
Queueing Systems
https://doi.org/10.1007/s11134-024-09903-4

Heavy traffic analysis of multi-class bipartite queueing
systems under FCFS

Lisa Aoki Hillas1 · René Caldentey2 · Varun Gupta2

Received: 30 March 2023 / Revised: 20 January 2024 / Accepted: 23 January 2024
© The Author(s) 2024

Abstract
This paper examines the performance of multi-class, multi-server bipartite queueing
systems, where each arriving customer is compatible with only a subset of servers. We
focus on the system’s performance under a first-come, first-served-assign longest idle
server service discipline. In this discipline, an idle server is matched with the compat-
ible customer who has been waiting the longest, and a customer who can be served by
multiple idle servers is routed to the server that has been idle for the longest period.
We analyse the system under conventional heavy-traffic conditions, where the traffic
intensity approaches one from below. Building upon the formulation and results of
Afèche et al. (Oper Res 70(1):363–401, 2022), we generalize the model by allowing
the vector of arrival rates to approach the heavy-traffic limit from an arbitrary direc-
tion.We characterize the steady-statewaiting times of the various customer classes and
demonstrate that a much wider range of waiting time outcomes is achievable. Further-
more, we establish that the matching probabilities, i.e. the probabilities of different
customer classes being served by different servers, do not depend on the direction
along which the system approaches heavy traffic. We also investigate the design of
compatibility between customer classes and servers, finding that a service provider
who has complete control over the matching can design a delay-minimizing matching
by considering only the limiting arrival rates. When some constraints on the com-
patibility structure exist, the direction of convergence to heavy-traffic affects which
compatibility structure minimizes delay. Additionally, we discover that the bipartite
matching queueing system exhibits a form of Braess’s paradox, where adding more
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connectivity to an existing system can lead to higher average waiting times, despite
the fact that neither customers nor servers act strategically.

Keywords Multi-class queueing system · First-come-first-served · Bipartite
matching · Steady-state analysis

1 Introduction

In this paper, we analyse the performance of multi-class bipartite queuing systems
under an FCFS-ALIS service discipline.1 Multi-class bipartite queueing systems are
ubiquitous in modelling a variety of operations, such as call centres, healthcare, man-
ufacturing, and public housing, among others. However, these models can be both
analytically and computationally intractable, making questions of performance analy-
sis and system design difficult to answer. Heavy traffic scaling can be used to provide
approximations of these systems that are much simpler to analyse and reveal funda-
mental properties of the system.

The specific model we consider has n different queues, each served by a distinct
subset of the m available servers. We will refer to a queue as a “customer class”, and
the collection of all customer classes will constitute a “service menu” or simply a
“menu”. Customers arrive to each class according to independent Poisson processes.
Service times are exponentially distributed, with service rates depending only on the
server and not on the customer class. Each customer class in the menu has a particular
set of servers they can be served by. Each server may potentially be compatible with
multiple customer classes. Servers serve the customer classes they are compatible
with according to a FCFS discipline. When a server finishes serving a customer, they
consider all of the customers that belong to classes they are compatible with, and serve
the customer that has been waiting the longest. If a customer arrives to a customer
class and multiple servers they are compatible with are idle, then the server that has
been idle the longest will be assigned to serve them.

The FCFS service discipline is simple to implement and iswidely used in practice. It
is particularly appealing in applications where fairness is a concern, such as healthcare
delivery and public housing allocations. Similarly, in applications in which servers
correspond toworkers, fairnessmaymotivate the choice ofALISas a server assignment
policy. Alternatively, when servers correspond to physical resources such as public
housing units, it might be preferred to avoid leaving any one unit empty and unused
for long periods of time. This again motivates the use of an ALIS server assignment
policy.

We analyse two aspects of the performance of this model, the expected waiting
time delays of the different customer classes, and the matching probabilities of the
different customer classes, that is, the probability with which a customer of a given
class is served by a particular server.

1 The acronym FCFS-ALIS stands for “first-come, first-served-assign longest idle server”. This means that
when a server becomes idle it selects the customer who has been waiting the longest among those it can
serve. Similarly, a customer that can be served by multiple idle servers selects the server that has been idle
the longest.
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This paper extends the work of Afèche et al. [3], who study a similar model to ours.
Their formulation uses a specific heavy traffic scaling, which limits the range of out-
comes that the model can produce. In particular, Afèche et al. [3] restrict themselves to
asymptotic limits in which the direction of convergence to heavy traffic keeps constant
the proportion of customers arriving into the different queues (similar heavy traffic
limits are discussed in [15, 21]). In contrast, our paper considers more general heavy
traffic limits, allowing for accurate approximations of a broader range of scenarios
and providing new insights into an efficient management of multi-class multi-server
queueing systems. For instance, in Sect. 5, we demonstrate that minor variations in the
direction of convergence to the heavy traffic limit can significantly impact customers’
waiting times in the pre-limit. Additionally, we show that the limiting matching prob-
abilities depend solely on the limiting arrival rates, and are insensitive to the specific
direction of convergence to heavy traffic. Our perturbation analysis sheds new light on
how system managers can reduce waiting time delays by inducing marginal changes
in the arrival rates of various customer classes, without compromising the quality of
the matching between customer classes and servers.

We also extend the results in Afèche et al. [3] by allowing some customer classes
to have no arrivals at the heavy traffic limit. Our primary motivation for considering
this generalization is to study systems with strategic customers, i.e. customers who
can choose their class type upon arrival based on waiting time delays and matching
probabilities. In such scenarios, it is possible that in equilibrium, customers completely
avoid joining some of the available customer classes. Similarly, a service provider
might nudge arriving customers to join certain specific customer classes by creating
others that are unattractive. Interestingly, we will demonstrate that, despite having
zero limiting arrival rates, these vanishing customer classes can significantly impact
the waiting delays of other classes.

Finally, we also explore some questions regarding the design of the compatibility
between customer classes and servers. We find that when the service provider has
complete control over the compatibility structure, they only need to consider the lim-
iting arrival rates in order to design a delay minimizing compatibility structure. When
there are some constraints on the compatibility structure, then the particular approach
to heavy traffic does affect which compatibility structure minimizes delay.

Related Literature Heavy traffic approximations have long been used to simplify
the study of intractable queueing systems. Early works in this area include [19, 30].
These papers look at a so-called “conventional” approach to heavy traffic, in which
the number of servers and their service capacities remain fixed, and the arrival rate
grows large in such a way that the traffic intensity of the system converges to one
from below. An alternative class of “many-server” heavy traffic limits have also been
considered in the literature by carefully letting the number of servers and arrival
rate grow unboundedly, e.g., [13] or [4]. Motivated by mathematical tractability as
well as by the fact that many real-world service systems operate under high levels of
congestion,2 we will study the performance of our multi-class multi-server bipartite
queuing system operating under conventional heavy traffic conditions. In positioning

2 For example, the Chicago Housing Authority reported more than 170,000 families waiting for public
housing in 2021. Similarly, in the same year, about 113,589 children in the United States were waiting to
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ourworkwithin the extensive heavy traffic literature, it is worth noting that our analysis
exclusively focuses on the steady-state performance of these systems. This includes
their steady-state expected waiting times and matching probabilities among customer
classes and servers. Deriving heavy traffic limits to study the transient behaviour of
these service systems and their stationary distributions, as explored in many of the
papers we review subsequently, represents a more ambitious goal that lies beyond the
scope of this paper.

A range of questions can be answered using heavy traffic approximations. In the
context of parallel service systems, Harrison and Lopez [15] study the question of
optimal control of parallel service systems, that is, which servers should be used to
serve which customer classes, and in which order should the different customer classes
be served. Harrison and Lopez [15] solve an approximating Brownian control prob-
lem, and conjecture that a discrete review policy will minimize holding costs for the
original queuing system. This approach of using an approximating Brownian con-
trol problem to develop an optimal policy was originally suggested by Harrison [14].
Williams [31] and Bell and Williams [5] go on to prove the asymptotic optimality of a
continuous review policy for a two-server system. Following this work, Mandelbaum
and Stolyar [23] proves the asymptotic optimality of the cμ−rule for convex hold-
ing costs. A distinctive feature in all of these papers is that they impose a complete
resource pooling (CRP) condition on the connectivity and/or compatibility between
customer classes and servers (see [15]). Roughly speaking,3 this condition boils down
to assuming that the servers’ capacities can be pooled together so that the servers can
essentially act as a single “super-server”. This assumption significantly simplifies the
analysis as it allows us to obtain a single-dimensional state-space description of the
workload of the system in the heavy traffic limit.

The complete resource pooling assumption is quite restrictive, however, and can
be shown not to hold when strategic customer behaviour is allowed as in Caldentey
et al. [9]. There has already been some work moving beyond the complete resource
pooling assumption. Kushner and Chen [20] prove the convergence to the heavy traf-
fic limit of a particular class of systems that do not satisfy the complete resource
pooling assumption under quite general conditions. Pesic and Williams [25] gener-
alizes Harrison and Lopez [15] beyond the complete resource pooling assumption.
Other works analysing multi-class multi-server queueing systems with no complete
resource pooling assumption include Shah and deVeciana [27] andHurtado Lange and
Maguluri [16]. Shah and de Veciana [27] look at a system in which servers simultane-
ously work to process the same job, while Hurtado Lange and Maguluri [16] analyse
a generalized switch problem under a MaxWeight service policy.

In addition to studying the problem of optimal control, questions regarding the
performance of parallel service systems have been studied using heavy traffic approx-
imations, or fluid approximations more generally. Talreja and Whitt [28] looks at the
problem of calculating matching rates for a parallel service system operating under

Footnote 2 continued
be adopted. In the healthcare system, more than 100,000 people are waiting for an organ transplant at any
given moment in time, with average waiting times that can be as long as 5 years for a kidney transplant
according to the National Kidney Foundation.
3 A precise definition of complete resource pooling in the context of our work is given in Definition 3.
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FCFS, that is, with what probability is each customer class served by each server,
although the authors looked at this question for an overloaded system with aban-
donments. Matching rates were calculated for specific classes of networks. Various
approximation methods have been developed for calculating matching rates including
the dissipative algorithm proposed by Caldentey and Kaplan [7], a related approxima-
tion based on Ohm’s law proposed by Fazel-Zarandi and Kaplan [10] and a quadratic
programming formulation proposed by Afèche et al. [3]. Of these papers looking at
the performance of parallel service systems under FCFS, Afèche et al. [3] is the only
one to also look at calculating waiting times as we do here. Another contribution of
Afèche et al. [3] is to study the question of the design of matching topologies fixing
the scheduling policy. While Afèche et al. [3] studies this design question for a FCFS
service discipline, Varma and Maguluri [29] studies the same question of the design
of matching topologies under a MaxWeight service discipline.

The specific model we look at here is a generalization of Afèche et al. [3], which
itself developed out of a long history of papers studying bipartite queueing systems and
bipartite matching models under an FCFS service discipline. Early papers in this area
include Schwartz [26] and Green [12], who look at the steady-state performance of
these systems given a particular hierarchical compatibility structure between customer
classes and service classes, and Kaplan [17, 18], who similarly analysed the steady-
state performance of parallel queuing systems, but for more general compatibility
structures. Following Kaplan [17, 18], Kaplan’s multi-class multi-server queueing
model was adapted by Caldentey and Kaplan [7], who introduced an infinite-bipartite
matching model to analyse matching probabilities under a FCFS service discipline.
The model of Caldentey and Kaplan [7] was further developed by Caldentey et al. [8]
and then adapted by Adan and Weiss [2] to that of a multi-class multi-server parallel
queuing system, which is the model we use here.

Since the development of the infinite matching model and the queueing model,
different authors have looked at different aspects of the problem. Bušić et al. [6],
Mairesse and Moyal [22], and Moyal and Perry [24] look at stability conditions of
such systems, and find that the system will be stable so long as a set of Hall’s type
conditions are satisfied. Also of interest are the steady-state matching probabilities.
Caldentey et al. [8] were able to use a particular Markov chain representation to
calculate the steady-state distribution of the matching system for particular classes of
matching topologies. Adan and Weiss [1] came up with an alternative Markov chain
representation to derive the steady-state distribution of thematching system for general
matching topologies, while Adan and Weiss [2] used a similar approach to look at the
multi-class multi-server queueing problem, and showed the equivalence of the steady-
state outcomes for the matching and the overloaded queueing system. However, the
combinatorial structure of the state space description of the Markov chain limits the
size of the systems that can be studied both analytically and computationally. Afèche et
al. [3] use heavy traffic analysis to unveil a number of structural properties embedded
in the infinite matching model and its corresponding multi-class bipartite matching
queueing system (see also the survey by [11] for a comprehensive review of related
papers and models).

The rest of the paper is organized as follows. In Sect. 2, we provide a detailed
mathematical description of the bipartite queueing model, review some related results
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in the literature and introduce the heavy traffic regime that we will use to analyse the
performance of the system. Section3 is devoted to the derivation of the limiting steady-
state waiting times of the different customer classes. Our main result in this section
is Theorem 1, which provides a complete characterization of these limiting waiting
times in terms of an underlying set of complete resource pooling components and
their connectivity that emerge under heavy traffic. In Sect. 4, we study the steady-state
matching probabilities between customer classes and servers, and show in Theorem
2 that these probabilities do not depend on the particular direction along which the
system reaches heavy traffic. This is in direct contrast to the behaviour of the steady-
state waiting times, which are particularly sensitive to the direction of convergence. In
Sect. 5, we discuss a number of insights that emerge from our theoretical results. For
instance, what vectors of delays are implementable, and how to design the connectivity
between customer classes and servers to achieve them.We also show that adding more
connectivity to an existing bipartite queueing system can lead to longer average delays
(i.e. some form of Braess’s paradox). Section6 contains the proofs and additional
discussion of our main results Theorems 1 and 2. Some concluding remarks and
possible directions in which our work can be extended are present in Sect. 7. Finally,
the Appendix contains additional proofs of various intermediate results.

2 Model description

In this section, we provide a detailed mathematical description of the model and
basic definitions. To simplify our notation, we will adopt the following conventions
throughout the paper. For a positive integer k, [k] := {1, 2, . . . , k}. All vectors are
column vectors, and for a vector x ∈ R

k , 〈x〉 := ∑
i∈[k] xi .

