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Abstract
We consider a system of two parallel discrete-time single-server queues, queue 1 and
queue 2. The service time of any customer in either queue is equal to 1 time slot.
Arrivals during consecutive slots occur independently from slot to slot. However, the
arrival streams into both queues are possibly mutually interdependent, i.e., during any
slot, the numbers of arrivals in queue 1 and queue 2 need not be statistically inde-
pendent. Their joint probability generating function (pgf) A(x, y) fully characterizes
the queueing model. As a consequence of the possible intra-slot correlation in the
arrival process, the numbers of customers present (“system contents”) in queues 1
and 2, at any given slot boundary, are not necessarily independent either. In a previ-
ous paper, we have already discussed the mathematical difficulty of computing their
steady-state joint pgf U (z1, z2); explicit closed-form results can only be obtained for
specific choices of A(x, y). In this paper, we therefore look at the problem from an
other angle. Specifically, we study the (asymptotic) conditional steady-state behav-
ior of the system under the condition that the content of queue 1 is (temporarily)
very high (goes to infinity). For ease of terminology, we refer to the system as the
“asymptotic system” in these circumstances. We prove that the asymptotic system is
nearly identical to the original (unconditional) system, but with amodified joint arrival
pgf A∗(x, y) that can be computed explicitly from A(x, y). This fundamental result
allows us to determine the stability condition of queue 2 in the asymptotic system,
and explicitly compute the classical queueing performance metrics of queue 2, such
as the pgf, the moments and the approximate tail distribution of its system content,
when this condition is fulfilled. It also leads to accurate approximative closed-form
expressions for the joint tail distribution of the system contents in both queues, in the
original (unconditional) system. We extensively illustrate our methodology by means
of various specific (popular) choices of A(x, y). In some examples, where an explicit
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solution for U (z1, z2) or for the (approximative) joint tail distribution is known, we
retrieve the known results easily. In other cases, new results are found for arrival pgfs
A(x, y) for which no explicit results were known until now.

Keywords Queueing · Discrete-time · Coupled queues · Interdependent arrivals ·
Asymptotic behavior · Dominant-pole approximation

Mathematics Subject Classification 60J10 · 30D05 · 32A10

1 Introduction

The purpose of this paper is to contribute to a subdomain of queueing theory concerned
with the joint analysis of multiple queues. Whereas a multitude of papers exists in
which mathematical techniques are developed for the analysis of one single, isolated
queue, analyses where several queues are considered simultaneously are rather scarce,
unless, of course, these queues operate completely independently of each other. A joint
analysis of multiple queues becomes (nearly) unavoidable as soon as these queues
influence each other; such queues are sometimes referred to as “coupled queues”.
There may be various reasons for the coupling between queues: the arrival streams
into the queues may be mutually dependent, the queues may have to share the same
service facilities, (part of) the input into one queue may be (part of) the output of other
queues, etc. It is well-known that the joint analysis of coupled queues is, in general,
quite hard, even when restricted to the situation where only two queues are at play.

Various mathematical techniques have been proposed to study the behavior of two
coupled queues, where the purpose of the analysis basically comes down to an attempt
to compute the steady-state joint distribution or joint probability generating function
(pgf) of the numbers of customers present (the “system contents”) in these queues,
or, at least, some (mixed) moments, tail approximations, etc. of the joint distribution.
With no claim on completeness, we briefly summarize some of those techniques here.

In many cases, a kernel-type functional equation for the joint pgf of the two system
contents pops up in the analysis of two coupled queues. A particularly well-known
general principal method, from the field of complex analysis, to find exact solutions
of such equations is the so-called “boundary-value approach”, which is described in
great detail in the classical books by Cohen and Boxma [12] and by Fayolle et al. [17].
Although the boundary-value approach can deal with various kinds of kernel-type
functional equations, it has the disadvantage that it involves singular integrals and
conformal mappings, which may be very complicated, and also requires quite some
additional numerical work. It does not usually lead to “simple”, easy-to-use formulas.
The theory behind the boundary-value approach was developed several decades ago;
yet the technique has been used frequently ever since; some examples of (relatively
recent) applications are in the context of tandem queues (see, e.g., Resing and Ormeci
[26], van Leeuwaarden and Resing [28]), polling systems (see, e.g., Saxena et al. [27])
and retrial queues (see, e.g., various papers by Dimitriou [14–16]), and there are many
more.
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Another method that has been used on various occasions to study the behavior of
two coupled queues is the “compensation approach”, a rather versatile technique for
the analysis of two-dimensional Markov chains satisfying certain conditions, without
transforms (pgfs), initiated byAdan and various co-authors, and verywell documented
in the paper Adan et al. [4]. Basically, in this method, the desired unknown joint
distribution is expressed as a sum of bivariate geometric product forms satisfying the
inner balance equations of the Markov chain, and the coefficients of the individual
terms in the sum are determined in a clever way. The compensation approach has
been used in various applications and contexts; in particular, we mention the study of
switching elements in communications networks (Boxma and van Houtum [6]) and
the analysis of multiprogramming queues (Adan et al. [2]); a more general application
of the compensation approach for random walks in the quarter plane is discussed in
Adan, van Leeuwaarden and Raschel [3].

