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Abstract
Conclusions about the individual development of delinquent behaviours during the life-
course are often made by repeatedly interviewing the same respondents (i.e. panel data). 
Missing data, especially unit nonresponse and panel attrition are often a problem for the 
analysis of panel data, as they pose a threat to the validity of statistical inferences. Multiple 
imputation (MI) is a standard state-of-the-art technique to address these problems. How-
ever, until very recently, MI methods to impute highly skewed, zero-inflated and repeatedly 
measured count data such as the count of delinquent behaviours per year, were not avail-
able. Solutions that were often applied included data transformations and rounding, so that 
available MI methods, usually based on the multivariate normal model, could be applied. 
This approach has also been used by Reinecke and Weins (Qual Quant 47(6):3319–3334, 
2013), who analysed delinquency data from an adolescents’ four-wave panel. Recent miss-
ing data research, however, suggests that these “normalizing” practices could be problem-
atic and that imputation models with implausible distributional assumptions should gener-
ally be avoided when the empirical data depart too heavily from these assumptions. In the 
present paper, we re-analyse the data from Reinecke and Weins (2013) using MI models, 
where parametric assumptions of the imputation model are compatible to the subsequent 
analysis model (a growth curve model for zero-inflated count data). Results show that the 
chance of reporting zero punishable offences decreases over time, with a turning point at 
around the age of 15. Likewise, the versatility of delinquent behaviours increases early on 
in adolescence, and decreases later (reflecting the typical age-crime curve). Boys and stu-
dents from the bottom-level branch of the German educational system exhibit a higher ver-
satility in delinquent activity. A comparison of present results with the original ones from 
Reinecke and Weins (2013) corroborates recommendations e.g. by Yu et al. (Stat Methods 
Med Res 16(3):243–258, 2007) to opt for missing data methods with fitting distributional 
assumptions.

Keywords Missing data · Multiple imputation · Growth curve models · Development of 
delinquency · Age–crime relationship

 * Kristian Kleinke 
 kristian.kleinke@uni-siegen.de

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2007-6128
http://crossmark.crossref.org/dialog/?doi=10.1007/s11135-020-01030-5&domain=pdf


878  K. Kleinke et al.

1 3

1  Introduction and overview

Several long-term criminological studies, such as the Cambridge Study (Farrington and 
West 1990), the Philadelphia Study (Tracy et al. 1990), the Rochester Study (Thornberry 
et al. 2003), or the CrimoC study [i.e. Crime in the modern City, e.g. Reinecke and Weins 
(2013); Boers et  al. (2010); Seddig and Reinecke (2017)] examine the development of 
delinquent behaviours over time [see also Sampson and Laub (2005)]. One of the major 
problems affecting the analysis of longitudinal or panel data is wave nonresponse and 
panel attrition, meaning that some of the respondents could not or would not take part in 
one or more panel waves (i.e. wave nonresponse), or in all subsequent panel waves (i.e. 
panel attrition). In their analysis of four waves of the CrimoC data regarding the age-crime-
relationship, Reinecke and Weins (2013) compared model results based on three missing 
data techniques that are often used to address the missing data problem: Listwise deletion 
(LD)—an ad hoc method, which simply excludes all cases with missing values from the 
analysis, and two more sophisticated methods: full information maximum likelihood esti-
mation (FIML) and multiple imputation (MI) under the joint multivariate normal model 
(Schafer 1997; Schafer and Graham 2002). While LD makes the often highly implausible 
assumption that missingness in a certain variable is a completely random process, and does 
not depend on observed (or even unobserved) information in other variables, both MI and 
FIML explicitly allow that other variables can be related to the chance of not observing a 
certain variable. Both FIML and MI can make use of this available information, and the 
inter-relationships in the data (more precisely, the variables in the model), to estimate miss-
ing information and to estimate substantive model parameters.

Regarding their four-wave panel, Reinecke and Weins (2013) found that the chance of 
answering questions about delinquent behaviours depended on gender and school type, i.e. 
girls were more likely to answer these questions than boys, and also students from “Gym-
nasium”, the top-level branch of the German secondary educational system were more 
likely to complete the questionnaires in comparison to the other school types. Results 
based on LD can therefore be expected to be biased. For a detailed missing data analysis of 
the data used in Reinecke and Weins (2013), see also Kleinke et al. (2020), Chap. 5.

Furthermore, substantive results based on MI and FIML both showed the typical age-
crime-curve [e.g. Moffitt (1993)], meaning that delinquency—on average—first increases 
over time, reaching a maximum at around the age of 15, then decreasing later on in ado-
lescence. Additionally, the authors looked into effects of gender and school type on the 
age-crime relationship: Girls on average had a lower versatility of delinquent behaviours 
than boys, and students attending the intermediate branch (in German: Realschule) or top 
level branch (in German: Gymnasium) exhibited a lower versatility in criminal activity in 
comparison to students attending the lowest branch (in German: Hauptschule).1 In their 
comparison of missing data methods, results of both FIML and MI furthermore showed a 
higher level of delinquent behaviours during adolescence, and a more pronounced curvi-
linear association between age and crime in comparison to LD. In addition, FIML and MI 
estimates showed a higher prevalence of delinquent behaviours of boys and of adolescents 

1 The German secondary educational system comprises three different branches, the top-level branch being 
Gymnasium with either 8 or 9 years of education (depending on the school and the federal state), which 
qualifies students for tertiary education at Universities or Universities of Applied Sciences. The intermedi-
ate branch is Realschule with 6 years of attendance, the bottom-level branch Hauptschule with 5 or 6 years 
of school attendance. The latter two branches prepare students for vocational training.
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attending Hauptschule. Since it was also these groups who had a higher chance of not 
answering the questions about delinquent behaviours, estimated higher levels by MI and 
FIML can be deemed plausible. LD estimates can be assumed to be biased downwards.