We consider a service system as follows. We have a set of m servers organized
into a set of n customer classes. Each customer class is served by a particular subset
of servers. This information is encoded in a compatibility matrix M ∈ {0, 1}n×m ,
where customer class i can be served by server j iff mi j = 1. We will also refer
to the compatibility matrix M as the menu of customer classes or simply the menu.
Customers arrive to the customer classes according to independent Poisson processes.
We let λ = (λ1, . . . , λn) be the arrival rates into the different customer classes. Service
times are exponentially distributed, anddependonly on the server. Thevector of service
rates will be denoted by μ = (μ1, . . . , μm). Servers will serve customers they are
compatible with according to a FCFS-ALIS service discipline.

Example To illustrate, Fig. 1 depicts an example of a queueing systemwith four servers
(m = 4) and four customer classes (n = 4), and its corresponding matching menu M .

In this example, class 1 is compatible with server 1; class 2 is compatible with
server 2; class 3 is compatible with servers 2 and 3; and class 4 is compatible with all
servers. Note that a server may belong to multiple customer classes. �
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M =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
1 1 1 1

⎤
⎥⎥⎦

Fig. 1 Example of a queueing system with four customer classes and four servers

s1

. . . . . .

n1

U(s1) s2

. . . . . .

n2

U(s1, s2) s3

. . . . . .

. . . . . .

. . . . . .

sb

. . . . . .

nb

U(s1, . . . , sb) sb+1

. . . . . .

sm

Fig. 2 A general state x = (s1, n1, s2, n2, . . . , sb, nb, sb+1, . . . , sm ) of the Markov chain

M =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦ (1)

We are only interested in systems which operate with stable queue lengths. The
following result, from [2] tells us exactly which triplets (λ, μ, M) produce stable
steady-state outcomes.

Proposition 1 [2, Theorem 2.1] For a menu M with arrival rates λ and service rates
μ, define the slack of a set of servers �M (S ) for S ⊆ [m] as

�M (S ) :=
∑

j∈S
μ j −

∑

i∈U (S )

λi for all S ⊆ [m], (2)

where U (S ) := {
i ∈ [n] : ∑

j∈S c mi j = 0
}
is the subset of customer classes that

can only be served by servers in S . The menu M admits a steady state under a
FCFS-ALIS service discipline if and only if �S (M) > 0 for all S ⊆ [m].
It is often clear from context which menu M the slacks are being defined for, in which
case we drop the M from the notation.

2.1 Steady state results for fixed arrival rates

Our results build on the steady-state analysis of a carefully crafted Markov chain
representation of the system proposed by [2]. A state in this Markov chain is described
by three components: (i) a permutation of servers s = (s1, . . . , sm), (i) an integer
b ∈ {0, . . . ,m} indicating the number of busy servers, and (iii) a vector (n1, . . . , nb)
that indicates the composition of customers waiting for service. A generic state x is
given by a tuple x = (s1, n1, s2, n2, . . . , sb, nb, sb+1, . . . , sm), as illustrated in Fig. 2.

Each circle represents a customer in the system, ordered from left to right based on
their arrival times, with the leftmost customer being the oldest. The boxes represent
the servers. Those containing a customer (circle) are the busy servers (i.e. servers s1
to sb), while the rest are idle servers (i.e. servers sb+1 to sm). Idle servers are ordered
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from left to right based on the duration of their idleness, with server sb+1 being idle
for the longest period. The number of customers in the queue who arrived after the
customer being served by server � but before the customer being served by server �+1
is denoted by n�, for � = 1, . . . , b. Due to the FCFS-ALIS service discipline, we know
these customers are only compatible with servers in the set (s1, . . . , s�). This implies
that each of these n� customers must belong to a customer class within U (s1, . . . , s�)
and is incompatible with any of the servers in s�+1, . . . , sm .

According to [2, Theorem 2.1], the steady-state probability of state x admits the
product form:

π(x) = B
b∏

�=1

λ
n�

U (s1,...,s�)

μ
n�+1
{s1,...,s�}

m∏

�=b+1

λ−1
C(s�,...,sm ), (3)

where B is an appropriate normalizing constant, and C(S ) = {
i ∈ [n] : mi j =

1 for some j ∈ S
}
is the set of all customer classes that can be served by some server

inS ⊆ [m]. Additionally, each of the n� customers ‘between’ server s� and server s�+1
belongs to customer class i ∈ U (s1, . . . , s�) independently with probability

λi
λU (s1,...,s�)

.

These steady-state probabilities can be used to calculate the expected number of
customers of each type in the system. Little’s Law can then be applied to calculate
expected steady-state mean waiting times. However, if we consider the process for
calculating expected waiting times even for our relatively simple example in Fig. 1, we
see that while these calculations are possible, the process is laborious and the resulting
expressions are unwieldy. For example, let us consider how we would calculate the
expected number of class 4 customers. We first observe that class 4 customers are
compatible with all servers. This means that the only times class 4 customers are
waiting in the system is if all servers are busy when a class 4 customer arrives. Thus
if we want to calculate the expected number of class 4 customers waiting for service
in the system, we can restrict ourselves to considering only the states in which all 4
servers are busy.

Fixing the permutation of servers, and the number of busy servers, the val-
ues of ni are geometrically distributed, and hence the expected values have closed
form expressions. For example, if we condition on being in the subset of states
x ∈ X(s1,s2,s3,s4) such that b = 4 and the server permutation (s1, s2, s3, s4), i.e.
x = (s1, n1, s2, n2, s3, n3, s4, n4), then the expected value of n4 is

E(n4|x ∈ X(s1,s2,s3,s4))

= B · 〈λ〉 〈μ〉
(μ1 − λ1)(μ1 + μ2 − (λ1 + λ2))(〈μ〉 − μ4 − (〈λ〉 − λ4))(〈μ〉 − 〈λ〉) , (4)

where 〈λ〉 := λ1 + λ2 + λ3 + λ4, 〈μ〉 := μ1 + μ2 + μ3 + μ4 and B is an appropriate
normalizing constant. Note that n4 is not the number of class 4 customers; instead n4
is the number of customers who arrived to the system after the customer server 4 is
currently serving. Therefore the expected number of class 4 customers conditional on
being in the subset of states X(s1,s2,s3,s4) is

λ4〈λ〉E[n4|x ∈ X(s1,s2,s3,s4)].
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To fully calculate the expected number of class 4 customers,wewould need to repeat
this process for every permutation of servers. Since there are four servers, there are
24 possible permutations of servers to sum over, with different combinations of terms
appearing in the denominator for each permutation. This gives us very complicated
expressions for the expected number of servers. If we were instead looking at the
number of class 1 customers, we would also need to consider states in which only
some servers are busy, giving us even more server combinations that we need to
consider.

It is this underlying computational complexity—which grows combinatorially fast
in the size of the system—that motivates our move to heavy traffic. As the sys-
tem approaches heavy traffic, the probability of being in a state with an idle server
approaches 0, letting us restrict our attention only to states in which all servers are
busy. Additionally, we show in Proposition 7 that in heavy traffic, only certain server
permutations have positive probability, which is a fact that simplifies the problem even
further.

2.2 Heavy traffic scaling

We consider a conventional heavy traffic regime in which the arrival rates approach
the capacity of the service system from below, while the number of customer classes
and servers, and the service menu remain constant. We parameterize our systems by
ε, and let the service system approach heavy traffic as ε ↓ 0. Specifically, we assume
there exist two vectors � ∈ R

n+ and γ ∈ R
n independent of ε so that the vector of

arrival rates in the εth system is given by

λi
(ε) = �i − γiε + o(ε) ≥ 0 for all i ∈ [n] and 0 < ε < ε+, (5)

for some some ε+ > 0. The vector � is the limiting vector of arrival rates while the
vector γ captures the direction of convergence to heavy traffic. In what follows, we
assume that the queueing system satisfies the following assumption.

Assumption 1 The inputs of the queueing system (�,μ, γ ) satisfy:

(i) 〈λ〉 = 〈μ〉,
(ii) 〈γ 〉 > 0,
(iii) γi < 0 for all i ∈ [n] such that �i = 0.

Parts (i) and (ii) ensure that for the sequence of arrival rates λ(ε) in (5) the system
approaches heavy traffic from below. Part (iii) is implied by λi

(ε) > 0 for all 0 <

ε < ε+, but we include it in Assumption 1 for clarity. Note that for i ∈ [n] such that
�i > 0, we allow γi to be positive, negative, or zero.

It is worth mentioning that Afèche et al. [3] considered a heavy traffic scaling that is
a special case of (5) in which γ = �, that is, the proportions of customers of different
types remain constant as the system approaches heavy traffic. Additionally, Afèche et
al. [3] requires that�i > 0 for all i ∈ [n]. We relax that assumption here and allow for
customer classes with �i = 0 and γi < 0. Such classes, with vanishing arrival rate in
the heavy traffic limit, might be relevant for considering strategic customer behaviour.
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We are only interested in studying systems which produce stable outcomes. This
leads us to restrict our attention to a set of admissible menus.

Definition 1 (Admissible Menus) Consider a queueing system with inputs (�,μ, γ )

satisfying Assumption 1 and let λ(ε) be given by (5). A menu M is admissible if there
exists an ε+ > 0 such that for all 0 < ε < ε+ andS ⊆ [m] the following conditions
are satisfied:

(i) �
(ε)
M (S ) :=

∑

j∈S
μ j −

∑

i∈U (S )

λ
(ε)
i > 0 and (ii) �

(ε)
M (S ) = 	(ε). (6)

We letM(�,μ, γ ) denote the set of all menus M that are admissible for the queueing
system with inputs (�,μ, γ ).

In (6) part (ii), the Big Omega notation f (ε) = 	(ε) stands for lim supε→0
| f (ε)|

ε
> 0.

In words, Definition 1 ensures that the menu M and arrival rates λ(ε) admit a
steady state under a FCFS-ALIS service discipline, and that the slack in the system is
converging slowly enough so that the average delays of the different customer classes
converge when scaled by ε. It is worth noting that the set M(�,μ, γ ) of admissible
menus is non-empty for all triplets (�,μ, γ ) satisfying Assumption 1. To see this,
observe that the complete menu M such that mi j = 1 for all i ∈ [n] and j ∈ [m] is
admissible for all (�,μ, γ ) satisfying Assumption 1. The complete menu will operate
like a single queue with arrival rates 〈λ(ε)〉 that is served by all servers.

3 Mean waiting times in heavy traffic

We are interested in calculating the mean waiting times of the different customer
classes. Because we are looking at a conventional heavy traffic setting, the waiting
times themselves will grow out of bound as ε ↓ 0. We instead look at the scaled mean
waiting time

Ŵi
(ε) = ε · Wi

(ε), (7)

which will remain bounded in heavy traffic. In what follows, we show how to find
the limiting expected waiting times by building upon and extending the methods and
results in Afèche et al. [3].

3.1 Feasible flows and complete resource pooling

We begin by identifying the feasible flows of customers between customer classes and
servers. For a menu M , vector of arrival rates λ, and service capacities μ, we define
the set of feasible flows as:

F(λ, μ, M) :=
{
f = [ fi j ] ≥ 0 : ∑i∈[n] fi j ≤ μ j , ; ∑

j∈[m] fi j =λi , ; fi j =0 if mi j =0
}
.

(8)
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If M ∈ M(�,μ, γ ) is an admissible menu then there exists an ε+ ∈ R+ such that
F(λ(ε), μ, M) is non-empty for all 0 < ε < ε+. The following lemma shows that
F(�,μ, M) is also non-empty.

Lemma 1 Consider a system with inputs (�,μ, γ ) satisfying Assumption 1 and let
M ∈ M(�,μ, γ ) be an admissible menu. Then, the set F(�,μ, M) is non-empty.
Furthermore, every sequence of flows f (ε) ∈ F(λ(ε), μ, M) has a sub-sequence that
converges to some f̃ ∈ F(�,μ, M).

Proof Theproof of this and other results are relegated to theAppendix unless otherwise
stated. �

As this lemma suggests, the set F(�,μ, M) contains information about what sort
of flows it is possible to observe in heavy traffic.Wewill use the set of feasible limiting
flows to determinewhich servers have a positive probability of servingwhich customer
classes in the limit. To do this, we will first define the residual matching of the menu
M .

Definition 2 (Residual Matching) For a system with inputs (�,μ, γ ) satisfying
Assumption 1 and an admissible menu M ∈ M(�,μ, γ ), we define the residual
matching M̆ , where M̆ = [m̆i j ] satisfies m̆i j = 1 if and only if there exists flows
f̃ ∈ F(�,μ, M) such that f̃i j > 0.

Intuitively, for a customer class i and server j with mi j = 1 but m̆i j = 0, the flow
of customers from customer class i to server j must vanish in the heavy traffic limit.
Afèche et al. [3] provide an algorithm for finding the residual matching. However, for
small, simple systems the residual matching can be found by inspection. To see this,
consider again the simple example in Fig. 1, specifying the service rates to be μ =
[2, 1, 2, 1].Wewill consider two example vectors of arrival rates,�a = [2, 1, 1, 2] and
�b = [2, 1, 0, 3]. In each case, there is only one set of feasible flows in F(�a, μ, M)

and F(�b, μ, M), given by

f ai j =

⎡

⎢
⎢
⎣

2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

⎤

⎥
⎥
⎦ and f bi j =

⎡

⎢
⎢
⎣

2 0 0 0
0 1 0 0
0 0 0 0
0 0 2 1

⎤

⎥
⎥
⎦ . (9)

In example (a), the arcs in the compatibility network withmi j = 1 and m̆i j = 0 are
(3,2), (4,1) and (4,2). While customer class 4 is compatible with servers 1 and 2, there
will be zero flow between class 4 and servers 1 and 2 in the limit. Similarly, while
customer class 3 is compatible with server 2, there will be zero flow between them
in the limit. All the service capacity of servers 1 and 2 will be allocated to serving
classes 1 and 2. We can see this visually in panel (a) of Fig. 3, where the arcs with
mi j = 1 and m̆i j = 1 are represented with solid lines, and the arcs with mi j = 1
and m̆i j = 0 are represented with dashed lines. Example (b) is similar, but we now
additionally have arcs (3,2) and (3, 3) with m32 = m33 = 1 and m̆32 = m̆33 = 0. In

123



Queueing Systems

. . .Λ1 = 2

. . .Λ2 = 1

. . .Λ3 = 1

1

2

3

4

μ1 = 2

μ2 = 1

μ3 = 2

μ4 = 1. . .Λ4 = 2

(a) Residual matching (a)

. . .Λ1 = 2

. . .Λ2 = 1

. . .Λ3 = 0

1

2

3

4

μ1 = 2

μ2 = 1

μ3 = 2

μ4 = 1. . .Λ4 = 3

(b) Residual matching (b)

Fig. 3 Examples of residual matchings

panel (b) of Fig. 3 we can see that class 3 only has one dashed arc connecting it to any
servers, representing that no servers are allocating any capacity to class 3 in the limit,
even though class 3 is compatible with servers 2 and 3.