Other researchers have successfully applied the so-called “uniformizationmethod”,
a complex-function-based technique, for various models; see, e.g., Kingman [24] and
Flatto and McKean [19] for the study of two parallel queues and Jaffe [22, 23] for the
analysis of clocked switching elements. In the uniformization method, a parameter
representation is introduced for the algebraic curve that represents the set of zero-
tuples of the kernel, the unknown boundary functions in the functional equation are
also expressed in terms of this parameter, referred to as the “uniformization variable”,
and equations are derived and subsequently solved for these boundary functions. In our
view, the concept of analytic (or meromorphic) continuation plays a more important
role in these analyses than the “uniformization” itself, which does not really reflect
the essence of the technique, but the terminology seems, by now, widely accepted.
Often, analytic continuation can also be applied directly to the functional equation,
without the need of parametrization (or “uniformization”); see, e.g., Cohen [10, 11]
for the analysis of the so-called clocked buffered switch, and Devos et al. [13] in the
study of a two-class randomly alternating service model.

We also mention the so-called “power-series technique”, mainly devised by
Hooghiemstra, Keane and Van de Ree [20] and Blanc (see, e.g., [5]), and further
developed by, among others, Hooghiemstra and Koole [21], as a useful method to
approximately analyze the steady-state joint distribution of some two-queue systems.
This technique consists of expanding the desired distribution (or the associated pgf) as
a power series in terms of some system parameter (usually, the load in some queue),
and then finding the coefficients of the consecutive powers in that power series as
the solutions of “easier” equations than the original functional equation. An adapted
version of the power-series technique was successfully applied by Walraevens et al.
[30] for the approximate analysis of generalized processor sharing (GPS) queues.

Of course, there are other (ad-hoc) methods as well. An excellent overview of
methods that have been used to find the joint distribution of the system contents in
two-queue systems can be found in the paper by Adan et al. [1].

In the current paper, we look at the problem of simultaneously analyzing two
coupled queues from yet another perspective. Instead of trying to solve the associated
balance equations or functional equation, we focus on the asymptotic conditional
behavior of the two-queue system when one queue is (temporarily) overloaded, i.e.,
when the system content of one queue is (temporarily) very high (goes to infinity).
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We do this for a very simple example system of two coupled parallel queues, where
the coupling is caused solely by the fact that the two queues receive external arrival
streams that are possibly mutually interdependent. In order to keep the discussion as
“pure” as possible, we intentionally allow no other sources of coupling between the
two queues; in particular, we assume that arrivals in either queue are not dependent
on the states of the queues (as could be the case, for instance, when customers, upon
arrival, always join the shortest queue, or when arrivals in one queue are departures
from the other queue) and that both queues have their own dedicated server which
is permanently available for the service of customers of that queue only. Systems of
two parallel queues have been investigated frequently in the past, as illustrated by the
numerous referencesmentioned earlier.We emphasize in particular the early (seminal)
works by Kingman [24] and Flatto and McKean [19] who consider continuous-time
models for the join-the-shorter-line scheduling scheme, and Konheim et al. [25] who
consider one shared server for both queues, also through a continuous-time model.
But the specific system considered in the current paper, i.e., two parallel queues with
interdependent arrivals (and no other sources of coupling) has been dealt with in just
a few papers, mainly in a discrete-time setting, especially in the context of the analysis
of a clocked buffered switch, in papers by Jaffe [22, 23], Cohen [10, 11], Boxma and
van Houtum [6] and Adan et al. [1], as mentioned earlier. The paper Bruneel [7] also
falls within this category, albeit that the joint arrival distribution can be more general
than “binomial of order two” (as is the case in the clocked buffered switch) there. In
the current paper, we essentially investigate the same general model as Bruneel [7],
but from the perspective of analyzing it under the specific condition that one of both
queues contains a large number of customers. The approach taken in this paper does
not require any specific assumptions with respect to the joint arrival distribution, and,
to the best of our knowledge, is new.