Although general patterns of results were similar, when comparing FIML and MI 
estimates, parameter estimates nevertheless differed to some extent. The most likely 
explanation for these findings are differences in model assumptions: The substantive 
model was a growth curve model assuming a zero-inflated Poisson process. The impu-
tation model, however, assumed a multivariate normal distribution—a highly implausi-
ble model assumption for a zero-inflated count variable. Since MI methods with fitting 
distributional assumptions were not available at that time, Reinecke and Weins (2013) 
adapted a procedure originally proposed by Schafer and Olsen (1998). During the impu-
tation stage, they split the repeatedly measured zero-inflated count variables into two 
separate variables respectively, to deal with the high skewness in the variable, and to 
make the normality assumption (somewhat) more plausible. These were (a) a binary zero 
versus non-zero indicator, and (b) a zero-truncated count variable, indicating for the non-
zero cases, which non-zero count this participant has. Then they imputed both variables 
jointly under the multivariate normal model. After the imputations were created, they 
re-integrated the two separate variables into one single variable: The indicator variables 
were rounded to 0 and 1, and 1’s were replaced by the respective count (which was also 
rounded to the nearest integer value). For an in-depth discussion of this method and for 
further details, see Kleinke et  al.  (2020, Chap. 5). Note that data transformations and 
rounding could produce biased statistical inferences (Horton et al. 2003; Kleinke et al. 
2020). Note furthermore, that the applied procedure could also not perfectly “normalize” 
the data. Scores were still skewed (but less extremely than before). As for example Yu 
et al. (2007) or Kleinke (2017) have shown, normal model MI could yield biased infer-
ences, when empirical data depart from normality. We therefore can expect at least some 
bias in MI estimates reported in Reinecke and Weins (2013) due to violated distributional 
assumptions of the imputation model. Note again that at the time of writing, imputation 
techniques for zero-inflated count data were not yet generally available. Yu et al. (2007) 
recommend that using “MI methods with inappropriate distributional assumptions should 
be avoided when the data depart considerably from these assumptions” (p. 255).

Recently, Kleinke and Reinecke (2019) have proposed MI methods for zero-inflated 
clustered count data (based on zero-inflated Poisson or negative binomial models), and 
tested these methods in systematic Monte Carlo simulations [see also Kleinke et al. (2020), 
Chap. 6]. Additionally, also software for fitting substantive models nowadays provides 
greater modelling flexibility. Mariotti and Reinecke (2010) have shown that a zero-inflated 
negative binomial (NB) model usually has a better fit to the CrimoC data than the Pois-
son model, reported in Reinecke and Weins (2013). In the mean time personal computers 
have become fast enough to estimate rather complex (MI) models (e.g., zero-inflated nega-
tive binomial growth curve models with assumed interindividual variation of the growth 
factors).

Since both missing data methods with fitting distributional assumptions that are com-
patible to the subsequent analysis model, are now available, and the analysis of more com-
plex substantive models is now computationally feasible, the aim of this paper is to re-
analyse the data from Reinecke and Weins (2013), and discuss substantive model results 
in the light of new methods and models. In the present paper, we fit growth curve models 
to the CrimoC data assuming both a zero-inflated Poisson or NB process respectively and 
that allow starting levels of delinquency to vary across individuals. A congenial imputation 
model is adopted respectively.
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The paper is structured as follows: Sect. 2 gives a brief introduction to missing data, 
MI and FIML estimation. The rationale of the imputation methods adopted in this arti-
cle is introduced in Sect. 2.3. In Sect. 3 we provide background information regarding the 
CrimoC data, and about our substantive model. In Sect. 4 we discuss our updated model 
results, i.e. when imputation model and analysis model are congenial. We end with a dis-
cussion of results, limitations of the current analyses, and outline fruitful avenues for future 
research (Sect. 5).

2  Missing data, maximum likelihood estimation, and multiple 
imputation

Rubin (1976, 1987) distinguishes three missing data “mechanisms”, classifying values as 
being missing completely at random (MCAR), missing at random (MAR), and missing not 
at random (MNAR). Values are MCAR, if the probability for the observed pattern of miss-
ing and not missing values in the dataset depends neither on variables whose values are 
observed nor on variables whose values are not observed. Missing data are called MAR, if 
this probability depends on observed information alone, but not in addition on unobserved 
information. MAR is sometimes also referred to as conditionally random missingness, 
which means that after controlling for all observed information in the data, the mechanism 
is in fact random. Finally, missing values are MNAR, if the probability for the observed 
pattern of missing and not missing values depends on unobserved information, even after 
conditioning on observed values.

While complete case analysis usually requires missing data to be MCAR, to produce 
unbiased statistical inferences, maximum likelihood methods and MI allow missing data 
to be MAR [e.g. Schafer and Graham (2002)]. If this assumption is not met, bias is to 
be expected. The magnitude of this bias depends on the amount and pattern of missing 
data. In this case special MNAR models (under strong and usually untestable assumptions) 
could be fitted [cf. Kleinke et al. (2020), Chap. 3].

2.1  Full information maximum likelihood (FIML)

One of the standard methods to address the missing data problem both in cross-sectional 
and longitudinal or panel data is maximum likelihood estimation (Schafer and Graham 
2002), which is also referred to as full information (FIML) or direct maximum likelihood 
estimation. For an easily understandable introduction to maximum likelihood (ML) estima-
tion both with and without missing data, see for example Enders (2010).

The basic estimation principle of ML is that the method repeatedly tries out different 
combinations of parameter values until it identifies a particular constellation of estimates 
that produces the best fit to the data (or in mathematical terms, the highest log-likelihood): 
The starting point for any ML analysis is to assume a parametric distribution for the popu-
lation data (e.g. a normal distribution, or a Poisson distribution) and to specify a statisti-
cal model accordingly. Inserting the observed data of each individual and a set of param-
eter values into the corresponding density function returns a likelihood value for each case 
that quantifies the relative probability of drawing these data from the specified population. 
The sample log-likelihood is the sum of the individual log-likelihood values. It quantifies 
the probability of drawing the observed data from the specified population. Through an 
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iterative process the one particular constellation of parameters is then sought that maxi-
mizes the sample log-likelihood. If the data file contains missing values, individual cases 
contribute to their individual log-likelihood only to the extent to which they have observed 
data. The number of data points per case thus varies depending on the respective pattern 
of observed and unobserved values. Apart from that the basic estimation principle stays 
the same. FIML estimation can be enumerated among the model-based missing data meth-
ods. Estimates are usually unbiased, when the parametric model is correctly specified, 
when parametric assumptions are at least approximately met, and when the MAR assump-
tion holds, i.e. missingness only depends on observed information in the model variables 
(Kleinke et al. 2020; Schafer and Graham 2002). Should missingness—however—depend 
on other variables in the data file (that are not part of the substantive model), bias is to be 
expected. Inclusion of extra variables only for the estimation of missing information, while 
not considering these variables in the substantive model, is straightforward in MI, but not 
in FIML estimation (Collins et al. 2001). This is possible, because MI is a two-stage pro-
cess that clearly separates the imputation and the analysis stage, allowing different models 
in each step.