Knowing the residualmatching allowsus to decompose the initial bipartitematching
system into a partition of independent components, which Afèche et al. [3] refer to as
complete resource pooling (CRP) components.

Definition 3 (CRP Component) For a system with inputs (�,μ, γ ) satisfying
Assumption 1 and an admissible menu M ∈ M(�,μ, γ ), let the induced resid-
ual matching be denoted M̆ . We say that the subset C = (C,S) ∈ 2[n] × 2[m] of
customer classes and servers forms a complete resource pooling (CRP) component if
for any pair of nodes k1, k2 ∈ C ∪ S there exists a path between k1 and k2 in M̆ , and
C is maximal in the sense that the condition is violated for any strict superset of C.

We let {C1, C2, . . . , CK } denote the collection of CRP components induced by the
residual matching M̆ , where K is the number of components. Each Ck = (Ck,Sk)

is defined by the subset of customer classes Ck and the subset of servers Sk that
belong to Ck . In Fig. 3, the queueing system in panel (a) has three CRP components
C1 = (C1,S2) = ({1}, {1}), C2 = (C2,S2) = ({2}, {2}), and C3 = (C3,S3) =
({3, 4}, {3, 4}). We will use k(i) and k( j) to denote the component that customer class
i or server j is part of, where the use should be clear from context. Also, with a
slight abuse of notation, we denote the aggregate arrival and service rates for the CRP
components under λ(ε) as:

∀k ∈ [K ] : λ̃
(ε)
k =

∑

i∈Ck
λi

(ε) =: �̃k − εγ̃k + o(ε), and μ̃k =
∑

j∈Sk

μ j , (10)

where �̃k = ∑
i∈Ck �i and γ̃k = ∑

i∈Ck γi . We will later show that each CRP com-
ponent must satisfy �̃k = μ̃k so that the slack between demand and capacity within
a CRP component in heavy traffic goes to zero with ε. While each CRP component is
critically loaded, the “well-connectedness” within a CRP component allows shifting
load from one customer class to another on short time scales. In particular, we will
show in Theorem 1 that under a FCFS-ALIS policy, waiting times are balanced in
such a way that customer classes that belong to the same CRP component have the
same limiting scaled mean waiting time in the heavy traffic limit.
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Fig. 4 Example of queueing
system with a customer class
with zero limiting arrival rate
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(ε)
2 = 1− εγ2
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λ
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1 = 1− εγ1

μ1=1̂W1

It is worth noting that we allow for customer classes with no arrivals in the heavy
traffic limit, that is �i = 0 (e.g., customer class 3 in Fig. 3 panel (b)). Each of these
customer classes with �i = 0 forms a separate CRP component with an empty
server set. We denote this subset of such CRP components by I0 := {k : �k = 0}
and by K ′ := K − |I0| the number of CRP components with non-empty sets of
servers. For notational convenience, we index the CRP components so that �̃k > 0
for k = 1, . . . , K ′.

Given our interest in the system’s performance in the heavy traffic limit, as ε ↓ 0,
it might be tempting to disregard the existence of customer classes in I0 with a zero
limiting arrival rate. However, these classes have positive arrival rates in the pre-limit,
and this fact significantly affects the behaviour of the heavy traffic limit. Let us consider
a simple example to illustrate this point.

Example Consider a queueing system with three customer classes and two servers as
depicted in Fig. 4 with γ1 > 0, γ2 > 0 and γ3 < 0 < γ1 + γ2 + γ3, so that the
conditions in Assumption 1 are satisfied. Customer class 3 has a zero arrival rate in
the heavy traffic limit.

If we were to remove this class then the queueing system would reduce to two
independent M/M/1 queues and the scaled waiting times would be equal to Ŵi = 1/γi
for i = 1, 2. However, as we will demonstrate in Theorem 1, the actual limiting scaled
waiting times for these classes are Ŵi = 1/γi + 1/〈γ 〉 − 1/(〈γ 〉 − γ3) for i = 1, 2.
These waiting times are higher (given that γ3 < 0) than those obtained by neglecting
the existence of customer class 3. �

3.2 Directed acyclic graph of CRP components

The menu M and the residual matching M̆ uniquely induce a directed acyclic graph
(DAG) on the collection of CRP components defined in the previous step. Each node
in the DAG corresponds to a CRP component. There is an arc in the DAG from a
CRP component Ck1 to a component Ck2 if there is a customer class in Ck1 that can
be served by a server in Ck2 in the original menu M . This DAG is useful as it defines
a precedence relation among customer classes. Since there is a customer class in Ck1
that can be served by a server in Ck2 , component Ck1 can “off-load” its customers to
the servers of component Ck2 . This means the waiting time of customer classes in
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Fig. 5 Examples of DAGs

component Ck1 cannot exceed that of customer classes in component Ck2 under FCFS-
ALIS. This intuition is made precise in the proof of Theorem 1. The following is a
formal statement of how the DAG is induced.

Definition 4 (DAG) Given the menu M = [mi j ], and the CRP components {Ck =
(Ck,Sk) : k ∈ [K ]} induced by the residual matching M̆ , we define the directed acyclic
graph D = ([K ],A) associated with M as follows: the nodes correspond to the
CRP components, and there is a directed arc (k1, k2) ∈ A from component Ck1 to
componentCk2 if and only if there exists a customer class i ∈ Ck1 and a server j ∈ Sk2
such that mi j = 1.4

Returning to our examples in Fig. 3, the DAGs are given as follows.
In both cases, customer class 4 can be served by servers 1 and 2 in the original

menu, i.e. m41 = m42 = 1, and so there are directed arcs from C3 to C1 and C2. In
example (b), C4 contains customer class 3 but no servers, since customer class 3 has
an arrival rate of 0. Therefore C4 has directed arcs to C2 and C3, as these are the CRP
components containing the servers that customer class 3 is compatible with.

As we mentioned earlier, our computations for the heavy traffic waiting times build
on the work of [2]. The crucial component of their analysis is a state-space represen-
tation for the FCFS-ALIS matching model which involves ranking the busy servers in
order of the waiting time of the customers they are serving. As was proved in Afèche
et al. [3] for the less general scaling, in heavy traffic this entails restricting attention to
only certain permutations of the CRP components which have asymptotically nonzero
steady-state probability. We show in Proposition 7 below that this also holds for our
more general scaling. The topological orders of the DAG D provide these permuta-
tions. We begin by considering the topological orders of the DAGD restricted to only
those CRP components with �̃k > 0, since those are the CRP components that contain
servers. The following definition is analogous to Definition 6 in Afèche et al. [3].

Definition 5 (Topological Orders on CRP Components) Let {C1, C2, . . . , CK ′ } be
the CRP components with �̃k > 0. Given the DAG D = ([K ],A), we say that
a permutation σ = (σ (1), σ (2), . . . , σ (K ′)) of [K ′] induces a topological order
(Cσ(1), Cσ(2), . . . , Cσ(K ′)) of these CRP components if for every pair (k1, k2) ∈ [K ′]
such that (k1, k2) ∈ A, we have σ−1(k2) < σ−1(k1). In other words, sink components
of D precede source components. We let T (D, K ′) denote the set of all permutations
σ of [K ′] that induce a topological order on components {C1, . . . , CK ′ }.
4 Afèche et al. [3, Lemma 2] formally proves that the directed graph in this definition is in fact acyclic.
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Returning to our examples in Fig. 5, both example (a) and example (b) have the same
set of CRP components with positive limiting arrival rates, the set {C1, C2, C3}. Both
examples also have the same connectivity with these components.C3 has directed arcs
toC1 andC2, but there are no arcs betweenC1 andC2. Hence in any topological orders
on these CRP components, we know thatC1 andC2 come beforeC3, butC1 can come
either before or after C2. Thus the possible permutations are σ1 = (1, 2, 3) and σ2 =
(2, 1, 3), and the associated topological orders are (C1, C2, C3) and (C2, C1, C3).

We now consider those CRP components with �̃k = 0. Each of these components
consists of exactly one customer class and no servers. This means these CRP compo-
nents have no incoming arcs in the DAG D, and can only have a directed arc pointing
to CRP components with non-empty server sets. In the next definition, we will expand
the idea of topological orders to include these server-less CRP components, by creat-
ing ordered partitions of CRP components in the following way: for each permutation
σ ∈ T (D, K ′), we associate each server-less CRP component with the CRP compo-
nent that is reachable from it in the DAG that has the shortest steady-state wait, or in
other words the reachable CRP component that comes last in the topological order.

Definition 6 (Ordered Partitions of CRP Components) For every DAGD on a collec-
tion of CRP components, and for each σ ∈ T (D, K ′), we partition the indices of the
CRP components [K ] by associating a subset for each k ∈ [K ′] as follows:

comps(σ, k) := {σ(k)} ∪ {κ ∈ I0 : k = max{k′ ∈ [K ′] : (κ, σ (k′)) ∈ A}}. (11)

In words, for each index k ∈ [K ′], we create a set containing the index σ(k), as well
as all indices of all CRP components Cκ with �̃κ = 0 for which the component Cσ(k)

is the last component in the topological order induced by σ that Cκ is connected to
with a directed arc.

For any permutation σ ∈ T (D, K ′) and CRP component index k ∈ K , we will use the
shorthand comps−1(σ, k) to denote the index k′ ∈ [K ′] such that k ∈ comps(σ, k′).

Returning again to the example in Fig. 5, example (a) has no CRP components such
that �̃k = 0, and so for eachσ and each k, comps(σ, k) is the set containing the indexof
the CRP component at position k of the permutation σ . In example (b),C4 has �̃4 = 0,
so for each permutation σ ∈ T (D, K ′), we need to determine for which index k ∈ K ′
we have 4 ∈ comps(σ, k), or in other words, what the value of comps−1(σ, 4) is.
CRP component C4 has directed arcs to bothC2 and C3. So for each topological order
induced by permutations σ ∈ T (D, K ′), we look at which component out of C2 and
C3 has the later position. Recall the two permutations in T (D, K ′) are σ1 = (1, 2, 3)
and σ2 = (2, 1, 3). In both permutations, C3 comes after C2. Thus in the ordered
partitions of CRP components generated by σ1 and σ2, C4 is in the same set as C3. So
for both permutations σ1 and σ2, comps(σ1, 3) = comps(σ2, 3) = {3, 4}.

3.3 Calculating waiting times

LetT (D, K ′) = (σ1, . . . , σT )be the collectionof topological orders on {C1, . . . , CK ′ }
(the components with �̃k > 0). For a topological order σt ∈ T (D, K ′) with the asso-
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ciated function comps(σt , ·) defined in (11), we define the unnormalized probability
of being in a state associated with the topological order σt as:

Q(σt ) =
∏

κ∈[K ′]

1
∑κ

�=1 γ̃comps(σt ,�)
, (12)

where we use the shorthand γ̃comps(σ,�) = ∑
κ∈comps(σ,�) γ̃κ . For a permutation σt ∈

T (D, K ′), for any CRP component Ck , we define the waiting time conditioned on the
topological order σt as:

wσt ,k =
K ′
∑

κ=comps−1(σt ,k)

1
∑κ

�=1 γ̃comps(σt ,�)
. (13)

The following Lemma 2 proves that the expressions above are well-defined.

Lemma 2 For a queueing system with inputs (�,μ, γ ) satisfying Assumption 1
and some admissible menu M ∈ M(�,μ, γ ), we have that for all permuta-
tions σt ∈ T (D, K ′) of CRP components {C1, . . . , CK ′ } and for all κ ∈ [K ′],∑κ

�=1 γ̃comps(σt ,�) > 0.

With the expressions for the unnormalized probabilities and conditional waiting
times of topological orders in place, we are ready to state our main theorem regarding
the mean scaled steady-state waiting times of different customer classes.

Theorem 1 For a queueing system with inputs (�,μ, γ ) satisfying Assumption 1
and some admissible menu M ∈ M(�,μ, γ ), let M̆ be the residual matching and
{C1, . . . , CK ′ , CK ′+1, . . . , CK } be the collection of CRP components induced by M̆.
Then, customer classes that belong to the same CRP component experience the same
scaled steady-state meanwaiting time in heavy traffic. Furthermore, the scaled steady-
state mean waiting time of CRP component Ck is equal to

ŴCk =
T (M)∑

t=1

(
Q(σt )

Q(σ1) + Q(σ2) + · · · + Q(σT (M))

)

wσt ,k, (14)

where T (M) is the total number of topological orders for the menu M.

The proof of Theorem 1 can be found in Sect. 6.1.

4 Matching probabilities in heavy traffic

Another performance metric of interest is the matching probabilities, that is, for each
customer class i and server j , the probability that a customer who joins class i is
served by server j . Take any system inputs (�,μ, γ ), satisfying Assumption 1, and
any admissible menu M ∈ M(�,μ, γ ). Also take any sequence of arrival rates λ(ε)
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satisfying Eq.5. We let p(ε)(M, λ(ε), μ) be the matrix of matching probabilities, so
p(ε)
i j (M, λ(ε), μ) is the steady state probability with which a customer who joins class

i ∈ [n] is served by server j ∈ [m]. While exact matching probabilities are difficult to
calculate, and remain difficult to calculate even in heavy traffic, we are able to provide
two results regarding how matching rate calculations simplify as we move to heavy
traffic. The results in this section will be limited to systems in which all customer
classes have strictly positive arrival rates.