The rest of the paper is organized as follows. Section2 describes the full details
of the mathematical model we consider. In Sect. 3, we establish the basic functional
equation for the steady-state joint pgf of the two system contents, and derive explicit
expressions for the two marginal pgfs (and mean values) of the system contents in the
individual queues. In Sect. 4, we define the “asymptotic system” as a convenient short
terminology for the original two-queue system, considered under the explicit condition
that the system content in queue 1 is (temporarily) very large (goes to infinity). We
then formally prove that the asymptotic system is nearly identical to the original
(unconditional) system, i.e., it has two parallel discrete-time single-server queues,
deterministic 1-slot service times, independent arrivals from slot to slot, but amodified
joint arrival distribution, that can be computed explicitly from the original joint arrival
distribution, regardless of its nature. We then apply this fundamental result to examine
the stability condition and the steady-state queueing performance of queue 2 in the
asymptotic system; we also derive accurate approximative closed-form expressions
for the joint tail distribution of the two system contents in the original (unconditional)
system. Section5 illustrates our methodology extensively by considering a number
of (well-known) example arrival distributions in great detail. Here, we easily retrieve
previously known results, when these are available, but also various new results for
systems that have not been solved so far. In Sect. 6, we compare the performance of
queue 2 in the asymptotic system with its performance in the original system, in terms
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Fig. 1 System of two parallel
single-server queues with joint
arrival pgf A(x, y). A1(x) and
A2(y) denote the marginal
arrival pgfs in queue 1 and
queue 2, respectively

A1(x)

A2(y)
A(x, y)

1

2

of the arrival rate, themean systemcontent and the (approximate) tail distribution of the
system content, and try to explain the observed differences in terms of the nature of the
intra-slot correlation in the arrival process. Some conclusions are stated in Sect. 7. The
paper also has two appendices; “Appendix A” simply proves a mathematical lemma,
required in Sect. 4, but “Appendix B” is important in its own right and shows how
to solve the functional equation explicitly for a very specific joint arrival distribution
that was also considered in one of the examples of Sect. 5; we had this interesting
(non-trivial) result for a number of years but it was never published before.

2 Mathematical model

In this paper, we investigate a discrete-time queueing system, consisting of two parallel
queues, named queue 1 and queue 2, with infinite waiting room and one server each.
A graphical representation of the system is shown in Fig. 1.

As in all discrete-time models, the time axis is divided into fixed-length intervals
referred to as (time) slots. New customers may enter the system at any given (contin-
uous) point on the time axis, but services are synchronized to (i.e., can only start and
end at) slot boundaries. Customers arriving to queue 1 and to queue 2 are referred to
as type-1 customers and type-2 customers, respectively. We assume that the service
of each customer requires exactly one time slot, regardless of whether the customer is
of type 1 or type 2.

The arrival process of new customers in the system is characterized by means
of a sequence of i.i.d. nonnegative discrete random vectors (a1,k, a2,k) with common
joint probability mass function (pmf) a(i, j) and common joint probability generating
function (pgf) A(x, y), respectively. Here a1,k and a2,k indicate the numbers of type-1
and type-2 arrivals, respectively, during slot k, and, hence, a(i, j) and A(x, y) are
defined as

a(i, j) � Prob
[
a1,k = i and a2,k = j

]
, i, j ≥ 0 ,

A(x, y) � E
[
xa1,k ya2,k

]
�

∞∑

i=0

∞∑

j=0

a(i, j) xi y j , (1)

which are independent of k. The (marginal) pgfs of a1,k and a2,k are given by

A1(x) � E
[
xa1,k

] = A(x, 1), A2(y) � E
[
ya2,k

] = A(1, y), (2)
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respectively. The mean number of arrivals of type i per slot is denoted as

λi � A′
i (1). (3)

Note that, just as the joint pgf A(x, y), the marginal pgfs A1(x) and A2(y) and the
mean arrival rates λi do not depend on the slot index k.