2.2  Multiple imputation (MI)

The basic idea of multiple imputation is to replace each missing value not only once, but 
multiple times based on some statistical model. The resulting m complete data files differ 
only in the formerly unobserved part. Each replacement of an incomplete value is equally 
plausible under the specified imputation model. In a second step, the m datasets are ana-
lysed by any standard technique or software for complete datasets. The m sets of obtained 
model results (parameter estimates and corresponding standard errors) are combined into 
an overall set of results, using simple combination rules (Rubin 1987; Barnard and Rubin 
1999). The combined parameter estimate is simply the mean of the m estimates, while the 
standard error combines a within imputation and between imputation variance component, 
reflecting the extra estimation uncertainty due to missing data. There are two main theo-
retical frameworks to generate the imputations – often referred to as joint modelling (JM) 
and conditional modelling (CM). JM approaches require the specification of a joint distri-
bution for all variables in the model. Schafer’s (2016) norm2 package for example, which 
is based on algorithms in Schafer (1997) assumes a multivariate normal distribution. In 
practice, it is often hard to find a joint distribution that reflects the individual distributions 
of the variables in the dataset well.

The second framework, CM [e.g. Raghunathan et  al. (2001) or van Buuren (2018)] 
only hypothetically assumes that a common distribution exists. In CM, users specify an 
appropriate univariate model separately for each incompletely observed variable. The soft-
ware then imputes each incomplete variable in turn (via an iterative process) according 
to the respective univariate model. This means, for an incomplete clustered count varia-
ble, a two-level Poisson or negative binomial model [cf. Hilbe (2011)] could be specified, 
while missing data in a binary variable such as gender could be filled in based on a logistic 
regression imputation model. It needs to be noted that while CM provides great model-
ling flexibility, from a theoretical perspective, the drawback is that it is not always clear, if 
the (implicitly) underlying joint probability distribution exists, and what the consequences 
are, if this is not the case. In practice, however, many simulations and applications have 
shown that the method works reasonably well (e.g., van Buuren et al. 2006). For a more 
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in-depth discussion of MI and advantages and disadvantages of the respective frameworks, 
see Kleinke et al. (2020).

2.3  Multiple imputation of incomplete count data

Both missing data theory (Rubin 1987) and missing data research suggest that the impu-
tation model should be compatible to the subsequent analysis model. This means that 
relationships in the data that are of interest to the data analyst need to be reflected in the 
imputation model. But also distributional assumptions of the imputation model should 
be compatible to the subsequent analysis model, which ideally has a very good fit to the 
empirical data at hand. For example, Yu et al. (2007), Kleinke (2017) and Kleinke and Rei-
necke (2013) have demonstrated that adopting imputation methods and models with ill-fit-
ting distributional assumptions can bias statistical inferences quite noticeably. This means 
that count data (such as the number of delinquent behaviours per year), which are often 
highly skewed, should usually not be imputed by methods relying on the normal model, or 
by proxy-methods, e.g. methods for categorical data such as polytomous regression [unless 
the number of categories is sufficiently small; see also the Monte Carlo simulation and dis-
cussions in Kleinke and Reinecke (2019), Chap. 3].

Kleinke and Reinecke (2019) recently have provided additional imputation functions 
for the conditional modelling MI software mice (van Buuren and Groothuis-Oudshoorn 
2011), which are based on the most commonly used count data models [for a very compre-
hensive introduction to count data modelling, see Hilbe (2011)]. Package countimp2 sup-
ports imputation of incomplete count data under different model assumptions: the classical 
Poisson model, the negative binomial model (NB), the zero-inflated Poisson model (ZIP), 
the zero-inflated negative binomial model (ZINB), and the Poisson or negative binomial 
hurdle model. In case of clustered or panel data, these models can also be fitted as two-
level models. For classical Poisson regression, the probability of observing a certain count 
yi given covariates xi is

Poisson generalized linear models use a log link, i.e. they model the log of the expected 
count as a function of predictors xi . The conditional mean is E(yi|xi) = �i = ex

�
i
� , the vari-

ance is assumed to be equal to the mean (assumption of equidispersion). Often, however, 
empirical data are overdispersed, which means that the variance is larger than expected by 
the Poisson model. In this case, the negative binomial model estimates an extra parameter 
that represents the amount of overdispersion in the data. There are several parametriza-
tions of the NB model, a usual one being the notation as a gamma-Poisson mixture model, 
which estimates a shape parameter � that represents the random variation in yi that is not 
fully accounted for by xi [for details, see Hilbe (2011)]. Conditionally on xi , yi is distributed 
as

(1)P(Yi = yi|xi) =
e−�i�

yi
i

yi!
, yi = 0, 1, 2,… .

2 countimp is available from https:// www. github. com/ kklei nke/ count imp and provides additional imputa-
tion functions for package mice in R.

https://www.github.com/kkleinke/countimp
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with conditional mean �i and conditional variance �i(1 + ��i) , with dispersion parameter 
� = 1∕� . Note that the NB distribution and Poisson distribution are nested and the NB dis-
tribution converges to a Poisson distribution, when � → 0.

There are several ways to determine, which model has the better fit to the data [for an 
extensive discussion, see Hilbe (2011)]. In the present paper, we report test statistics for the 
null hypothesis, that the NB overdispersion parameter is zero. Additionally, Poisson and 
NB models can be compared by means of model fit statistics like the Akaike information 
criterion (AIC) or the Bayesian information criterion (BIC).