Before stating our results regarding matching probabilities, it will be useful to gain
a better understanding of how the admissibility of menus relates to the limiting arrival
rates �. The following proposition will help develop this understanding

Proposition 2 Consider any queueing systemwith inputs (�,μ, γ ) satisfyingAssump-
tion 1 such that�i > 0 for all i ∈ [n]. ThenM(�,μ, γ ) ⊆ M(�,μ,�). Further, for
any menu M, if M ∈ M(�,μ,�), then the menu M̆ given by the residual matching
of M with limiting arrival rates � is also inM(�,μ,�).

This tells us that for (�,μ, γ ) satisfyingAssumption 1, amenuM being admissible
for model primitives (�,μ,�), is a necessary condition for M to be admissible for
(�,μ, γ ).

We are now ready to present our first result regarding matching probabilities, which
tells us that while the limiting expected delays depend on the particular sequence of
arrival rates λ(ε), and in particular depend on the slacks γ , the matching probabilities
depend only on the limiting arrival rates. The proof of Theorem 2 and Theorem 1 can
be found in Sect. 6.2.

Theorem 2 Take any limiting arrival rates� and service ratesμ such that 〈�〉 = 〈μ〉,
and �i > 0 for all i ∈ [n]. Consider any menu M ∈ M(�,μ,�). Also take any two
vectors of slacks γa and γb such that (�,μ, γa) and (�,μ, γb) satisfy Assumption
1, and M ∈ M(�,μ, γa) and M ∈ M(�,μ, γb). Then for any two sequences of
arrival rates λ

(ε)
a and λb

(ε) satisfying Eq.5 with γa and γb respectively,

lim
ε→0

p(ε)
i j (M, λ(ε)

a , μ) = lim
ε→0

p(ε)
i j (M, λ

(ε)
b , μ) for all i ∈ [n] and j ∈ [m].

Theorem 2 lets us talk about the matching probabilities of a menu M just in terms
of the limiting arrival rates � and service rates μ.

The second result we have relating tomatching probabilities, stated formally in The-
orem 1, tells us that matching probabilities within a CRP component are independent
of all other CRP components.

Corollary 1 Take any limiting arrival rates� and service ratesμ such that 〈�〉 = 〈μ〉
and �i > 0 for all i ∈ [n], and take any M ∈ M(�,μ,�). Let M̆ be the residual
matching, and let {C1, C2, . . . , CK } be the collection of CRP components induced by
M̆. Then for any customer class i ∈ Ck and server j ∈ Sk ,

lim
ε→0

p(ε)
i j (M,� − ε�,μ) = lim

ε→0
p(ε)
i j (M̆,� − ε�,μ).
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Theorem 1 implies that when calculating the matching rates, we can look at each
CRP component individually. Additionally, it tells us that the DAG structure does not
affect the matching probabilities. We will see in Sect. 5 that two menus M and M ′
with the same residual matching M̆ can have significantly different expected waiting
times in heavy traffic if the two menus induce different DAGs. Theorem 1 tells us that
despite this, the limiting matching probabilities of menus M and M ′ are the same.

5 Implications on system design

Before getting into the proofs of our main results, namely Theorems 1 and 2, let us
first discuss in this section some of the implications of our heavy traffic analysis in the
context of designing and analysing multi-class multi-server queueing systems. Along
the way, we will also use this discussion to highlight some key differences between
the behaviours of our model and the model presented in Afèche et al. [3].

For the sake of clarity in our exposition, we will limit our discussion in this section
to queueing systems (�,μ, γ ) that satisfy � > 0 as well as the conditions outlined
in Assumption 1. That is, systems that do not include any customer classes with zero
limiting arrival rate. Consequently, I0 = ∅, K ′ = K , and comps(σ, �) = σ(�) for
any topological order σ .

5.1 Menu design

An important objective for service providersmanagingqueueing systems, such as those
studied in this paper, is to identify service menus that will achieve good performance
in terms of waiting time delays. Depending on the context, the objective may be to
minimize the average delay across all customer classes or to minimize the maximum
expected delay for any customer class. The following result provides a lower bound
on the achievable waiting times that can be implemented.

Proposition 3 Consider a queueing system with inputs (�,μ, γ ) satisfying Assump-
tion 1. Consider an admissible matching M ∈ M(�,μ, γ ) and let D = ([K ],A) be
its associated DAG with CRP components {C1, . . . , . . . , CK }. Then, ŴCk ≥ 1

〈γ 〉 for

all k ∈ [K ]. Furthermore, ŴCk = 1
〈γ 〉 for some k ∈ [K ] if and only if on D there

exists a directed path from ŴCk to any other CRP component Cκ with κ ∈ [K ]\{k}.
This condition is trivially satisfied if there is only one CRP component.

A significant implication of the previous result is that under heavy traffic condi-
tions, any servicemenu inducing a single CRP component-thereby achieving complete
resource pooling-will ensure that all customer classes experience the minimum pos-
sible expected delay. Consequently, if the service provider aims to minimize waiting
time delays and has full flexibility in choosing the service menu, selecting a menu that
induces a single CRP component would be optimal. While many menus could satisfy
the objective of inducing a single CRP component-for instance, a fully connected
menu where each customer class is connected to every server—some menus might be
more preferable from a practical standpoint. This is because they could allow for a
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Fig. 6 The dedicated and N menus. Ŵi is the scaled mean waiting time for customer class i = 1, 2

more selective matching of customers to servers. The following proposition is useful
in identifying such a menu.

Proposition 4 Consider a queueing system with inputs (�,μ, γ ) satisfying Assump-
tion 1. Then, any menu M such that

∑

j∈S

∑

i∈[n]
�imi j <

∑

j∈S
μ j , for all S � [m]

is admissible and induces a single CRP component.

Interestingly, Proposition 4 tells us thatwe do not need to know the values for the slacks
γ to design a delay minimizing menu, making it easier to implement in practice.

Menuswith a predetermined set of CRP componentsWhile amenu inducing a single
CRP component minimizes delays, offering such a menu might not be desirable or
feasible due to real-world compatibility constraints that dictatewhich servers can serve
which customer types. Motivated by these practical considerations, let us next explore
how to select an admissible menu M whose associated DAGD = ([K ],A) induces a
given set of CRP componentsC1, . . . , CK . Alternatively, we can reframe this question
as the problem of identifying a DAG within a given collection of CRP components
that leads to minimal average waiting time delays.

In the process of answering this question one can be inclined to believe that adding
arcs to a givenDAGwill reduce expected delays as thiswill give additional flexibility to
a service system. However, in general adding arcs to a DAG may potentially increase,
decrease, or not affect the average delays. This is illustrated in the following two-server
example.

Example Let (�,μ, γ ) be a queueing system with two customer classes and two
serves such that � = μ = (1, 1) and γ = (γ1, γ2) > 0. Consider the following two
alternative service menus: (i) Dedicated Menu in which each server serves exclusively
one customer class and (ii) N Menu in which server 1 serves exclusively customer
class 1 while server 2 serves both customer classes.

Given the scaled mean waiting times Ŵ for each customer class, as indicated in
Fig. 6, the average delay across both customer classes for the Dedicated and N menus
are equal to

W
D = 1

2

(
1

γ1
+ 1

γ2

)

and W
N = 1

〈γ 〉 + 1

2 γ2
, (15)
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and so the difference in average delays isW
D−W

N = 1
2γ1

− 1
〈γ 〉 . It follows thatwhether

the N menu leads to lower, equal, or higher average delays than the Dedicated menu
depends on whether γ1 < γ2, γ1 = γ2, or γ1 > γ2, respectively. In particular, the case
γ1 > γ2 demonstrates that increasing the connectivity between customer classes and
servers in the design of a menu does not necessarily lead to reduced average delays; in
some cases, it may actually increase them, analogous to a form of Braess’s paradox.
Therefore, if a service provider is contemplating adding more flexibility to a system,
it is crucial to carefully assess how this flexibility is integrated. �

Based on Theorem 1, we can establish the connection between the average waiting
time of a given menu and its underlying DAG of CRP components. Recall that Eq.14
defined the delay of a given CRP component conditional on a particular topological
order. From this, we can similarly define wσ , the average delay across all customer
classes conditional on the topological order σ , as

wσ = 1

〈μ〉
K ′
∑

κ=1

∑κ
k=1 μ̃σ(k)

∑κ
�=1 γ̃σ (�)

. (16)

As a result, the average expected delay across all customer classes for a particular
menu M equals

W =
T (M)∑

t=1

(
Q(σt )

Q(σ1) + Q(σ2) + · · · + Q(σT (M))

)

wσt . (17)

Here we can see an important consequence of our model with arbitrary vector of
slacks γ and the results in Afèche et al. [3], who consider the special case � = γ .
Indeed, when � = γ the average expected delay in (17) reduces to W = K/〈μ〉
(see [3, Corollary 2]), which depends exclusively on the total service capacity 〈μ〉 and
total number of CRP components. With our more general scaling, the average delays
depend on the values of the slacks themselves, as well as the structure of the DAG and
the set of topological orders that are induced.

In Eq.17 both Q(σt ) and wσt depends exclusively on the topological order σt and
not on the DAG D itself. The dependence of W on the D is reflected in the collection
of topological orders T (D, K ) induced by D. Introducing additional arcs into the
DAG reduces the number of topological orders. If we can introduce or remove arcs
from a DAG in such a way that the system spends more time in states associated
with topological orders that have lower conditional average delays w̄σ , then the total
average delay will be reduced. However, the values of the slacks of the different CRP
components γ̃ limit how we are able to adjust the DAG and still have an admissible
menu. This leads us to the following definition of an admissible topological order.

Definition 7 Consider a queueing systemwith inputs (�,μ, γ ) satisfyingAssumption
1 with � > 0 and let C = {C1, . . . , CK } be a given collection of CRP components in
this system. We say that a topological order σ is admissible for C if

∑k
�=1 γ̃σ (�) > 0

for all k ∈ [K ]. We let�(C) denote the collection of all admissible topological orders
for C.
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The following lemma tells us how admissible topological orders relate to admissible
menus andwhichDAGs are feasible given a particular collectionC ofCRP component.

Lemma 3 Consider a queueing system with inputs (�,μ, γ ) satisfying Assumption 1
with � > 0 and let C = {C1, . . . , CK } be a given collection of CRP components in
this system. For any any admissible topological order σ ∈ �(C), we can construct an
admissible menu M ∈ M(�,μ, γ ) such that the DAG induced by M only admits the
topological order σ . Furthermore, if σ is not admissible, then there are no admissible
menus M that admit the topological order σ .

Equipped with Lemma 3, we can formulate the problem of minimizing average
delays for a given collection C of CRP components by identifying the admissible
topological order with the lowest condition delays.

Proposition 5 Consider a queueing system with fixed inputs (�,μ, γ ) satisfying the
conditions in Assumption 1with� > 0. Consider the class of all menuswhich induce a
given collection of CRP components C = {C1, . . . , CK }. Let σ ∗ := argmin{wσ : σ ∈
�(C)} be the admissible topological order with minimum conditional average delay.
Then, the DAG that minimizes the average delay across all customer classes is the one
that only allows for σ ∗(C) as its unique topological order.

Note that in the optimal DAG identified in Proposition 5 there is a direct arc from
CRP component Ck to C� if and only if σ ∗(k) = σ ∗(�)+ 1. That is, the optimal DAG
that minimizes the average delay across customer classes is a single path: Cσ ∗(K ) →
Cσ ∗(K−1) → · · · → Cσ ∗(2) → Cσ ∗(1). Thus, using Eq. (17), we can find σ ∗ by
solving

σ ∗ = argminσ∈�(C)

1

〈μ〉
K∑

κ=k

μσ(k)
∑κ

�=1 γ̃σ (�)

.

5.2 Perturbation analysis and implementable waiting time delays

In the previous section, we discussed designing a service menu M to minimize cus-
tomers’ average waiting times, considering the system’s inputs (�,μ, γ ) as given.
This section extends that discussion to include the possibility of selecting not only the
menu M but also the vector γ of slacks. From a practical standpoint, this additional
degree of flexibility can be interpreted in the context of a system provider that is able
to marginally perturbed the arrival rate of the various customer classes effectively
changing the direction of convergence of λ(ε) to �. As we will see, controlling the
values of γ allows for a wider range of outcomes than the proportional scaling used
in Afèche et al. [3]. The following definition formalizes what we mean by this.

Definition 8 (ImplementableWaitingTimes) Take limiting arrival rates�, service rates
μ, and a menu M such that a collection of CRP components C = {C1, C2, . . . , CK }
is induced. We say a vector of limiting scaled waiting times W = (W1,W2, . . . ,WK )

is implementable if there exists γ ∈ R
n such that the menu M ∈ M(�,μ, γ ), and

the resulting limiting waiting times ŴCk given by (14) are equal toWk for all k ∈ [K ].
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Fig. 7 Queueing system with four customer classes, four servers and three CRP components

Example Let us illustrate the notion of implementability in Definition 8 by revisiting
the example in Fig. 3 panel (a) (Fig. 7).

The limiting arrival rates are� = (2, 1, 1, 2), and service rates areμ = (2, 1, 2, 1).
We will let the sequence of arrival rates be λ

(ε)
i = �i − εγi for 1 ≤ i ≤ 4. We have

three CRP components, C1 = ({1}; {1}), C2 = ({2}; {2}), and C3 = ({3, 4}; {3, 4}).
From Theorem 1, we obtain the following scaled waiting time delays for each CRP
component:

Ŵ1 = 1

γ1
+ 1

〈γ 〉 , Ŵ2 = 1

γ2
+ 1

γ1 + γ2 + γ3
, and Ŵ3 = 1

〈γ 〉 .

By inspection, we can see that one can implement any vector of delays such that
min{Ŵ1, Ŵ2} > Ŵ3 > 0. To do this we would let γ1 = 1

W1−W3
, γ2 = 1

W2−W3
, and

γ3 + γ4 = γ1 + γ2 − 1/W1.
If we only look at the scaling in Afèche et al. [3], in which γ = �, then a single

specific vector of waiting times can be implemented. Thus, by allowing γ to change,
we increase the set of implementable outcomes. This suggests that in a congested
system, a service provider is able to produce significant improvements in delay if they
can make small changes to the arrival rates into the different customer classes. �

As we alluded to in Sect. 3, the DAG provides information about which vectors
of waiting times are implementable. The following statement, which is a corollary of
Theorem 1, formalizes this idea.