3 Steady-state queueing analysis

3.1 Stability conditions of the system

The main purpose of our paper is to analyze some aspects of the steady-state behavior
of the queueing system under study. It is not difficult to see that the system is stable,
i.e., a steady state exists, if and only if both queue 1 and queue 2 are stable. As both
queues are simple single-server queues with deterministic 1-slot service times, the
stability conditions thus read

λ1 < 1, λ2 < 1. (4)

3.2 System evolution as a function of time

Let u1,k and u2,k indicate the system contents, i.e., the numbers of customers present
in queue 1 and queue 2, respectively, at the beginning of slot k. We indicate their joint
pgf as

Uk(z1, z2) � E
[
z
u1,k
1 z

u2,k
2

]
. (5)

We note that, in this paper, the term system content always refers to the total number
of customers in the queue, including the customer in service, if any. As each queue of
the system has exactly one server that can serve exactly one customer per time slot,
the following system equations are valid between the random variables u1,k and u2,k
on the one hand, and the random variables u1,k+1 and u2,k+1, one slot later, on the
other hand:

u1,k+1 = a1,k + (u1,k − 1)+, u2,k+1 = a2,k + (u2,k − 1)+. (6)

Here we have introduced the notation (x)+ to indicate the quantity max(0, x). Equa-
tions (6) can be translated into one corresponding equation between the joint pgfs
Uk(z1, z2) and Uk+1(z1, z2), by using definition (5), which results in

Uk+1(z1, z2) � E
[
z
u1,k+1
1 z

u2,k+1
2

]
= A(z1, z2)E

[
z
(u1,k−1)+
1 z

(u2,k−1)+
2

]

= A(z1, z2)

z1z2
[Uk(z1, z2) + (z2 − 1)Uk(z1, 0) + (z1 − 1)Uk(0, z2)

+(z1 − 1)(z2 − 1)Uk(0, 0)] . (7)
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3.3 Steady state

We now let the time parameter k go to infinity. Assuming the system reaches a steady
state, i.e., assuming the stability conditions (4) are met, then both functionsUk(·) and
Uk+1(·) converge to a common limit function U (·), which denotes the joint pgf of
the two system contents at the beginning of an arbitrary slot in the steady state. As a
result, Eq. (7) translates into a linear equation for U (z1, z2), which can be written as

K (z1, z2)U (z1, z2) = A(z1, z2)L(z1, z2), (8)

where the unknown function L(z1, z2) is defined as

L(z1, z2) � (z2 − 1)U (z1, 0) + (z1 − 1)U (0, z2) + (z1 − 1)(z2 − 1)U (0, 0)

and the “kernel” K (z1, z2) is given by K (z1, z2) � z1z2 − A(z1, z2).
As has been discussed in e.g. Bruneel [7], the functional equation (8) is very hard to

solve analytically, for general arrival pgfs A(z1, z2). Only for specific classes of arrival
pgfs, the explicit determination of the boundary functionsU (z1, 0) andU (0, z2), and,
from this, the unknown function L(z1, z2), and the whole pgf U (z1, z2), in closed
analytic form, seems feasible. We will discuss some rare examples in Sect. 5 (notably
in Sects. 5.1 and 5.2.2). The marginal pgf Ui (z) of the system content in queue i ,
however, can be easily deducted from (8) by choosing either {z1 = z, z2 = 1} or
{z1 = 1, z2 = z}, which results in

Ui (z) = (1 − λi )
(z − 1)Ai (z)

z − Ai (z)
, (9)

where the marginal pgf Ai (z) and mean value λi of the number of type-i arrivals per
slot were defined in Eqs. (2) and (3). The mean system content in queue i is given by

E[ui ] = U ′
i (1) = λi + A′′

i (1)

2(1 − λi )
. (10)

These simple formulas for the individual queues are not surprising, as queue i is a
single-server queue with 1-slot service times and arrival pgf Ai (z). These formulas
can be found in many papers and books on discrete-time queueing theory; see, e.g.,
chapter 4 of Bruneel and Kim [8].

4 Asymptotic behavior

From now on, let us assume that the system has reached a steady state. We then define
the random variables u1 and u2 as the system contents in queues 1 and 2, respectively,
at the beginning of an arbitrary slot in the steady state.