When empirical data contain more zero counts than would be expected by either the 
Poisson or the NB model, the data are called zero-inflated. In this case a zero-inflation 
model (Lambert 1992) can be fitted. Zero-inflation models are mixture models consist-
ing of two model components—the zero model, usually a binomial model, which deter-
mines if an observational unit belongs to the count process or to the so-called “certain 
zero” process, and the count model, a Poisson or NB model, that determines which count 
(zero or non-zero) an observational unit has. Zero-inflation models allow two sources of 
zeros: They can stem from both the zero part or from the count part and can also have dif-
ferent sets of predictors. For example, we assume a group of students, who would never 
commit any punishable offences, perhaps due to their high moral standards. In addition, 
there might be another group of students, who might have committed an offence, but who 
nevertheless reported zero delinquent behaviours, because they were closely monitored by 
their parents after having committed an offence the year before. In contrast to zero-inflation 
models hurdle models assume only one source of zeros. They fit a zero-truncated Poisson 
or NB model to the non-zero observations. Since we do not assume offenders and non-
offenders to be distinct categories that never overlap [see Seddig and Reinecke (2017)], we 
fit zero-inflation models rather than hurdle models to the empirical data.

In case of clustered (panel) data, the non-independence of residuals due to the clustered 
structure of the data needs to be taken into account. Linear mixed effects models [e.g. Bryk 
and Raudenbush (1992)], or equivalently, latent growth curve models [e.g. Bollen and Cur-
ran (2006)] are the method of choice when intraindividual as well as interindividual dif-
ferences in the development across time are of interest. These models provide information 
about average starting levels and average levels of change across time (so-called “fixed 
effects”), but also allow predictors to test for differences in starting levels and patterns of 
change across time. Variances and covariances of individual starting levels and levels of 
change are also called “random effects”.

A detailed description regarding how the respective imputation functions generate the 
multiple imputations is given in Kleinke and Reinecke (2019). Basically, multiple imputa-
tion based on Rubin’s theory (1987) includes a stochastic component, that introduces an 
adequate amount of variability in the m imputations that reflects the estimation uncertainty 
due to missing data. Within the conditional modelling framework, the two solutions to 
introduce variability in the imputations are Bayesian regression [see for example Rubin 
(1987),  pp.  169–170], and bootstrap regression: Bayesian regression first fits the speci-
fied model to the complete part of the data and obtains the posterior mean 𝛽  and posterior 
variance V(𝛽) of the model parameters � . Secondly, new parameters are simulated from 
N(𝛽,V(𝛽)) . These new parameters are finally used to make predictions for the incom-
plete part of the data and to obtain the imputations. The bootstrap approach first draws 

(2)P(Yi = yi|xi) =
���

yi
i
Γ(� + yi)

Γ(yi + 1)Γ(�)(�i + �)�+yi
,
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a bootstrap sample from the observed cases and fits the specified model to this bootstrap 
sample. Secondly, the obtained model parameters are used to make predictions for the 
incomplete part of the data and to obtain the imputations. These steps are repeated m − 1 
times. Imputation functions from package countimp are available as Bayesian regres-
sion and bootstrap regression variants (Kleinke and Reinecke 2019). Bootstrap regression 
is a suitable alternative whenever researchers are not happy to make the assumption that 
parameters can be simulated from N(𝛽,V(𝛽)) . In the present analyses, we use the Bayesian 
variants.

3  Data, imputation and substantive model

3.1  Data and measures

We reanalyse empirical panel data3 from four waves of the longitudinal research project 
Crime in the modern City (CrimoC, https:// www. crimoc. org) The main focus of the study 
lies on the emergence and development of deviant and delinquent behaviours in adoles-
cence and the social control surrounding it, i.e. both formal control—meaning the police 
and the judiciary, and informal control—referring to school and family (Boers et al. 2010; 
Seddig and Reinecke 2017). The target population of this analysis were students attend-
ing public schools in the town of Münster (about 300,000 inhabitants) in the western 
part of Germany. The survey of 7th graders (which this analysis is based on) included all 
7th grade classes, and was first conducted in the year 2000. This cohort was interviewed 
annually until students reached the 10th grade in 2003. Data were collected by means of 

Table 1  Descriptive statistics of 
the delinquency index

Index Mean SD Min Max Missing

2000 0.60 1.36 0 12 689
2001 1.06 1.99 0 15 397
2002 1.29 2.23 0 16 343
2003 1.00 1.76 0 16 579

Table 2  Frequency table of 
delinquent activity at wave 1 by 
gender and school type

HA, RE, GY are the school type indicators, reflecting the bottom-
level, intermediate level and top-level branch (Hauptschule, Reals-
chule, Gymnasium)

Gender Female Male Σ

School type HA RE GY HA RE GY

Not delinquent 88 126 215 94 157 310 990
≥ 1 Delinquent behaviours 61 74 95 36 51 68 385
Missing 123 138 122 104 120 82 689

3 The data set is included in package countimp and available from https:// github. com/ kklei nke/ count imp.

https://www.crimoc.org
https://github.com/kkleinke/countimp
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self-administered classroom interviews and response rates ranged between 86 and 88% [see 
Table 1 in Reinecke and Weins (2013)]. Detailed information about missing data may be 
found in Reinecke and Weins (2013), Tables 2, 3 and 4. The sample for the present analysis 
consists of 1022 girls and 1042 boys attending all types of schools, who took part in at least 
two out of the four waves. 24.5% of students in the sample attended the low-level branch of 
the German secondary educational system (Hauptschule), 32.3% the intermediate branch 
(Realschule), and 43.2% the top-level branch (Gymnasium) .

The dependent variable of interest in the present analyses is the count of delinquent 
behaviours. At each panel wave, students answered 16 questions about various offences like 
for example graffiti spraying, damaging property, robbery, purse snatching, assault with 
and without a weapon, drug abuse or drug trafficking [for details, see Table 8 in Reinecke 
and Weins (2013)]. Students indicated for each offence, if they committed this delinquent 
behaviour in the 12 months prior to the interview (1 = yes; 0 = no). The individual delin-
quency index was then computed as the sum of these 16 binary items, reflecting the versa-
tility of delinquent activity. The index could range between 0 and 16. Higher index values 
indicate a more versatile criminal activity. Descriptive statistics of the delinquency index 
are given in Table  1 and confirm the curvilinear development of crime during the four 
years of data collection: Mean delinquency rates increase from 2000 to 2002, and decrease 
in 2003. Table 2 further differentiates delinquent activity as well as response patterns at the 
first panel wave by gender and school type, see also Reinecke and Weins (2013, Table 3) 
for a more in-depth discussion. There is a small relationship between gender and reporting 
delinquency at wave 1. Boys more often exhibit delinquent behaviours than girls, however, 
boys are somewhat also more likely to refuse to answer questions about delinquent activity 
in comparison to girls (Cramer’s V = .14 , �2(2) = 40.63 , p < .001 ). Furthermore, there is a 
small relationship between school type and reporting delinquency at the first panel wave—
with students from the bottom level and from the intermediate branch being somewhat less 
likely to answer questions regarding delinquent activity in comparison to students from the 
top-level branch (Cramer’s V = .15 , �2(4) = 96.76 , p < .001).