Corollary 2 If W ∈ R
K+ is implementable, then W is consistent with some topological

order σ ∈ T (D, K ). That is, there is some topological order σ ∈ T (D, K ) such that
Wk ≤ Wκ only if σ(κ) ≤ σ(k).

Corollary 2 provides a necessary condition for waiting times to be implementable.
While completely characterizing the set of implementablewaiting times for a particular
�, μ, and M is difficult in general, we are able to provide a sufficient condition for
waiting times to be implementable for menus such that the DAG satisfies the following
property.

Definition 9 (Chained DAGs) A DAG on C = {C1, C2, . . . , CK } is chained if there
exists a partition C = {C1,C2, . . . ,CL} of C such that the DAG includes a directed
arc from Ci to Ck if and only if Ci ∈ C� and Ck ∈ C�+1 for some � ∈ [L − 1].
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C2
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C1

C6 C5

C7

(b) Unchained DAG

C2
C4

C1

C6 C5

C7

(a) Chained DAG

C3 C3

Fig. 8 Examples of chained (a) and unchained (b) DAGs over seven CRP components

Figure8 illustrates an example of a chained DAG in panel (a) and one unchained
DAG (i.e. a DAG that is not chained) in panel (b), both over a collection of seven CRP
components.

For the chained DAG in panel (a), L = 4 and C1 = {C2, C3}, C2 = {C4}, C3 =
{C1, C6, C7} andC4 = {C5}. On the other hand, to see that the DAG in panel (b) is not
chained, note that we cannot satisfy the requirement in Definition 9 if we consider the
three CRP components C1, C2 and C4. Indeed, the arcs connecting C2 and C4 to C1
would require that C2 and C4 belong to the same class Cl in the partition C for some
�, but then the arc connecting C2 to C4 would require these two CRP components to
be in different classes in C .

For menus such that the DAG is chained, the following result regarding which
vectors of waiting times are implementable applies.

Proposition 6 Take limiting arrival rates �, service rates μ, and a menu M that
induces a collection of CRP components C = {C1, C2, . . . , CK } and a chained DAG
D = ([K ],A) as described in Definition 9. Let C = {C1,C2, . . . ,CL} be the corre-
sponding partition of C. The vector of waiting times W = (W1, . . . ,WK ) ∈ R

K+ is
implementable if there exists a vector Ŵ = (Ŵ1, . . . , ŴL) ∈ R

L+ such that

(i) Wk = Ŵ� for all k ∈ [K ] such that Ck ∈ C� for some � ∈ [L],
(ii) Ŵ� < Ŵ�+1 for � = 1, . . . , L − 1.

The following corollary establishes that it is always possible to implement any
vector of distinct waiting times by using a simple linear DAG, namely a DAG that
induces a single topological order.

Corollary 3 (Linear DAG) Consider a queueing system with limiting arrival rates
�, service rates μ and a menu M that induces a collection of CRP components
C = {C1, C2, . . . , CK }. Let W = (W1, . . . ,WK ) ∈ R

K+ be a given vector of waiting
times such that W1 > W2 > · · · > WK . Then, there exists a vector of aggregate slacks
γ̃ = (γ̃1, γ̃2 . . . , γ̃K ) ∈ R

K such that a linearDAGD = ([K ],A)onC implements the
vector W, where the set of directed arcs is given byA = {(k + 1, k) : k = 2, . . . , K }.

Remark 1 Under the heavy traffic scaling considered in Afèche et al. [3], with γ = �,
the linear DAG in the previous corollary implements a unique vector of waiting times
W = (W1, . . . ,WK ) withWk = ∑K

κ=k
1∑κ

�=1 �̃�
, where �̃� is equal to aggregate slack

of CRP component �. �
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6 Proof of main results

6.1 Proof of Theorem 1

The key observation needed to prove Theorem 1 is that only a relatively small subset
of states have positive probability in heavy traffic, and the information about which
states have positive probability is captured by the CRP components and the DAG on
the CRP components. However, before we go into more detail, we will recall some
notation. In Eq.10, we defined the aggregate arrival rate for a CRP component Ck to
be λ̃

(ε)
k = ∑

i∈Ck λi
(ε) = �̃k − εγ̃k +o(ε). In Definition 2 for we defined the slack for

a subset of servers S ⊆ [m] as �(S ) = μS − λU (S ). In Proposition 1, U (S ) is
defined as the subset of customer classes that can only be served (or, uniquely served)
by servers inS under the menu M .

We further aggregate the state space described in Sect. 2.1 so that the state depends
only on the server permutation s and the number of busy servers b, and not the
number of customers. Specifically, for a server permutation s = {s1, . . . , sm} and
b ∈ {0, 1, . . . ,m} define:

P(s; b) = {x ∈ X : x = (s1, n1, . . . , sb, nb, sb+1, sb+2 . . . , sm)}

as the set of all states where s is the ranking of servers in terms of the age of the
customer for busy servers and the time since idleness for idle servers, and where
exactly the first b servers in s are busy. We then have the following expression for the
probability of the aggregate state P(s; b):

π(P(s; b))=
∞∑

n1=0

· · ·
∞∑

nb=0

B
b∏

�=1

λ
n�

U (s1,...,s�)

μ
n�+1
{s1,...,s�}

m∏

�=b+1

λ−1
C(s�,...,sm ) =

∏m
�=b+1 λ−1

C(s�,...,sm )
∏b

�=1 �(s1, . . . , s�)
.

(18)

We can use these aggregated states to express the total expected waiting times for
each customer class in terms of the aggregated probabilitiesπ(P(s; b)). The following
lemma, which is rephrased from Afèche et al. [3] gives an expression for the mean
waiting time for each customer class in terms of the probabilities π(P(s; b)).
Lemma 4 [3, Lemma 6] The steady-state mean waiting time of customer class i is
equal to

Wi =
∑

s∈�m

m∑

b=1

Wi (s; b) · π(P(s; b)),

where �m denotes the set of all the permutations of [m],

Wi (s; b) =
b∑

�=1

11
(
i ∈ U (s1, . . . , s�)

)

�(s1, . . . , s�)
,
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and π(P(s; b)) is given by (18).

We are able to simplify these expressions further by showing that only a relatively
small subset of aggregate states (s, b) have asymptotically nonzero probabilities in
heavy traffic. These states are exactly those that are consistent with T (D, K ′) =
(σ1, . . . , σT ) the collection of topological orders on {C1, . . . , CK ′ }. The following
definition formalizes what we mean by this.

Definition 10 (Server Permutations Induced by Topological Orders) We say that a
permutation of the servers s = (s1, s2, . . . , sm) ∈ �m is induced by the topological
order σ ∈ T (D, K ′), if s can be expressed as a concatenation of sub-permutations:

s = (
sσ(1)||sσ(2)|| · · · ||sσ(K ′)

)

with sk ∈ �Sk denoting a permutation of the servers Sk of CRP component Ck . In
other words, the servers of a CRP component are contiguous in the permutation s, and
the order of the CRP components obeys the topological order σ .

Returning to our four server example in Fig. 5a, the CRP components were C1 =
(C1,S2 = ({1}, {1}), C2 = (C2,S2 = ({2}, {2}), and C3 = (C3,S3 = ({3, 4}, {3, 4}),
and the topological orders were σ1 = (1, 2, 3) and σ2 = (2, 1, 3). Definition 10
tells us the topological order σ1 induces two possible server permutations, s11 =
(s1||s2||s3||s4) and s12 = (s1||s2||s4||s3).

In Proposition 7 in “Appendix D”, we prove that only states in which all servers
are busy and have server permutations that are induced by the topological orders
T (D, K ′) = (σ1, . . . , σT ) have asymptotically nonzero probabilities in heavy traffic.
Further, we show that the asymptotic probabilities of these states can be expressed as

lim
ε→0

π(P(s; b)) = B′ · Q(σ )

K ′
∏

k=1

θk(sk), (19)

where B′ is a normalization constant, Q(σ ) was defined in (12) and{
θk : �Sk → �+}

k∈[K ′] is a fixed collection of functionsmapping the sub-permutation
of servers of CRP components to positive reals.

Using Proposition 7 and the normalization condition
∑

s∈�m ,0≤b≤m π(P(s; b)) =
1, we get:

lim
ε→0

∑

s∈�m ,0≤b≤m

π(P(s; b)) =
∑

σ∈T (D,K ′)

∑

s=(sσ(1)||sσ(2)||···||sσ(K ′))
{sk∈�Sk }k∈[K ′]

π(P(s;m))

=
⎛

⎝
∑

σ∈T (D,K ′)
Q(σ )

⎞

⎠

⎛

⎝B′ ∑

{sk∈�Sk }k∈[K ′]

K ′
∏

k=1

θk(sk)

⎞

⎠ ,
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or,

⎛

⎝B′ ∑

{sk∈�Sk }k∈[K ′]

K ′
∏

k=1

θk(sk)

⎞

⎠ = 1
∑

σ∈T (D,K ′) Q(σ )
.

Finally, we provide a lemma giving expressions for the scaled Wi (s; b) when s is a
server permutation induced by a topological order σ , and b = m, as these are the only
permutations that will be important in arriving at the result. A somewhat remarkable
fact is that the limiting scaled Wi (s;m) depends only on the topological order σ and
not the full server permutation s.

Lemma 5 Let s = (s1, . . . , sm) be a server permutation induced by the topological
order σ ∈ T (D, [K ′]). For a customer class i ∈ Ck ,

lim
ε→0

εWi (s;m) = wσ,k :=
K ′
∑

κ=comps−1(σ,k)

1
∑κ

�=1 γ̃comps(σ,�)

. (20)

Combining Proposition 7 with Lemmas 4 and 5, the limiting scaled mean waiting time
for customer class i ∈ Ck is:

Ŵ ∗
i = lim

ε→0
ε · Wi

= lim
ε→0

∑

s∈�m

ε

m∑

b=1

Wi (s; b) · π(P(s; b)).

Using the product rule of limits5 we can reduce the above sum to a sum over server
permutations induced by topological orders, and where all servers are busy.

Ŵ ∗
i = lim

ε→0

∑

σ∈T (D,K ′)

∑

s=(sσ(1)||···||sσ(K ′))
{sk∈�Sk }k∈[K ′]

ε · Wi (s;m) · π(P(s;m))

=
∑

σ∈T (D,[K ′]) wσ,k · Q(σ )
∑

σ∈T (D,K ′) Q(σ )
=: W̃k,

as in the theorem statement.

6.2 Proof of Theorem 2

Throughout this section, we will take the menu M , limiting arrival rates� and service
rates μ, and slacks γ to be given, and largely suppress any dependence on M in the

5 Product rule of limits: If limx→x0 f (x) = F and limx→x0 g(x) = G, then limx→x0 f (x)g(x) exists
and equals FG.
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notation. We will let M̆ be the residual matching of the menu M with arrival rates �

and service rates μ.
Instead of directly working with the matching rates p(ε)

i j , we will look at the service

probabilities q(ε)
i j . For all i ∈ [n] and j ∈ [m], q(ε)

i j (x) is the probability with which
server j serves customer i given the system is in state x and server j has become idle.
We prove Theorem 2 by deriving and simplifying expressions for the limiting service
probabilities qi j for themenuM , and find that the limiting service probabilities depend
only on the service rates μ, limiting arrival rates �, and the connectivity within each
CRP component. To do this, we will make use of a new state space aggregation which
we will introduce here.

In Sect. 6.1,we introduced the aggregate states P(s, b) for ever s ∈ �m and b ∈ [m].
We will further aggregate the state space, so that we can consider all of the states in
which we observe a particular subpermutation of servers within a CRP component
simultaneously. Specifically, for some k ∈ [K ′] and some subpermutation sk ∈ �Sk ,
we define

Pk(sk) = ∪σ∈T (D,K ′)
{
s ∈ P(s,m)|s = (

sσ(1)|| · · · ||sk || · · · ||sσ(K ′)
)
, sκ ∈ �Sκ for κ ∈ [K ′] and κ �=k

}

Note that while the set of aggregated states P(s, b) does not depend on the menu being
offered, Pk(sk) depends on the set of topological orders, and hence does depend on
the menu.

The first main step of our derivation will be to calculate the limiting service prob-
abilities for our new further aggregated state space. That is, for each pair of customer
classes i ∈ [n] and servers j ∈ [m] in the same CRP component, and for any sub-
permutation of servers within that CRP component sk(k) ∈ �Sk( j) , we would like to
calculate qi j (Pk( j)(sk( j))), the limiting probability of server j serving class i given
the system is in a state in Pk( j)(sk( j)). Recall that k( j) denotes the index of the CRP
component that server j belongs to. We do not consider pairs i and j that are not in
the same CRP component, as we know the limiting service probabilities of customer
classes and servers that are not in the same CRP component converge to zero. Sim-
ilarly, we do not consider that service probabilities in any states x not in Pk(sk) for
some k ∈ [K ′] and sk ∈ �Sk , as those states have idle servers, and hence have steady
state probabilities converging to zero.

We will begin by writing the state dependent matching probability q(ε)
i j (x) for an

arbitrary state x ∈ Pk( j)(sk( j)). We will let j(x) denote the position in the server
permutation of server j in the state x and similarly will let j(s) denote the position
of server j in the server permutation s. We can look at q(ε)

i j (x) by conditioning on the
position in the queuing network of the potential customer of type i that j serves. This
lets us express q(ε)

i j(x) as

q(ε)
i j (x) =

m∑

r= j(x)

⎛

⎝
r−1∏

u= j(x)

λ
nu
{U (s1,...,su∩C( j)}
λ
nu
U (s1,...,su )

⎞

⎠

⎛

⎝λi

nr∑

y=1

λ
nr−1
{U (s1,...,sr )∩C( j)}

λ
nr
U (s1,...,sr )

⎞

⎠

123



Queueing Systems

= λi

m∑

r= j(x)

⎛

⎝
r−1∏

u= j(x)

λ
nu
{U (s1,...,su )∩C( j)}

λ
nu
U (s1,...,su )

⎞

⎠

⎛

⎝
λ
nr
U (s1,...,sr )

− λ
nr
{U (s1,...,sr )∩C( j)}

λ
nr
U (s1,...,sr )

(
λU (s1,...,sr ) − λ{U (s1,...,sr )∩C( j)}

)

⎞

⎠ .