We now shift our focus from the analysis of the full joint distribution (or pgf) of
the two system contents to the study of the conditional asymptotic behavior of one
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queue, say queue 2, given that the system content in the other queue, i.e., in queue
1, is very high. Specifically, we are interested in determining such quantities as the
conditional pgf, mean value, approximate tail distribution,... of u2, given that u1 = n,
for large values of n. In order to do so, we first make some very mild assumptions on
the marginal arrival pgfs A1(z) and A2(z), as stated in the “arrival assumption” below.
Arrival assumption
The pgf Ai (z) has a radius of convergence �i > 1 and limz→�i Ai (z) = +∞.

Pgfs that satisfy the above condition are sometimes called “well-behaved”. The
arrival assumption implies, among other things, that A1(z) and A2(z) do not have sin-
gularities on the unit circle in the complex z-plane, because their radius of convergence
is strictly larger than 1. Note that most commonly used discrete arrival distributions
have pgfs that satisfy these conditions.

4.1 Tail distribution of the system content in one queue

It is well known (see, e.g., Flajolet and Odlyzko [18], Bruneel and Kim [8], Bruneel et
al. [9], Van Mieghem [29]) that the tail distribution of a discrete random variable can
be very well approximated based on the so-called “dominant singularity” of the pgf
of that random variable. Specifically, if the pgf X(z) of a discrete random variable X
has a radius of convergence τ > 1, then τ (a positive real number) is a singularity of
X(z) and X(z) cannot possess singularities with a smaller absolute value than τ , i.e., τ
is a “dominant” singularity of X(z). Moreover, in the very common case where X(z)
has no other (complex) singularities with the same modulus as τ (i.e., τ is the only
dominant singularity of X(z)), and τ is a pole of multiplicity 1, the tail distribution of
X can be very well approximated by a geometric form with decay rate τ−1:

Prob[X = n] ≈ cτ−n−1, (11)

for large values of n. The constant c is the negative residue of the pgf X(z) at z = τ ,
i.e.,

c = − lim
z→τ

(z − τ)X(z). (12)

This approximation is usually referred to as the “dominant-pole approximation” of the
tail distribution of X . The terminology “dominant” stems from the fact that the exact
value of the inverse z-transform of X(z), i.e., the pmf Prob[X = n], can be expressed
as a sum of (geometric or similar) contributions of all the singularities of X(z), each
with a decay rate inversely proportional to the singularity at hand; for large n, the
contribution of the singularity with smallest modulus therefore “dominates” all the
others, and the sum can be well approximated by the contribution of the dominant
singularity alone.

We now apply the above approximation technique to the marginal pgf Ui (z) of the
queue-i system content. In order to do so, we first notice that the singularities ofUi (z),
as given by Eq. (9), are the zeroes of the expression z− Ai (z). We show in “Appendix
A” that, if Ai (z) is “well-behaved” with radius of convergence �i > 1, as defined
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above in the “arrival assumption”, then z − Ai (z) has exactly one real positive zero,
say τi , with 1 < τi < �i , which has multiplicity 1; obviously τi satisfies the equation

τi = Ai (τi ), 1 < τi < �i ; (13)

furthermore, in “Appendix A”, we also show that

A′
i (τi ) > 1 (14)

and that z − Ai (z) has no other zeroes outside the unit disk in the complex z-plane
with modulus smaller than τi . This means that τi is the dominant pole of the pgfUi (z)
and an approximation such as (11) can be used. As a result, we obtain

Prob[ui = n] ≈ ciτ
−n−1
i , (15)

where, according to (9) and (12),

ci = − lim
z→τi

(z − τi )Ui (z) = − lim
z→τi

(1 − λi )
(z − 1)(z − τi )Ai (z)

z − Ai (z)
,

or, upon use of de l’Hospital’s rule and Eq. (13),

ci = (1 − λi )(τi − 1)Ai (τi )

A′
i (τi ) − 1

= (1 − λi )(τi − 1)τi
A′
i (τi ) − 1

. (16)

InFig. 2,we compare the dominant-pole tail approximation (15), (16) for Prob[u1 = n]
with simulation results for three different well-known arrival distributions with mean
arrival rate λ1:

• A1(z) = eλ1(z−1) (Poisson arrivals), with λ1 = 0.7
• A1(z) = 1

1+λ1−λ1z
(geometric arrivals), with λ1 = 0.8

• A1(z) = (
1 − λ1

2 + λ1
2 z

)2 (binomial arrivals of order two), with λ1 = 0.9.

The graphs show that the approximation is extremely accurate, even for small
values of n. In Sect. 5.2.1, we shall see that, for geometric arrivals, u1 happens to be
geometrically distributed and the “tail approximation” is even exact for all values of
n; see Eq. (60).