3.2  Imputation and substantive model

Descriptive statistics in Tables 1 and 2 indicate a heavily skewed distribution of the delin-
quency indexes with a large number of zero counts at each panel wave. Most students 
reported that they did not commit any punishable offence during the previous year. When 
analysing count data, the skewed and discrete nature of the data (i.e. non-negative integer 
values) needs to be taken into account [cf. Erdman et al. (2008); Hilbe (2011)]. Mariotti 
and Reinecke (2010) fitted different growth curve and growth mixture models to the Cri-
moC data and found that Poisson or negative binomial (NB) models that cater for the large 
amount of zero counts have a good fit to the data.

In the present analysis, we re-examine the effects of gender and school type on the 
age–crime-relationship using newly available missing data methods. Based on results by 
Mariotti and Reinecke (2010) we assume that overdispersion in the data, as well as zero-
inflation needs to be adequately addressed and that a ZINB model will have a better fit to 
the data than a ZIP model. We will present results of the age-crime-relationship based on 
assumed ZIP and ZINB processes.

The substantive model, which is also the model we use for data imputation, is illustrated 
in Fig. 1.
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Recall that zero-inflation models consist of two model components. The top-part 
of Fig.  1 displays the count model, the bottom part gives the zero-inflation component. 
Observed delinquency scores y1 to y4 (where subscripts 1 to 4 denote the respective panel 
wave) define latent growth factors I, S, and Q representing intercept, linear and quadratic 
slope, i.e. average starting levels of delinquency and the curvilinear development of delin-
quency across time respectively. Baseline levels of delinquency are regressed on gender 
and school type.

Analogously, in the inflation part, z1 to z4 are zero versus non-zero indicators, which 
define latent growth factors II, SI, and QI representing the chance of having a structural 
(or “certain”) zero across time. Again, the baseline chance of having a structural zero is 
regressed on gender and school type. Note that for identification purposes, the mean of II is 
fixed to zero.

While, generally speaking, growth curve models allow to estimate both average values 
(i.e. means or intercepts) of the growth factors, as well as their variances and covariances, 
with only four panel waves, models cannot be overly complex. Too complex models rela-
tive to the available sample size and the available panel waves would result in not or only 
weakly identified models and severe estimation problems.

To fit a quadratic growth curve model, a minimum of four timepoints is needed. In an 
unconditional model, 13 parameters need to be identified: the means of the intercept, the 
slope, and the quadratic slope (3 parameters), their variances (3 parameters) and covari-
ances (3 parameters), and the residual variances of the outcome variables (4 parameters). 
An adequate sample size both at level-1 (the repeated measurements) and level-2 (the indi-
viduals) is needed to reliably estimate these growth model parameters. In a conditional 
model, there are additional parameters of the respective regressions to be estimated. 
While in our case the number of individuals is sufficiently large, the number of repeated 

Fig. 1  Conditional zero-inflation growth curve model. Note: I, S, and Q are the growth factors representing 
the intercept (i.e. starting level) and linear and quadratic slopes respectively. II, SI, and QI are the counter-
parts in the inflation part of the model. Baseline levels of delinquency as well as the baseline chance of hav-
ing a structural zero are predicted by gender and school type
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observations per individual is quite small. Since the estimated variances of the slope and 
quadratic slope are quite small, we fix these parameters to zero to stabilize the estimation 
process.

In the count part, we thus estimate intercepts (or means) of the growth factors, as well as 
the variance of individual baseline levels of delinquency, and predict these individual dif-
ferences by gender and school type. In the zero model, we only estimate the average values 
of the growth factors. While our substantive model from Fig. 1 is a latent growth curve 
model, which will be estimated by the program Mplus,4 data imputation is done by package 
countimp, which fits generalized linear mixed effects models. However, the model from 
Fig. 1 can easily be rewritten as a linear mixed effects Poisson or NB model, which is fully 
compatible to the latent growth model:

The model equation in linear mixed effects modelling notation for the count part of the 
imputation model is

where yi is the respective delinquency score (in long format, which means that the repeated 
measurements are stacked upon another and stored in a single variable), �0 is the intercept 
(labeled I in Fig. 1) – the average starting level of delinquency at wave 1 across all individ-
uals, and �1 (S), and �2 (Q) being linear and quadratic slopes that reflect the average curvi-
linear development across time, with Ti = (0, 1, 2, 3) being the time period. Here, 0 denotes 
the first panel wave. On the person-level (level 2), we furthermore predict individual dif-
ferences in starting levels by gender (FEMALE) and school type (GY and RE being the 
school type indicators for the top-level and medium level branches, with the bottom-level 
branch being the reference category). ei is the level-1 residual, u0j is the level-2-residual, 
with i and j being level-1 and level-2 indices. The zero model equation—a binomial gener-
alized linear model is

Here zi represents a zero versus non-zero indicator variable (in long format). �1z – �3z are 
the counterparts of the coefficients of the growth factors II, SI and QI in Fig. 1, represent-
ing the average chance for having a structural zero across time.

3.3  Data imputation

For data imputation, we select a multiple imputation model that is fully compatible to the 
subsequent substantive model of interest. This means that we choose an equivalent model 
class and estimate the same parameters as in the analysis model.