(21)

It will be useful to decompose this expression into two parts, q+
i j (x), the part of the

expression representing a transition within the CRP component, and q0i j (x), the part of
the expression representing a transition outside of the CRP component. We suppress
the dependence on ε to reduce clutter in the notation. So

q+
i j (x) = λi

mk∑

r= j(x)

⎛

⎝
r−1∏

u= j(x)

λ
nu
{U (s1,...,su )∩C( j)}

λ
nu
U (s1,...,su )

⎞

⎠

⎛

⎝
λ
nr
U (s1,...,sr )

− λ
nr
{U (s1,...,sr )∩C( j)}

λ
nr
U (s1,...,sr )

(
λU (s1,...,sr ) − λ{U (s1,...,sr )∩C( j)}

)

⎞

⎠ ,

and q0i j (x) = q(ε)
i j (x)−q+

i j (x). Recall thatmκ = ∑
�∈[κ] |S�|, that is,mκ is the number

of servers in the first κ CRP components in the topological order.
As an intermediate step to looking at the aggregate matching probabilities

q(ε)
i j (Pk(sk)), we will first look at the partially aggregated matching probabilities

q(ε)
i j (P(s,m)):

q(ε)
i j (P(s,m)) = 1

π(P(s,m))

⎡

⎣
∑

x∈P(s,m)

π(x)q+
i j (x) +

∑

x∈P(s,m)

π(x)q0i j (x)

⎤

⎦ . (22)

The second term in Eq.22 represents transitions from a state where the permutation of
servers is induced by a topological order to a state where the permutation of servers is
not induced by a topological order, and hence has a limiting probability of zero. This
means that the second term in this expression will converge to zero, as we prove in
Lemma 11 in “Appendix E”.

We will now fix a topological order σ ∈ T (D, K ′), and a server permutation
s ∈ �m that is induced by σ . To reduce notational clutter, we assume without loss
of generality that the CRP components are labelled in order of their position in the
topological order, that is, σ(k) = k for all k ∈ K ′. Using Lemma 11, we can write
q(ε)
i j (P(s,m)) as

q(ε)
i j (P(s,m)) = λi

π(P(s,m))

∞∑

n1=0

· · ·
∞∑

nm=0

B
m∏

�=1

λ
n�

U (s1,...,s�)

μ
n�+1
{s1,...,s�}

q+
i j (s1, n1, . . . , sm , nm) + o(1). (23)

The following notation will be useful in simplifying this expression. Recall from
Definition 2 that �(S) = μS − λUM (S). It will also be useful to define � j (S) as

� j (S) = μS − λ{UM (S)∩C( j)}. (24)
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This lets us write Eq.23 as

q(ε)
i j (P(s,m)) = Bλi

π(P(s,m))

⎛

⎝
m∏

�=mk( j)+1

1

�(s1, . . . , s�)

⎞

⎠

⎛

⎝
mk( j)−1∏

�=1

1

�(s1, . . . , s�)

⎞

⎠

×
⎛

⎝
j−1∏

�=mk( j)−1+1

1

�(s1, . . . , s�)

⎞

⎠

[ mk ( j)∑

r= j(s)

⎛

⎝
r∏

u= j(s)

1

� j (s1, . . . , su)

⎞

⎠

( mk( j)∏

�=r+1

1

�(s1, . . . , s�)

)

×
(

1

�(s1, . . . , sr )
− 1

� j (s1, . . . , sr )

)]

+ o(1), (25)

where as before mκ = ∑
�∈[κ] |S�|.That is, mκ is the number of servers in the first κ

CRP components in the topological order.
This shows us that the limiting values of �(s1 . . . , s�) are key in understanding

q(ε)
i j (P(s,m)). Lemma 10 tells us that if � = mκ for some κ ∈ [K ′], then

lim
ε→0

ε

�(s1, . . . , smκ )
= 1

∑κ
�=1 γ̃comps(σ,�)

.

For all other values of �, there is some κ ∈ [K ′] such that mκ−1 + 1 ≤ � ≤ mκ − 1.
Here we take m0 = 0. We let S = {smκ−1+1, . . . , s�}. Lemma 8 part (ii) implies that

lim
ε→0

�(s1, . . . , s�) = μS − �UM̆ (S) > 0.

We can use these observations to prove the following lemma.

Lemma 6 We can find functions
{
θκ : �Sκ

→ �+}
κ∈[K ′], Hi j : �Sk( j) → �+, and

Gi j : �Sk( j) → �+, such that qi j (P(s,m)) = limε→0 q
(ε)
i j (P(s,m)) can be written

as

qi j (P(s,m)) = lim
ε→0

⎡

⎣ Bλi

π(P(s,m))εK
′ Q(σ )

⎛

⎝
∏

κ �=k( j)

θκ (sκ)

⎞

⎠ Hi j (sk( j))

⎤

⎦

− lim
ε→0

⎡

⎣ Bλi

π(P(s,m))εK
′−1

⎛

⎝
∏

κ �=k

1
∑κ

�=1 γ̃comps(σ,�)

⎞

⎠

⎛

⎝
∏

κ �=k( j)

θκ (sκ)

⎞

⎠Gi j (sk( j)) + o(1)

⎤

⎦ , (26)

where θκ and Hi j only depend on M̆, �, and μ.
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We provide exact definitions of
{
θk : �Sk → �+}

k∈[K ′], Hi j : �Sk → �+, and
Gi j : �Sk → �+ in the proof of Lemma 6 in “Appendix E”. The important thing
to notice is that the first line in Eq.26 has an ε−K ′

term, and the second line has an
ε−(K ′−1) term. Since qi j are probabilities and therefore must be between 0 and 1, we
know that limε→0 Bε−K ′

is bounded. This implies that limε→0 Bε−(K ′−1) = 0, and
so only the first line in Eq.26 will be nonzero. Thus

qi j (P(s,m)) = B′λi
π(P(s,m))

Q(σ )

⎛

⎝
∏

κ �=k

θκ(sκ)

⎞

⎠ Hi j (sk( j)). (27)

Using Eq.27, and the fact that the qi j are matching probabilities and must sum to
one, we can rewrite qi j (P(s,m)) as

qi j (P(s,m)) = Hi j (sk( j))
∑

i ′∈Ck Hi ′ j (sk( j))
. (28)

Since Eq.28 holds for any server permutation s ∈ �, and the right hand side depends
only on sk and not on the rest of the server permutation, this implies that

qi j (Pk( j)(sk( j))) = Hi j (sk( j))
∑

i ′∈Ck Hi ′ j (sk( j))
. (29)

As Lemma 6 states, Hi j (sk( j)) does not depend on γ . This means that the remaining
step needed to prove Theorem 2 is to show that π(Pk( j)(sk( j))) also does not depend
on γ . This is captured in the following lemma.

Lemma 7 For an admissible servicemenu M with limiting arrival rates� service rates
μ, and slacks �, the limiting probability of being in a state with the sub-permutation
of server sk ∈ �Sk for k ∈ K ′ is equal to

lim
ε→0

π(Pk(sk)) = θk(sk)
∑

sκ∈�Sk
θκ(sκ)

,

where
{
θκ : �Sκ

→ �+}
κ∈[K ′] is a function that depends only on M̆, �, and μ.

CombiningLemma7withEq.28,we conclude that the limiting service probabilities
limε→0 q

(ε)
i j do not depend on the exact values of the slacks γ .

7 Concluding remarks

In this paper, we have studied the performance of multi-class multi-server bipartite
queueing systems under a FCFS-ALIS service discipline by extending the heavy traf-
fic analysis introduced in Afèche et al. [3] for a similar class of systems. In Theorem
1 we have provided a general characterization of the mean steady-state waiting time
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delay for each customer class. Our characterization relies on decomposing the queue-
ing system into a collection of complete resource pooling (CRP) components and
identifying the connectivity among these CRP components in the form of a directed
acyclic graph (DAG). Interestingly, only the knowledge of this DAG together with
the capacity slack in each CRP component is enough to derive the mean steady-state
waiting time for all customer classes. We have also studied the steady-state matching
probabilities among customer classes and servers and showed in Theorem 2 that only
the limiting values of arrival and service rates influence these matching probabilities.
This is in direct contrast to the behaviour of themean steady-state waiting times, which
are also affected by the direction of convergence to heavy traffic. We use our results
regarding steady-state outcomes to explore some questions regarding the design of
queueing systems. In doing this, we find that when service providers are looking to
minimize expected delays and have complete control over the design of the menu,
then they should implement a menu that induces a single CRP component.

Our work points towards several promising research directions. Firstly, we suggest
exploring the problem of menu design, which involves determining the customer
classes to offer when customers can select which queue to join upon arrival. Caldentey
et al. [9] have made some preliminary progress in this area. Another area that deserves
further investigation is the relationship between delays and the underlying matching
topology in our bipartite queueing system. In Sect. 5.1, we demonstrate that adding
more connectivity to the system can lead to a deterioration in the average waiting time
of customers, exhibiting a form of Braess’s paradox, despite neither customers nor
servers acting strategically. Mathematically, this negative effect happens when adding
an additional arc to themenu increases the probability of a topological orderwith higher
conditional delays. Theorem 1 characterizes waiting time delays and can be used to
identify an optimal flexibility structure as a combinatorial optimization problem over
the collection of directed acyclic graphs (DAGs) associated with a particular set of
CRP components.

In addition, there are alternative modelling choices that could be worth exploring.
For example, while we have focussed on conventional heavy traffic scaling, a many-
server scaling may be more appropriate for certain application settings, such as public
housing and healthcare, where many identical servers are available. Furthermore, we
haveprimarily examined steady-state outcomes, but in real-world scenarios, conditions
often change frequently,making it unclear if a steady-statewill be achieved. Therefore,
studying the transient behaviour of bipartite queueing systems could also be of interest.
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Appendix A Section 3 proofs

Proof of Lemma 1: Let us define the set Fmax as

Fmax :=
⎧
⎨

⎩

∑

i∈[n]
f = [ fi j ] :

∑

i∈[n]
fi j ≤ μ j ∀ j ∈ [m] , f ≥ 0, fi j = 0, ∀(i, j) : mi j = 0

⎫
⎬

⎭
.

For all ε ∈ [0, εo), note that F(λ(ε), μ, M) ⊆ Fmax. Furthermore, since Fmax is a
compact set, the sequence f (ε) has a subsequence that converges to some limit in
Fmax. Let f̃ denote this limit. To prove that f̃ ∈ F(�,μ, M), all that remains to be
shown is that f̃ satisfies

∑

j∈[m]
f̃i j = �i , for all i ∈ [n].

But we know that

∑

j∈[m]
f (ε)
i j = λ

(ε)
i , for all i ∈ [n] and 0 < ε < ε0,

and f̃ is the limit of a subsequence of f (ε), and so

∑

j∈[m]
f̃i j = lim

ε→0
λ

(ε)
i = �i , for all i ∈ [n]

as required. �
Before proving Lemma 2, we state some properties of CRP components and topo-

logical orders that will be useful in proving the remaining results. This lemma has
been slightly modified from [3, Lemma 6].

Lemma 8 Let M be a service menu and {C1, . . . , CK ′ , CK ′+1, . . . , CK } be its CRP
components for limiting arrival rates �. For a CRP component Ck = (Ck,Sk) with
non-empty Sk (i.e. k ∈ [K ′]):
(i) The aggregate demand of customer classes converges to the aggregate service rate

as ε → 0, that is, �̃k := �Ck = μSk =: μ̃k (see (10) for definitions).
(ii) For any strict subset of servers S ⊂ Sk , the set of customer classes in residual

matching M̆ served only by S is a strict subset of Ck , and S exhibits strictly
positive slack as ε → 0, that is,

∀S ⊂ Sk : UM̆ (S ) ⊂ Ck and μS > �UM̆ (S ).

Further, since UM (S ) ⊆ UM̆ (S ), the positive slack condition also holds for
UM (S ). (UM (S ) is the subset of customer classes that can only be served by
servers inS under the menu M.)
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Let σ ∈ T (D, K ′) be a topological order of the CRP components with non-empty
server sets. DefineSk = Sσ(1)∪Sσ(2)∪· · ·∪Sσ(k) andCk = Cσ(1)∪Cσ(2)∪· · ·∪Cσ(k)

to be the subset of servers and customer classes in the first k CRP components in the
topological order. Define

C ′
k = {∪κCκ |κ ∈ {K ′ + 1, . . . , K } : ∃k′ ∈ {1, . . . , k}, κ ∈ comps(σ, k′)

}

to be the customer classes of server-lessCRPcomponents that are part of comps(σ, k′)
for some k′ ∈ [k]. Then,

(iii) Customers in Ck ∪ C ′
k are exclusively served by servers in Sk . That is,

UM (Sk) = Ck ∪ C ′
k .

(iv) The capacity slack of the set of serversSk converges to zero as ε → 0, in partic-
ular,

�(Sk) = ε

k∑

�=1

γ̃comps(σ,�) + o(ε).

Proof of Lemma 8 There are two differences between the setup in our paper and in
Afèche et al. [3]: first, the constants γi for the approach to heavy traffic are allowed
to be arbitrary, while in Afèche et al. [3] the authors impose γi = �i . Second, our
setup has customer classes with �i = 0 and hence CRP components which consist of
a single customer class and no servers. Despite these, the proofs for parts (i) and (ii)
are identical to the proofs of parts (i) and (ii) of [3, Lemma3].

Part (iii) of [3, Lemma 3] states that UM (Sk) = Ck , which in our setup should be
interpreted as

UM (Sk) ∩
{
∪K ′

�=1C�

}
= Ck .

