3069
0 to 90 − 0.0767 − 0.1007 − 0.1295 − 0.3069
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A further assumption of our proposal is that the coefficients are known a-priori or have 
been consistently estimated from data, thus the problem of identifying causal effects is not 
addressed in this paper. However, coefficients are typically unknown in real-world appli-
cations of mediation analysis, and the presence of unmeasured variables and/or unmeas-
ured relationships makes their estimation challenging. Thus, assessing the identification of 
causal effects is an important step to be performed before estimating the coefficients and 
applying our algorithm. Identification methods for non-parametric mediation models with 
longitudinally repeated measures and time-varying treatments (see, for example, Vander-
Weele and Tchetgen 2017; Park et al. 2018; Loh et al. 2019) represent a valuable resource 
for this purpose.
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