For the present analyses, we create two sets of m = 100 imputations by package coun-
timp (Kleinke and Reinecke 2019). Imputation functions for the incomplete delinquency 
indexes are—depending on the subsequent analysis model—either mice.impute.2l.
zip or mice.impute.2l.zinb assuming either a zero-inflated Poisson or NB 

(3)
ln(yi) = �0 + �1Ti + �2T

2
i
+ ei(level 1)

�0j = �0 + �1FEMALE + �2GY + �3RE + u0j(level 2)

(4)logit(zi) = �1z + �2zTi + �3zT
2
i
+ �4zFEMALE + �5zGY + �6zRE + eiz.

4 This has practical reasons. The stand-alone program Mplus (Muthén and Muthén 2017) is very user-
friendly, as it supports automated repeated data analysis of the m imputed data sets and multiple imputation 
inference.
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process. Predictors gender and school type were completely observed. We choose the para-
metric Bayesian regression variants, since we assume that the parametric models fit the 
data sufficiently well and that parameters can be simulated from N(𝛽,V(𝛽)) . Convergence 
of the Gibbs sampler is monitored as outlined in van Buuren and Groothuis-Oudshoorn 

Table 3  Model fit statistics

The lower part of the table displays means (M)  and standard deviations  (SD) of the respective criteria 
across the m = 100 imputations
LL, log-likelihood value; AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC, 
adjusted Bayesian information criterion

LL_M LL_SD AIC_M AIC_SD BIC_M BIC_SD aBIC_M aBIC_SD

FIML ZINB − 7457.84 14949.69 15045.44 14991.43
FIML ZIP − 7485.67 14997.34 15070.56 15029.26
MI ZINB − 9887.34 62.19 19808.67 124.39 19904.42 124.39 19850.41 124.39
MI ZIP − 9928.34 55.57 19882.68 111.14 19955.90 111.14 19914.60 111.14

Table 4  Parameter estimates of the model based on MI

I is the intercept, S and Q the linear and quadratic slopes in the count part of the model. II, SI, and QI are 
the respective counterparts in the zero-inflation part of the model. The growth factors of both parts are 
regressed on FEMALE (the gender indicator), RE, and GY (the school type indicators)

ZINB ZIP

EST SE p FMI EST SE p FMI

Growth factors
Mean of I − 0.09 0.10 0.39 0.23 0.00 0.09 0.96 0.26
Mean of S 0.51 0.07 0.00 0.25 0.45 0.06 0.00 0.36
Mean of Q − 0.14 0.02 0.00 0.25 − 0.13 0.02 0.00 0.32
Mean of SI − 1.00 0.36 0.01 0.31 − 1.11 0.24 0.00 0.33
Mean of QI 0.16 0.13 0.22 0.35 0.19 0.08 0.02 0.32
Variance of I 1.60 0.10 0.00 0.16 1.61 0.10 0.00 0.15
Regression coefficients
I ON FEMALE − 0.91 0.08 0.00 0.14 − 0.90 0.08 0.00 0.13
I ON RE − 0.20 0.10 0.04 0.13 − 0.19 0.10 0.05 0.16
I ON GY − 0.80 0.10 0.00 0.12 − 0.80 0.10 0.00 0.16
II ON FEMALE 0.03 0.23 0.89 0.31 0.11 0.17 0.54 0.27
II ON RE 0.00 0.24 0.99 0.30 0.03 0.19 0.89 0.31
II ON GY − 0.33 0.30 0.27 0.34 − 0.22 0.22 0.32 0.32
Dispersion parameters
Delinquency ( t

1
) 0.32 0.13 0.01 0.27

Delinquency ( t
2
) 0.16 0.06 0.01 0.26

Delinquency ( t
3
) 0.04 0.04 0.34 0.23

Delinquency ( t
4
) 0.11 0.06 0.04 0.28
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(2011) by means of graphical inspection of the streams across the iterations. No conver-
gence problems could be detected.

4  Results

The model in Fig. 1 is estimated by Mplus Version 8, which in addition to FIML estima-
tion supports automated repeated data analysis of the m imputed data sets and provides 
combined point estimates, standard errors, and test statistics for the null hypothesis that 
the respective parameter is zero, as well as an estimate for the fraction of missing infor-
mation – a statistic that gives an idea to what extent the respective combined param-
eter estimate is influenced by missing data. Additionally, Mplus also provides combined 
model fit statistics for the m sets of analyses, like AIC, BIC, or the adjusted BIC [for 
details about these statistics, see Kleinke et al. (2020), Appendix A]. Fit measures of the 
ZIP and ZINB models are displayed in Table 3, parameter estimates of the model are 
displayed in Tables 4 (MI) and 5 (FIML). All model fit statistics suggest that the ZINB 
model is slightly superior to the ZIP model, regardless of the missing data method. 
However, differences are not very pronounced. This is also reflected in the relatively 
small sizes of the overdispersion parameters for waves 2 to 4, ranging between .04 and 

Table 5  Parameter estimates of the model based on FIML

I is the intercept, S and Q the linear and quadratic slopes in the count part of the model. II, SI, and QI are 
the respective counterparts in the zero-inflation part of the model. The growth factors of both parts are 
regressed on FEMALE (the gender indicator), RE, and GY (the school type indicators)

ZINB ZIP

EST SE EST/SE p EST SE EST/SE p

Growth factors
Mean of I − 0.26 0.10 − 2.57 0.01 − 0.16 0.09 − 1.68 0.09
Mean of S 0.54 0.08 7.13 0.00 0.45 0.06 7.94 0.00
Mean of Q − 0.14 0.02 − 6.54 0.00 − 0.12 0.02 − 7.34 0.00
Mean of SI − 0.91 0.85 − 1.08 0.28 − 1.48 0.40 − 3.70 0.00
Mean of QI 0.12 0.30 0.39 0.70 0.25 0.15 1.68 0.09
Variance of I 1.80 0.10 17.76 0.00 1.81 0.10 17.98 0.00
Regression coefficients
I ON FEMALE − 0.92 0.08 − 12.07 0.00 − 0.91 0.08 − 11.93 0.00
I ON RE − 0.21 0.10 − 2.14 0.03 − 0.20 0.10 − 2.05 0.04
I ON GY − 0.80 0.09 − 8.50 0.00 − 0.80 0.09 − 8.49 0.00
II ON FEMALE − 0.28 0.55 − 0.52 0.60 − 0.06 0.28 − 0.22 0.83
II ON RE − 0.19 0.61 − 0.31 0.76 0.02 0.29 0.07 0.94
II ON GY − 1.08 0.76 − 1.43 0.15 − 0.52 0.35 − 1.48 0.14
Dispersion parameters
Delinquency ( t