In addition, a server-lessCRPcomponentCκ = ({i},∅) consisting of a single customer
class i is part of the set of customer classes uniquely served by the setUM (Sk) if and
only if all the CRP components k′ such that Cκ has a directed arc to Ck′ in the
DAG D = ([K ],A) are included in (σ (1), . . . , σ (k)). Recalling the definition of the
function comps(σ, ·), this is equivalent to saying that comps−1(σ, κ) ≤ k.

Part (iv) follows from the definition of slack �(S ) and part (iii):

�(Sk) = μSk − λUM (Sk ) =
k∑

�=1

μS�
−

k∑

�=1

∑

κ∈comps(σ,�)

λCκ
=

k∑

�=1

∑

κ∈comps(σ,�)

μSκ
− λCκ

=: ε

k∑

�=1

γ̃comps(σ,�) + o(ε).

�
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Proof of Lemma 2 Fix a topological order σt ∈ T (D, [K ′]) and an index κ ∈ [K ′].
Define the sets

C =
κ⋃

�=1

{Ci : i ∈ comps(σt , �)} , and S =
κ⋃

�=1

{Si : i ∈ comps(σt , �)} .

By the definition of the DAG D and topological order σt , we have that

S = S(C ).

That is, the customer classes C are only served by servers inS . We can find a lower
bound on the scaled mean waiting times of the customer classes in C using the scaled
mean waiting time of a M/M/1 queue:

∑

i∈C
λ

(ε)
i Ŵi

(ε) ≥ ε

μS − λ
(ε)

C

. (A1)

Further, from Lemma 8 we know that,

μS − λ
(ε)

C = ε

κ∑

�=1

γ̃comps(σt ,�) + o(ε).

If, contradictory to Lemma 2,
∑κ

�=1 γ̃comps(σt ,�) ≤ 0, then the right-hand side of
(A1) must diverge, and hence the sum on the left-hand side as well. However, from the

admissibility of M , each Ŵi
(ε)

converges, and therefore also the sum on the left-hand
side of (A1). Thus we must have

∑κ
�=1 γ̃comps(σt ,�) > 0 for all σt ∈ T (D, [K ′]) and

κ ∈ [K ′]. �

Appendix B Section 4 proofs

The following lemma will be useful in proving Proposition 2 and other results.

Lemma 9 Let M be an admissible menu with (�,μ, γ ), and let M̆ be the menu given
by the residualmatching of M. Let {C1, . . . , CK ′ , CK ′+1, . . . , CK } be theCRPdecom-
position of M, and hence also of M̆. Let σ be a permutation of CRP components with
�̃k > 0, (not necessarily a topological order), and let S ⊆ [m] be a set of servers
such that

S =
k⋃

i=1

Sσ(i) (A1)

for some k ∈ [K ′]. Then the following statement holds:
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(i) For the menu M̆,

lim
ε→0

�M̆ (S ) = μS − �UM̆ (S ) = 0.

For subsets of servers S ⊆ [m] not satisfying Eq.A1 for any permutation of CRP
components σ or integer k, the following statement holds:

(ii) For the menu M̆

lim
ε→0

�M (S ) ≥ lim
ε→0

�M̆ (S ) = μS − �UM̆ (S ) > 0.

Proof of Lemma 9 Part (i) can be proved as follows. Recall that Ck is the set of customer
classes inCk , andSk is the set of servers. Due to the construction of M̆ , servers inSk are
only compatible with customers in Ck . So it suffices to show that μSk − �UM̆ (Sk) = 0
for all k ∈ [K ′].

From Lemma 8 we know that �Ck = μSk , so the result will hold if UM̆ (Sk) = Ck .
From the construction of M̆ , we know that UM̆ (Sk) ⊆ C, since only servers in Sk can
serve customers in Ck . Additionally, since no customer class in Ck can be served by
a server not in Sk , every customer on Ck is also in UM̆ (Sk). Thus UM̆ (Sk) = Ck and
part (i) holds.

Part (ii) can be proved following the arguments in [3, Lemma4]. �

Proof of Proposition 2 To show M is admissible for (� − ε�,μ), we must show that

0 <
∑

j∈S
μ j −

∑

i∈UM (S )

�i + ε
∑

i∈UM (S )

�i = 	(ε) for all S ⊆ [m]. (A2)

The admissibility of M for (�,μ, γ ) implies that
∑

j∈S μ j −∑
i∈UM (S ) �i ≥ 0 for

all S ⊆ [m]. For any S ⊆ [m] such that
∑

j∈S μ j − ∑
i∈UM (S ) �i > 0, Eq.A2

holds regardless of the ε terms. In the case that
∑

j∈S μ j −∑
i∈UM (S ) �i = 0, then

∑

j∈S
μ j −

∑

i∈UM (S )

�i + ε
∑

i∈UM (S )

�i = ε
∑

i∈UM (S )

�i = ε
∑

j∈S
μ j .

But
∑

j∈S μ j > 0, so 0 < ε
∑

j∈S μ j = 	(ε) as required.

The second part of the proposition states that M̆ is admissible for (� − ε�,μ). To
show this, we must show that

0 <
∑

j∈S
μ j −

∑

i∈UM̆ (S )

�i + ε
∑

i∈UM̆ (S )

�i = 	(ε) for all S ⊆ [m]. (A3)

There are two cases to consider. In the first case, S ⊆ [m] satisfies Eq.A1 for
some permutation of CRP components σ . In this case, Lemma 9 part (i) applies, and∑

j∈S μ j −∑
i∈UM̆ (S ) �i = 0. In the second case,S ⊆ [m] does not satisfy Eq.A1

for any permutation of CRP components. In this case, Lemma 9 part (ii) applies,

123



Queueing Systems

and
∑

j∈S μ j − ∑
i∈UM̆ (S ) �i > 0. In both cases, Eq.A3 holds following similar

reasoning as in the first part of the proposition. �

Appendix C Section 5 proofs

Proof of Proposition 3 Note from (13) that

wσ,k =
K ′
∑

κ=comps−1(σ,k)

1
∑κ

�=1 γ̃comps(σ,�)

= 1

〈γ 〉 +
K ′−1∑

κ=comps−1(σ,k)

1
∑κ

�=1 γ̃comps(σ,�)

Here we set the empty sum to be zero (i.e. the case in which K ′ − 1 < κ). From
Lemma 2 we know that the last summation is non-negative. This combined with (14)
tells us that WCk ≥ 1/〈γ 〉.

Let us now prove the second part of the proposition From the previous discussion,
it follows that the requirement ŴCκ̂

= 1/〈γ 〉 can only be satisfied if wσ,κ̂ = 1/〈γ 〉
for all permutations σ associated a topological order. But this can only happen if
σ−1(κ̂) = K for all topological orders σ ∈ T (D, K ′). Since a CRP component Ck1
must come later in every topological order than a component Ck2 that it has a directed
arc to in the DAG, this means that a component Cκ is last in every topological order
σ if and only if there is a directed path from Cκ to all other CRP components in the
DAG, proving the result. This condition is trivially satisfied if K = 1. �

Proof of Proposition 4 Take any slacks γ with 〈γ 〉 > 0. We will first show that M ∈
M(�, γ, μ). To do this, we need to show that

0 < �(ε)(S ) = 	(ε) for allS ⊆ [m],

where �(ε)(S ) is as defined in Definition 2.
We define D(S ) as

D(S ) =
∑

j∈S
μ j −

∑

i∈U (S )

�i

for all S ⊆ [m]. Then

�(ε)(S ) = D(S ) + ε
∑

j∈S
γi + o(ε) for all S ⊆ [m],

From the definition of M we know that D(S ) > 0 for all S � [m], implying that
0 < �(ε)(S ) = 	(ε) for all S � [m]. For the case of S = [m], since 〈λ〉 = 〈μ〉,
and 〈γ 〉 > 0,

0 < �(ε)(S ) = ε〈γ 〉 + o(ε) = 	(ε)

123



Queueing Systems

as required.
What remains to be shown is that M induces a single CRP component. This follows

from part (i) of Lemma 8, which states that within a CRP component �̃k := �Ck =
μSk =: μ̃k (see (10) for definitions). But with our choice of M , we know that for any
subset of servers S � [m], any subset of customers classes C ⊆ [n] such that every
class in C is compatible with some server in S will have �C < μS . Thus there
are no CRP components that do not consist of all customer classes and all servers,
implying there is exactly one CRP component. �

Proof of Lemma 3 We assume without loss of generality that the CRP components are
labeled so that (σ (k) = k for all k ∈ [K ]. We construct the menu M as follows.
Let M̆ be any residual matching associated with the collection of CRP components
C = {C1, . . . , CK }. Construct the menu M as follows. Let mi j = 1 for all i ∈ [n]
and j ∈ [m] such that m̆i j = 1. Then for every k ∈ [K ′ − 1], let mi j = 1 for some
i ∈ Ck+1 and some j ∈ Sk . That is, for every CRP component Ck for k ∈ [K ′ − 1],
we assign some customer class in Ck+1 to be a served by a server in Ck . We will show
that this has the effect of adding an arc to the DAG from Ck+1 to C without altering
the CRP component structure.

The next step is to show that the CRP components of M are C. This is equivalent to
showing that F(0,�, M) = F(0,�, M̆). First note that F(0,�, M̆) ⊆ F(0,�, M).
So all we need to show is that there are no flows in M that are not also in M̆ .

First note that the servers in Sk are only compatible with customer classes in Ck ∪
Ck+1 for k ∈ [K − 1], and so all flow into servers from Sk must come from customers
in Ck ∪ Ck+1. Similarly, servers in SK are only compatible with customers in CK , and
so all flow into servers in SK must come from customers in CK .

From Lemma 8 part (i), we know that �̃1 = μ̃1. Since customers in C1 are only
compatible with servers in S1, this means that all of the capacity of servers in S1 is
allocated to customers in C1, even though they are also compatible with customers in
C2. Therefore there is no flow between servers in S1 and customers not in C1. Using
similar reasoning, it can then be argued inductively that servers in Sk do not have the
capacity to allocate flow to customers in Ck+1, even though there is a server that has
the compatibility to do so. Thus F(0,�, M) = F(0,�, M̆) as required.

Next, we will show that the DAG of M only admits the topological order σ . This
is true based on the construction of M . The only arcs in M that are not in the residual
matching M̆ are between components Ck and Ck+1 for k ∈ [K −1′], and there is such
an arc for k ∈ [K − 1]. Thus we require for any topological order σt admitted by M
that σt (k) < σt (k + 1) for k ∈ [K − 1]. But the only topological order that achieves
this is σ , where as stated previously σ(k) = k.

The final step needed to prove the first claim in Lemma 3 is to show that M is
admissible. Recall from Definition 1 that for a menu to be admissible we require that
0 < �(ε)(S ) = 	(ε) for allS ⊆ [m], where

�(ε)(S ) :=
∑

j∈S
μ j −

∑

i∈U (S )

λ
(ε)
i .
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First consider the case in which S does not satisfy Eq.A1 for any permutation of
CRP components σ . Then from Lemma 10 part (ii), we know that

μS − �U (S ) > 0.

This means that 0 < �(ε)(S ) = 	(ε) for all S ⊆ [m] that is not equal to ∪k
�=1S�

for some k ∈ [K ]. (Note that the proof of Lemma 10 does not rely on this result.)
Now consider S satisfying Eq.A1 for some permutation of CRP components σ .

There are two possibilities. First consider σ(k) = k for all k ∈ [K ], i.e. the only
topological ordered admitted by the DAG on M . In this case, the arguments from
Lemma 8 part (iv) hold, and

�(ε)(S ) =
k∑

�=1

εγ̃� + o(ε).

But since from the statement of the lemma,
∑k

�=1 εγ̃� > 0 for all k ∈ [K ], this means
that 0 < �(ε)(S ) = 	(ε) as required.

For any other permutation of CRP components σ , arguments made in [3] can be
used to show that

μS − �U (S ) > 0.

This means that 0 < �(ε)(S ) = 	(ε). Hence M is admissible as claimed.
This also demonstrates why no admissible menu M can admit a topological order σ

such that
∑k

�=1 εγ̃� ≤ 0 for some k ∈ [K ′]. If that were the case, then we would have
that limε→0 �(ε)(S ) ≤ 0 for S = ∪k

κ=1S�, which contradicts M being admissible.
This holds even if wewere to consider the scenario in which �̃k = 0 for some k ∈ [K ],
as this would only decrease the values of γ̃comps(σ ),k , making it more difficult to satisfy
the condition limε→0 �(ε)(S ) > 0. �

Proof of Proposition 5 Because the total delays are weighted averages of conditional
delays, we know if the only conditional delay we are taking the average over is the
minimum possible conditional delay, we will achieve the minimum total delay. From
Lemma 3, we know for any admissible menu M , the only topological orders with
positive probability are those that are admissible.

Because the set of all permutations of CRP components is finite, the set of admis-
sible topological orders is finite. Thus there will be some implementable topological
order that achieves the minimum conditional delay (If there are some i ∈ [n] such
that �i = 0, for each topological order we would also need to consider the assign-
ment of customers classes with zero arrivals to servers that minimizes delay for each
topological order).

Therefore, we will be able to minimize the total average delay by choosing an
admissible menu M that only allows for the admissible topological order that achieves
the minimum conditional delay. We know that such a menu exists from Lemma 3. �
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Proof of Corollary 2 We will prove this corollary by proving the contrapositive. So
suppose there are k ∈ [K ] and κ ∈ [K ] such that there are no topological orders
σ ∈ T (D, K ′) with σ(κ) ≤ σ(k). This means that in every topological order σ ∈
T (D, K ′), σ(κ) > σ(k). From the definition of the conditional delay wσ,k in Eq.13,
this implies that wσ,k > wσ,κ for all σ ∈ T (D, K ′). As the total delays are weighted
sums of the conditional delays, this proves the result. �

Proof of Proposition 6 Without loss of generality let us index the CRP components in
such a way that Wk ≤ Wk+1 for all k ∈ [K − 1]. Recall {C1, . . . ,CL} is the partition
described in Definition 9. As stated in the proposition, we will assume there exists a
vector Ŵ = (Ŵ1, . . . , ŴL) ∈ R

L+ such that

(i) Wk = Ŵ� for all k ∈ [K ] such that Ck ∈ C� for some � ∈ [L],
(ii) Ŵ� < Ŵ�+1 for � = 1, . . . , L − 1.