4.2 Conditional arrival process

Our main goal being the study of the conditional behavior of the system content in
queue 2, given that the system content in queue 1 is (temporarily) very large, it would
seem natural to focus immediately on the (existence and—if so—the computation of
the) conditional pgf of the queue-2 system content u2 given the (high) value (n) of u1
at the beginning of the same (arbitrary) slot in the steady state, i.e., the conditional pgf
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Fig. 2 Dominant-pole approximation for Prob[u1 = n] versus simulation results

U∗
2 (z|n) � E

[
zu2 |u1 = n

]

and its limit as n → ∞, which we denote as

U∗
2 (z) � lim

n→∞U∗
2 (z|n). (17)

Here, however, we take a different approach. As the system content in queue 2 at
the beginning of any slot in the steady state, say slot S, is merely the result of the
arrivals and the services in queue 2 before slot S, and the services are, in fact, very
deterministic, we first concentrate on the conditional arrival process in queue 2 before
slot S, given that the system content in queue 1 at the start of slot S is equal to n, for
large values of n. It turns out that it is not more difficult to analyze the conditional
joint arrival process in both queues 1 and 2 than in just queue 2. Moreover, we shall
see that this yields some interesting additional information. Our approach is based on
this observation.

Formally, we proceed as follows. Let S be an arbitrary slot in the steady state. Let
u1,S denote the system content at the beginning of slot S in queue 1. As S is an arbitrary
slot, u1,S is distributed according to the known pgfU1(z) defined in (9). Let a1,S−� and
a2,S−� (� ≥ 1) denote the numbers of arriving customers of type 1 and 2, respectively, �
slots earlier than slot S, i.e., during slot S−�. For any integerm ≥ 1, the (unconditional)
joint distribution of the random variables {a1,S−�, a2,S−�, 1 ≤ � ≤ m} is well-known;
as the arrivals in our system are independent from slot to slot, the associated joint pgf
is given by a simple product form, i.e.,

Bm(x1, y1, . . . , xm, ym) � E

[
m∏

�=1

(x
a1,S−�

� y
a2,S−�

� )

]

=
m∏

�=1

A(x�, y�). (18)

Note that this result is valid for any choice of the slot S, and therefore the notation
(Bm) has no dependence on S.
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Next, assume that, for the chosen slot S, u1,S is equal to a given value n; if desired,
the probability that this is the case, i.e.,

u1(n) � Prob
[
u1,S = n

]
, (19)

can be computed from the known pgfU1(z) (see Eq. (9)) by inverse z-transformation.
Of course, if it is known that u1,S = n, this has an impact on the possible values of the
numbers of arrivals in the slots before S (and their probabilities). In general, it is to be
expected that, under this condition, the random variables {a1,S−�, a2,S−�, 1 ≤ � ≤ m}
have a different joint pgf than the above defined Bm , and are even not necessarily
mutually independent anymore from slot to slot. We are therefore interested in the
computation of the conditional joint pgf of the random variables {a1,S−�, a2,S−�, 1 ≤
� ≤ m} given that u1,S = n. Formally, we define this conditional joint pgf as

Fm|n(x1, y1, . . . , xm, ym) � E

[
m∏

�=1

(x
a1,S−�

� y
a2,S−�

� )|u1,S = n

]

, (20)

where wemay again suppress the dependence on S in the notation.We now go through
a series of consecutive steps to derive an explicit expression for the function Fm|n , for
large values of n.

4.2.1 Step 1: the joint pgf Vm

We start by defining the joint pgf of {a1,S−�, a2,S−�, 1 ≤ � ≤ m} and u1,S as

Vm(x1, y1, . . . , xm, ym; z) � E

[( m∏

�=1

(x
a1,S−�

� y
a2,S−�

�

)
zu1,S

]

. (21)

This definition can be easily extended to include the boundary casem = 0, by agreeing
that an empty product is equal to 1, i.e.,

V0(z) � E
[
zu1,S

] = U1(z) = (1 − λ1)
(z − 1)A1(z)

z − A1(z)
, (22)

where we have used (9). Note that, although the function Vm , as defined in (21), does
not explicitly depend on the choice of the slot S, we will (temporarily) add a subscript
S in our notation (i.e., Vm,S = Vm), in order to improve the clarity of the derivations
that follow.
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4.2.2 Step 2: a recurrence relation for Vm