1
) 0.60 0.17 3.47 0.00

Delinquency ( t
2
) 0.11 0.06 1.90 0.06

Delinquency ( t
3
) 0.00 0.04 0.00 1.00

Delinquency ( t
4
) 0.11 0.05 2.15 0.03
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.16 (MI estimates, see Table 4), and ranging between 0 and .11 (FIML estimates, see 
Table  5). The estimate for the first wave is somewhat larger (.60 for FIML, and .32 
for MI). The upper parts of Tables 4 and 5 display intercepts of the growth factors for 
the zero and count parts of the models respectively, the variance of the intercept in the 
count part, as well as coefficients of gender and school type predicting differences in 
starting levels of delinquency. Recall that zero-inflation models are mixture models: The 
logit part gives the odds of not being delinquent (so-called structural zeros), the Pois-
son part models the number of different delinquent behaviours exhibited in the previous 
year. Note that for model identification purposes, the intercept in the inflation part is 
fixed to zero. The negative slope (SI) suggests that the chance of having a structural 
zero decreases over time, while the small positive quadratic slope (QI) suggests that 
there is a turning point, meaning that the chance of having a structural zero starts to 
increase again later on in adolescence. In this regard, estimates of MI and FIML are 
highly similar. Furthermore, the chance of belonging to the certain-zero group does not 
depend on gender or school type. This is in contrast to findings by Reinecke and Weins 
(2013), which will be discussed later.

Likewise, the positive slope in the count model (S) suggests an increase in mean 
delinquency rates across time, while the negative quadratic slope (Q) means that there 
is a turning point, and mean delinquency rates start to decrease again later on in adoles-
cence. The growth factor estimates of the ZINB models are somewhat smaller in com-
parison to the ZIP models, which is most likely a result of the mildly violated equidis-
persion assumption of the Poisson model.

Individual differences in baseline levels of delinquency can furthermore at least par-
tially be explained by gender and school type. Girls on average exhibit fewer delinquent 
behaviours and students from the intermediate and top-level branch of the German edu-
cational system also commit fewer punishable offences in comparison to students from 
the bottom-level branch.

Note that overall, point estimates and standard errors of FIML and MI are quite simi-
lar. The only noticeable differences are the intercept estimates in the count model. Typi-
cally, MI and FIML are expected to yield comparable results, when (as in our case) 
compatible models are fitted. MI is a simulation based procedure and results can be 
expected to differ slightly with each run. With m → ∞ , results by MI and FIML could 
be expected to be equivalent, when imputation and analysis model are correctly speci-
fied and when both models are compatible [see for example Collins et al. (2001)]. Here, 
we created a set of m = 100 imputations. To see to what extent these differences in the 
intercept estimates affect model based predictions, we can compare predicted counts 
for certain groups that are of interest to us, e.g. boys attending the low-level branch of 
the German educational system, who can be expected to have the highest versatility in 
delinquent activity. For boys from Hauptschule, the count model predictions would be

different delinquent activities based on the FIML estimates of the ZIP model in Table 5, 
resulting in an average estimate of 0.85 at wave 1, 1.19 at wave 2, 1.30 at wave 3, and 1.12 
at wave 4. Based on Multiple Imputation (Table 4), we would expect

(5)exp(− .16 + .45Ti + (− .12T2
i
)), Ti = (0, 1, 2, 3)

(6)exp(0 + .45Ti + (− .13T2
i
)),Ti = (0, 1, 2, 3),
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resulting in an average count of 1.00, 1.38, 1.46, and 1.20 respectively. Application of 
MI (in this instance) yields a slightly higher versatility of delinquency in comparison to 
the FIML estimate. Note that this applies to this set of multiple imputations. It cannot be 
inferred that the MI point estimates will always be higher or that either the FIML point esti-
mates or the MI estimates are more accurate, since the true population values are unknown.

Finally, all estimated fractions of missing information are sufficiently low (ranging 
between .12 and .35 for the ZINB model, and between .13 and .36 for the ZIP model). 
Schafer (1997) notes that estimates below .4 usually denote unproblematic inferences. 
With higher values, quality of statistical inferences depends to a far greater extent upon 
the correct specification of the imputation model and upon how well assumptions of the 
MI model (like the untestable MAR assumption or parametric assumptions of the impu-
tation model) are met. In this scenario, even if missing data were MNAR, bias due to a 
violated MAR assumption will most likely be not very pronounced.

In summary, FIML and MI lead to the same substantive results concerning the develop-
ment of delinquency. Point estimates and standard errors differ only slightly.

5  Discussion

Reinecke and Weins (2013) have stressed the need to use state-of-the-art missing data 
methods when analysing longitudinal criminological data: Usually, when analysing self-
report data in a panel design, especially when questions are about sensitive topics such as 
delinquency, researchers have to deal with a non-negligible percentage of missing data. In 
their four-wave-panel regarding the versatility of delinquent behaviours, missingness in the 
delinquency scores ranged between 16.6 and 33.4%, and only 813 out of the 2064 cases 
were complete cases after four waves. Although complete case analysis is an attractive ad 
hoc missing data method, as it is quick and straightforward to apply, and implemented in 
any software for data analysis, inferences based on complete case analysis are prone to bias, 
when data are not missing completely at random—an assumption that is often violated like 
in the present analysis. In this case, inferences should be based on missing data methods 
that allow for violations of the MCAR assumption. Schafer and Graham (2002) enumerate 
ML estimation and MI among the state-of-the-art methods. From an applied researcher’s 
point of view, the problem now is to find suitable missing data methods with fitting dis-
tributional assumptions for the problem at hand. Although FIML estimation is supported 
by most SEM software packages nowadays, FIML estimation of ZIP and ZINB models for 
clustered data still is not generally available. We used Mplus (Muthén and Muthén 2017) to 
fit the models. Here, FIML estimation is even the default setting. Hence, the application of 
FIML analysis has become quite as straightforward as selecting case deletion.