We will now show how to choose a vector of capacity slacks γ̃ = (γ̃1, . . . , γ̃K )

such that WCk = Wk for all k ∈ [K ]. Fix γ̃ such that γ̃k = γ̂� for all k ∈ C�. It
follows from the chained structure of the DAG and the construction of γ̃ that for
any permutation σ = (σ (1), σ (2), . . . , σ (K )) induced by some topological order
the vector (γ̃σ−1(1), γ̃σ−1(2), . . . , γ̃σ−1(K )) is constant. This observation together with
Theorem 1 imply that Q(σ ) in Eq.12 is also constant, independent of σ . Furthermore,
by symmetry, it is not hard to see that two CRP components that belong to the same
partition C� have the same limiting scaled waiting times, which we denote by W�.
One can show from Theorem 1 that

W� = W�−1 + 1

n�

n�∑

s=1

1
∑L

j=�+1 n j γ̂ j + s γ̂�

, � = 1, 2 . . . , L (A1)

with W0 = 0. We use this condition to find the values of {γ̂�} that implement Ŵ�, that
is, Ŵ� = W� for all � ∈ [L]. To this end, we use backward induction on �. For � = L
we have that

WL = WL−1 + 1

nL

nL∑

s=1

1

s γ̂L
.

Thus, we require that γ̂L satisfy

γ̂L = 1

(ŴL − ŴL−1)

1

nL

nL∑

s=1

1

s
.

Now suppose that we have determined the values of γ̂L , γ̂L−1, . . . , γ̂�+1 and define
�̂� := ∑L

j=�+1 n j γ̂ j . We find the value γ̂� by solving (A1)

Ŵ� = Ŵ�−1 + 1

n�

n�∑

s=1

1

�̂� + s γ̂�

.
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We note that there exists a unique γ̂� that solves this equation in the region γ̂� >

−�̂�/n�. This follows from the fact that the summation above is monotonically
decreasing in γ̂� in this region and diverges to +∞ as γ̂� approaches �̂�/n� from
above and converges to zero as γ̂� approaches ∞. �

Appendix D Section 6.1 proofs

Lemma 10 Let D be the DAG for the CRP decomposition {C1, . . . , CK ′ , CK ′+1, . . . ,

CK } under some menu M and a given heavy traffic equilibrium strategy profile. Then,
a subset of servers {s1, . . . , s�} ⊆ [m] satisfies

lim
ε→0

ε

�(s1, . . . , s�)
> 0

if and only if there exists a topological order σ ∈ T (D, K ′) and an integer k such
that

{s1, . . . , s�} =
k⋃

i=1

Sσ(i). (A1)

Further, in this case:

lim
ε→0

ε

�(s1, . . . , s�)
= 1

∑k
i=1 γ̃comps(σ,i)

for any topological order σ for which (A1) is satisfied.

Proof of Lemma 10 The first part follows from the proof of [3, Lemma4] where it is
argued that if the subset S = {s1, . . . , s�} does not obey the condition mentioned, then

μS − �U (S ) > 0,

and hence limε→0
ε

�(S)
= 0. The second part follows from part (iv) of Lemma 8. �

Proposition 7 LetD be theDAGfor theCRPdecomposition {C1, . . . , CK ′ , CK ′+1, . . . ,

CK } under some menu M and a heavy traffic strategy profile. Let s ∈ �m be a server
permutation.

(i) If b < m, and/or s is not a permutation of the servers induced by some topological
order σ ∈ T (D, K ′), then

lim
ε→0

π(P(s; b)) = 0.
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(ii) If b = m and s = (
sσ(1)||sσ(2)|| · · · ||sσ(K ′)

)
is a server permutation induced by

topological order σ ∈ T (D, K ′) with subpermutations sk ∈ �Sk , then

lim
ε→0

π(P(s; b)) = B′ · Q(σ )

K ′
∏

k=1

θk(sk)

where B′ is a normalization constant, Q(σ ) was defined in (12) as

Q(σ ) =
∏

κ∈[K ′]

1
∑κ

�=1 γ̃comps(σ,�)

,

and
{
θk : �Sk → �+}

k∈[K ′] is a fixed collection of functions mapping the sub-
permutation of servers of CRP components to positive reals.

Proof of Proposition 7 The proof of part (i) follows exactly the same lines as [3,
Proposition 2] and hence we omit it. The calculations for part (ii) are as fol-
lows. Fix a topological ordering σ ∈ T (D, K ′), sub-permutations sk ∈ �Sk , and
s = (sσ(1)|| · · · ||sσ(K ′)). For succinctness, define mk for k ∈ {0, 1, . . . , K ′ − 1} by

m0 = 0, and m� = m�−1 + |Sσ(�−1)|.

From (18)

π(P(s;m)) = B
m∏

�=1

1

�(s1, . . . , s�)

= B
K ′
∏

k=1

⎛

⎝
mk−1∏

�=mk−1+1

1

�(s1, . . . , s�)

⎞

⎠ · 1

�(s1, . . . , smk )
.

By Lemma 10,

lim
ε→0

ε

�(s1, . . . , smk )
= 1

∑k
i=1 γ̃comps(σ,i)

.

For some k ∈ [K ′], and mk−1 + 1 ≤ � ≤ mk − 1, denote S = {smk−1+1, . . . , s�}.
Lemma 8 implies that:

lim
ε→0

�(s1, . . . , s�) = μS − �UM̆ (S ) > 0.

For sk = (sk(1), . . . .sk(|Sk |)) ∈ �Sk , denote

θk(sk) =
|Sk |−1∏

�=1

1

μ{sk (1),...,sk (�)} − �UM̆ (sk (1),...,sk (�))
. (A2)
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Then,

lim
ε→0

π(P(s;m)) = lim
ε→0

B
εK

′

K ′
∏

k=1

⎛

⎝
mk−1∏

�=mk−1+1

1

�(s1, . . . , s�)

⎞

⎠ · ε

�(s1, . . . , smk )

= B′
⎛

⎝
K ′
∏

k=1

1
∑k

i=1 γ̃comps(σ,i)

⎞

⎠

⎛

⎝
K ′
∏

k=1

θk(sk)

⎞

⎠

= B′ · Q(σ ) ·
K ′
∏

k=1

θk(sk),

where B′ = limε→0 Bε−K ′
. �

Proof of Lemma 5 Let s = (sσ(1)|| · · · ||sσ(K ′)) = (s1, . . . , sm) ∈ �m be induced by
topological order σ ∈ T (D, K ′), and define m� for � ∈ {0, 1, . . . , K ′ − 1} by

m0 = 0, and m� = m�−1 + |Sσ(�−1)|.

Define j(s, i) = min{� : i ∈ U (s1, . . . , s�)}, and define κ satisfyingmκ−1 + 1 ≤ j ≤
mκ . Then, using Lemma 4, we have

lim
ε→0

ε · Wi (s;m) = lim
ε→0

m∑

�= j(s,i)

ε

�(s1, . . . , s�)

and since each of limε→0
ε

�(s1,...,s�)
exists by Lemma 10,

=
m∑

�= j(s,i)

lim
ε→0

ε

�(s1, . . . , s�)

=
K ′
∑

k=κ

lim
ε→0

ε

�(s1, . . . , smk )

+
∑

j(s,i)≤�≤m,
�k : �=mk

lim
ε→0

ε

�(s1, . . . , s�)

=
K ′
∑

k=κ

1
∑k

�=1 γ̃comps(σ,�)

.

The last equality follows because the second term in the preceding expression is 0
by Lemma 10, and each of the terms in the first sum is precisely of the form (A1)
in Lemma 10. The Lemma now follows by noting that κ only depends on the CRP
componentCk that customer class i belongs to and therefore sodoes the last expression,
and κ = comps−1(σ, k). �
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Appendix E Section 6.2 proofs

Lemma 11 For a given admissible service menu M with limiting arrival rates �,
service rates μ, and slacks �, let {C1, . . . , CK ′ , CK ′+1, . . . , CK } be the set of CRP
components, and let T (D, K ′) be the set of topological orders on the CRP com-
ponents. Then for any permutation of servers s induced by some topological order
σ ∈ T (D, K ′), lim

ε→0

∑

x∈P(s,m)

π(x)q0i j (x) = 0.

Proof of Lemma 11 Let S ′ be the set of all server permutations that are not induced
by any topological order. Let s be a server permutation induced by some topological
order σ ∈ T (D, K ′).

We know from flow balance that

lim
ε→0

∑

s′∈S ′

m∑

b=0

π(P(s′, b)) ≥ lim
ε→0

∑

x∈P(s,m)

π(x)q0i j (x).

But Proposition 7 tells us that

lim
ε→0

∑

s′∈S ′

m∑

b=0

π(P(s′, b)) = 0.

Since π(x) ∈ [0, 1] and q0i j (x) ∈ [0, 1] for all i ∈ [n], j ∈ [m], and x ∈ P(s,m), this
means that

lim
ε→0

∑

x∈P(s,m)

π(x)q0i j (x) = 0.

�

Proof of Lemma 6 Recall from Definition 10 that since the permutation of servers s
is induced by the topological order σ , we can express s as the concatenation of sub-
permutations:

s = (
sσ(1)||sσ(2)|| · · · ||sσ(K ′)

)

with sκ ∈ �Sκ
denoting a permutation of the servers Sκ of CRP component Cκ .

For sκ = (sκ(1), . . . .sκ(|Sκ |)) ∈ �Sκ
, denote

θκ(sκ) =
|Sκ |−1∏

�=1

1

μ{sκ(1),...,sκ (�)} − �UM̆ (sκ (1),...,sκ (�))

.
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Also denote for sk ∈ �k

Hi j (sk) = lim
ε→0

|Sk |−1∑

r= ĵ

[
⎛

⎝
r∏

u= ĵ

1

� j (s1, . . . , su)

⎞

⎠

⎛

⎝
|Sk |−1∏

�=r+1

1

�(s1, . . . , s�)

⎞

⎠

×
(

1

�(s1, . . . , sr )
− 1

� j (s1, . . . , sr )

)]

+
|Sk |∏

u= ĵ

1

� j (s1, . . . , su)

and

Gi j (sk) = lim
ε→0

1

� j (sk(1), . . . , sk(|Sk |)
|Sk |∏

u= ĵ

1

� j (s1, . . . , su)
.

Finally also recall the definition of Q(σ ) from Eq.12 as

Q(σ ) =
∏

κ∈[K ′]

1
∑κ

�=1 γ̃comps(σt ,�)
.

This lets us write qi j (P(s,m)) = limε→0 q
(ε)
i j (P(s,m)) as

qi j (P(s,m)) = B′λi
π(P(s,m))

Q(σ )

⎛

⎝
∏

κ �=k

θκ (sκ )

⎞

⎠ Hi j (sk)

− lim
ε→0

⎡

⎣ εB′λi
π(P(s,m))

⎛

⎝
∏

κ �=k

1
∑κ

�=1 γ̃comps(σ,�)

⎞

⎠

⎛

⎝
∏

κ �=k

θκ (sκ )

⎞

⎠Gi j (sk) + o(ε),

⎤

⎦

(A1)

where B′ = limε→0 Bε−K ′
. �

Proof of Lemma 7 From Proposition 7, we know that

lim
ε→0

π(P(s,m)) = B′ · Q(σ )

K ′
∏

k=1

θk(sk), (A2)

where θk(sk) is given by Eq.A2.
From the definition of Pk(sk),we have that

π(Pk(sk)) =
∑

σ∈T (D,K ′)

∑

s=(sσ(1)||sσ(2)||···||sk ||···||sσ(K ′))
{sk∈�Sκ }κ∈[K ′]

π(P(s,m)). (A3)

This means that
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lim
ε→0

πM (P(sk)) = B′
M

∑

σ∈T (D,K ′)

∑

s=(sσ(1)||sσ(2)||···||sk ||···||sσ(K ′))
{sk∈�Sκ }κ∈[K ′]

Q(σ )

K ′
∏

k=1

θk(sk)

= B′
M

∑

σ∈T (D,K ′)

[

Q(σ )
∑

s=(sσ(1)||sσ(2)||···||sk ||···||sσ(K ′))
{sk∈�Sκ }κ∈[K ′]

K ′
∏

k=1

θk(sk)
]

(A4)

Since the values of θκ(sκ) are independent of each other and do not depend on σ , we
can rewrite this as

lim
ε→0

πM (P(sk)) = B′
M · θk(sk)

⎛

⎝
∑

σ∈T (D,K ′)
Q(σ )

⎞

⎠
∏

κ �=k

∑

sκ∈�Sκ

θκ(sκ) (A5)

Recall from Sect. 6.1
⎛

⎝B′
M

∑

{sk∈�Sk }k∈[K ′]

K ′
∏

k=1

θk(sk)

⎞

⎠ = 1
∑

σ∈T (D,K ′) Q(σ )
.

This lets us rewrite B′
M as

B′
M = 1

(∏K ′
κ=1

∑
{sκ∈�Sκ } θκ(sκ)

)∑
σ∈T (D,K ′) Q(σ )

Substituting this back into Eq.A5, we have that

lim
ε→0

π(Pk(sk)) = θk(sk)
∑

sκ∈�Sk
θκ(sκ)

. (A6)

But θk(sk) depend only on �, μ, and M̆ , for all k ∈ [K ′], proving the result. �

References

1. Adan, I., Weiss, G.: Exact FCFSmatching rates for two infinite multitytpe sequences. Oper. Res. 60(2),
475–489 (2012)

2. Adan, I., Weiss, G.: A skill based parallel service system under FCFS-ALIS—steady state, overloads
and abandonments. Stoch. Syst. 4(1), 250–299 (2014)

3. Afèche, P., Caldentey, R., Gupta, V.: On the optimal design of a bipartite matching queueing system.
Oper. Res. 70(1), 363–401 (2022)

4. Atar, R.: A diffusion regime with nondegenerate slowdown. Oper. Res. 60(2), 490–500 (2012)
5. Bell, S.L., Williams, R.J.: Dynamic scheduling of a system with two parallel servers in heavy traffic

with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl. Probab. 11(3), 608–649
(2001)

123



Queueing Systems
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