Using system Eq. (6) for k = S−1 in (21), we can express Vm+1,S in terms of Vm,S−1:

Vm+1,S(x1, y1, . . . , xm+1, ym+1; z) = E

[( m+1∏

�=1

(x
a1,S−�

� y
a2,S−�

�

)
zu1,S

]

= E

[( m+1∏

�=1

(x
a1,S−�

� y
a2,S−�

�

)
za1,S−1+(u1,S−1−1)+

]

= E

[(
(x1z)

a1,S−1 y
a2,S−1
1

)( m+1∏

�=2

(x
a1,S−�

� y
a2,S−�

�

)
z(u1,S−1−1)+

]

.

Since the arrivals during slot S − 1 are independent of all the earlier arrivals (and,
hence, also of u1,S−1), the above expected value can be expressed as a product of two
expected values, i.e.,

Vm+1,S(x1, y1, . . . , xm+1, ym+1; z) = A(x1z, y1)E

[( m+1∏

�=2

(x
a1,S−�

� y
a2,S−�

�

)
z(u1,S−1−1)+

]

.

Here the second factor can be expressed in terms of the function Vm,S−1, and so

Vm+1,S(x1, y1, . . . , xm+1, ym+1; z) = A(x1z, y1)E

[( m∏

�′=1

(x
a1,(S−1)−�′
�′+1 y

a2,(S−1)−�′
�′+1

)
z(u1,S−1−1)+

]

= A(x1z, y1)
Vm,S−1(x2, y2, . . . , xm+1, ym+1; z) + (z − 1)Vm,S−1(x2, y2, . . . , xm+1, ym+1; 0)

z
.

Suppressing the dependence on S (or S−1) again, we obtain the following (recurrence)
relation between Vm+1 and Vm :

Vm+1(x1, y1, . . . , xm+1, ym+1; z)
= A(x1z, y1)

z

[
Vm(x2, y2, . . . , xm+1, ym+1; z) + (z − 1)Vm(x2, y2, . . . , xm+1, ym+1; 0)

]
.

(23)

4.2.3 Step 3: z = �1 is the dominant pole of Vm

For m = 0, (23) leads to

V1(x1, y1; z) = A(x1z, y1)

z
[V0(z) + (z − 1)V0(0)], (24)

or in view of (22),

V1(x1, y1; z) = A(x1z, y1)

z
[U1(z) + (z − 1)U1(0)] = (1 − λ1)(z − 1)A(x1z, y1)

z − A1(z)
.

(25)
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Similarly, for m = 1, we get from (23) and (25)

V2(x1, y1,x2, y2; z) = A(x1z, y1)

z
[V1(x2, y2; z) + (z − 1)V1(x2, y2; 0)]

= (1 − λ1)(z − 1)A(x1z, y1)

z

[
A(x2z, y2)

z − A1(z)
+ A(0, y2)

A1(0)

]
.

(26)

Analogously, we could derive an explicit expression for the function Vm , for any finite
value of m, from the recurrence relation (23). However, such an expression would
be complicated (for general m), and, more importantly, is not really needed for the
purpose of computing the function Fm|n , defined in (20), which is our true goal. The
expressions (22), (25) and (26) for the functions V0, V1, V2 do make clear that these
functions, considered as functions of the variable z, all have a single pole at z = τ1,
which is a zero of their common denominator (z − A1(z)). It is readily seen that this
statement holds true for all the functions Vm,m ≥ 0. Moreover, the pole at z = τ1
is the dominant pole of the functions Vm if – as usual – we restrict the values of the
other variables (x� and y�) to the closed unit disks in their respective complex planes,
i.e., |x�| ≤ 1, |y�| ≤ 1. One easy intuitive way to see this is by observing that factors
such as A(x�z, y�), appearing in the numerators of the formulas for Vm remain finite
when |z| < τ1:

|A(x�z, y�)| =
∣∣∣∣

∞∑

i=0

∞∑

j=0

a(i, j) (x�z)
i y j

�

∣∣∣∣ ≤
∞∑

i=0

∞∑

j=0

a(i, j) |x�z|i |y�| j (27)

and, thus, if |x�| ≤ 1, |y�| ≤ 1,

|A(x�z, y�)| ≤
∞∑

i=0

∞∑

j=0

a(i, j) |z|i = A(|z|, 1) = A1(|z|), (28)

which is certainly finite for |z| < τ1, since the radius of convergence�1 of themarginal
arrival pgf A1(z) is larger than τ1, as discussed in Sect. 4.1 and “Appendix A”.