Application of MI on the other hand typically still involves a little more effort: imput-
ing the data, repeated data analysis, and pooling of results. However, some steps could 
also be automatized (like for example using the automated repeated data analysis and pool-
ing of results feature in Mplus). The more important problem is to find a suitable imputa-
tion function for the problem at hand. Especially MI models for zero-inflated and clustered 
count data have become available only very recently. To our best knowledge, such models 
are currently only available as an add-on to the open source multiple imputation package 
mice in R (Kleinke and Reinecke 2019).

The question now is, when to use ML, and when to use MI? Or does it even make any 
difference, which method is being used? In their comparison of MI and ML, Reinecke and 
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Weins (2013) already obtained similar, but not identical substantive model results. Differ-
ences in their parameter estimates could be explained by differences in model assumptions 
between their substantive model (a growth curve ZIP model) and the imputation model 
(a normal model). Since ZIP imputation models were not available then, Reinecke and 
Weins (2013) used typical data transformations and rounding to make the assumed mul-
tivariate normal distribution of the imputation model more plausible. Recent missing data 
research, however, suggests (e.g. Kleinke and Reinecke 2013; Kleinke 2017) that select-
ing an imputation model with ill-fitting distributional assumptions could do a lot of dam-
age (i.e. produce biased statistical inferences). If imputation methods with fitting distri-
butional assumptions are not yet available, it might therefore be better not to impute and 
to report results based on ML estimation instead. Regarding the results in Reinecke and 
Weins (2013), differences between ML and MI were only rather small and one could argue 
that the applied transformation and rounding procedure has worked sufficiently well. Since 
systematic Monte Carlo simulations are to our best knowledge not available, we would not 
generally recommend the workaround solution used in Reinecke and Weins (2013) for the 
analysis of incomplete clustered count data, since their method additionally did not cater 
for the clustered structure of the data (which was also not considered by their substan-
tive model). Drechsler (2015) for example shows that ignoring the clustered structure of 
the data during data imputation can lead to biased estimates especially regarding the “ran-
dom” part of the model. This was not problematic for the analysis reported in Reinecke and 
Weins (2013), since they were interested only in the fixed part of the model, but could have 
become a problem for the present analysis.

In the light of newly available methods for imputing incomplete clustered count data, 
and faster personal computers, we reanalysed the data from Reinecke and Weins (2013), 
and compared MI and ML models that were fully compatible, and that considered the clus-
tered structure of the data. Again, we found highly similar substantial model results, which 
corroborates findings from earlier missing data research regarding the compatibility of MI 
and ML methods (e.g. Collins et al. 2001): when MI and FIML estimation is based on the 
same (or compatible) statistical models, using the same predictors, considering the same 
relationships within the data, and making the same distributional assumptions, highly simi-
lar results are to be expected—given that a sufficient number of imputations is created. In 
the present analysis, we created sets of m = 100 imputations for each analysis (ZINB and 
ZIP). Discussions regarding how many imputations should be generated may be for exam-
ple found in Bodner (2008) or von Hippel (2003).

So why not simply use ML, which is more straightforward to apply in comparison 
to MI? ML estimation is a feasible method if missingness depends only on variables in 
the model—in our case for example on gender and school type. Had additional variables 
been identified that determine the chance of not answering the questions about delinquent 
behaviours, that are not of interest to the data analyst, then including these variables into 
the model only to predict missing information without changing the meaning of the coeffi-
cients of the other model variables would not have been possible. For such scenarios, MI is 
the method of choice since MI clearly separates the imputation stage and the analysis stage, 
allowing different models in each step.

Finally, there are some differences between the substantive models of the present 
analysis and the analyses reported in Reinecke and Weins (2013), who estimated only the 
fixed part of the model (i.e. the intercepts of the growth factors). Interindividual varia-
tion in starting levels was not considered. Coefficients reported in Reinecke and Weins 
(2013) therefore do not disentangle effects on the within-person level and between-per-
son-level. In the present analysis we estimate interindividual variation in starting levels of 
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delinquency and predict them by gender and school type. Both studies found that as delin-
quency increases over time, the chance of having a structural zero decreases. Likewise, 
as the versatility of delinquent behaviours starts to fall again later on in adolescence, the 
chance of having a structural zero starts to increase again. Versatility of delinquent behav-
iours could be predicted by gender and school type. In the present analysis, however, the 
chance for having a structural zero at the first panel wave no longer depend on gender and 
school type—as it did in Reinecke and Weins (2013)—most likely because within-person 
and between-person effects have been disentangled in the present analysis and are already 
represented in the interindividual variation of intercepts. Additionally, we estimated overd-
ispersion in the data. Fitting a ZINB model in comparison to a ZIP model improved model 
fit respectively. Apart from that, both results lead to the same conclusions.

Practical implications In this paper, we have fitted a conditional latent growth curve 
model. Growth models, panel regression models, as well as growth mixture models are 
among the most frequently used methods to describe the development of a variable of inter-
est across time. Panel regression models (univariate or multivariate linear mixed effects 
models) are just a special case of latent growth models and can be rewritten as a growth 
model. MI and FIML methods discussed in this paper can therefore be applied to these 
models, as well without much ado. MI and FIML are expected to yield comparable results, 
when model assumptions are widely met. Growth mixture models, and other model classes 
that involve classification, were not considered in this paper. From a theoretical perspec-
tive, it is straightforward to get FIML estimates of such models, but it is not straightforward 
to apply multiple imputation in analyses that involve classification. The intention of MI is 
to yield widely unbiased statistical inferences on the population level, not to make sound 
predictions about class-membership on the individual level.

Limitations and future research With faster personal computers, it is nowadays feasible 
to fit both more complex MI models as well as more complex substantive models. Even 
for m = 100 models, parameters can be obtained by numerical integration within a reason-
able amount of time. In the present paper, we therefore allowed starting levels of delin-
quency to vary across individuals. It would have been nice to also estimate variances (and 
covariances) of the other growth factors, both in the count and the zero-inflation part, and 
regress the other growth factors on gender and school type, as well. However, with only 
four panel waves, statistical models about the age-crime-relationship cannot be overly com-
plex. Future research should corroborate present findings and extend the present analyses 
by considering data from more panel waves, which would allow to model the above men-
tioned additional quantities and relationships.
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