4.2.4 Step 4: deriving Fm|n from Vm

From the definitions (20) and (21), it easily follows (by an application of the law of
total expectation) that

Vm(x1, y1, . . . , xm, ym; z) � E

[( m∏

�=1

(x
a1,S−�

� y
a2,S−�

�

)
zu1,S

]

=
∞∑

n=0

u1(n)zn E

[
m∏

�=1

(x
a1,S−�

� y
a2,S−�

� )|u1,S = n

]

=
∞∑

n=0

znu1(n)Fm|n(x1, y1, . . . , xm, ym).

(29)
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Hence, the product u1(n)Fm|n is nothing but the coefficient of the power zn in the power
series expansion of the function Vm , considered as a function of the variable z, i.e.,
for given values of the variables {(x�, y�), 1 ≤ � ≤ m}. In principle, this product can
thus be retrieved from Vm through inverse z-transformation. Here, we are interested
in large values of n, and, therefore, the inverse z-transform of Vm is dominated by the
term associated to its dominant pole, which is z = τ1. For large n, we can therefore
use the following accurate dominant-pole approximation:

u1(n)Fm|n(x1, y1, . . . , xm, ym) ≈ Wm(x1, y1, . . . , xm, ym)τ−n−1
1 , (30)

and, hence,

Fm|n(x1, y1, . . . , xm, ym) ≈ Wm(x1, y1, . . . , xm, ym)τ−n−1
1

u1(n)
, (31)

where Wm denotes the negative residue of Vm at z = τ1, i.e.,

Wm(x1, y1, . . . , xm, ym) � − lim
z→τ1

(z − τ1)Vm(x1, y1, . . . , xm, ym; z). (32)

4.2.5 Step 5: determiningWm

Multiplying both sides of the recurrence relation (23) by a factor −(z − τ1) and then
taking the limit for z → τ1, we easily get

Wm+1(x1, y1, . . . , xm+1, ym+1) = − lim
z→τ1

(z − τ1)
A(x1z, y1)

z
×[Vm(x2, y2, . . . , xm+1, ym+1; z)]

= A(τ1x1, y1)

τ1
Wm(x2, y2, . . . , xm+1, ym+1). (33)

Equation (33) is a (very simple) recursive equation for the functions Wm ; applying
(33) repeatedly for consecutive values of m, we can express Wm as

Wm(x1, y1, . . . , xm, ym) =
[ m−1∏

�=1

A(τ1x�, y�)

τ1

]
W1(xm, ym). (34)

The function W1 can be easily derived from (25) as

W1(x, y) = − lim
z→τ1

(z − τ1)V1(x, y; z) = − lim
z→τ1

(z − τ1)
(1 − λ1)(z − 1)A(xz, y)

z − A1(z)

= (1 − λ1)(τ1 − 1)A(τ1x, y)

A′
1(τ1) − 1

, (35)
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which, eventually, leads to

Wm(x1, y1, . . . , xm, ym) = (1 − λ1)τ1(τ1 − 1)

A′
1(τ1) − 1

[ m∏

�=1

A(τ1x�, y�)

τ1

]
. (36)

4.2.6 Step 6: approximate expression for Fm|n

We have shown in Sect. 4.1 (Eqs. (15) and (16)) that, for large n, the probability u1(n)

can be well approximated as

u1(n) ≈ (1 − λ1)τ1(τ1 − 1)

A′
1(τ1) − 1

τ−n−1
1 . (37)

Using (36) and (37) in (31), we find that, for large values of n, the function Fm|n can
be accurately approximated as

Fm|n(x1, y1, . . . , xm, ym) ≈
m∏

�=1

A(τ1x�, y�)

τ1
, (38)

which turns out to be independent of n. Introducing the notation

A∗(x, y) � A(τ1x, y)

τ1
, (39)

we can thus conclude that, for large values of n,

Fm|n(x1, y1, . . . , xm, ym) ≈
m∏

�=1

A∗(x�, y�). (40)

As a consequence of the properties of dominant-pole approximations, as used in the
above derivation (in both the numerator and the denominator of (31)), the above
approximative equality becomes a true equality when n → ∞. An easy way to see
that this statement is true, without complicating the notations too much, is as follows.
First, replace the approximative equality (30) by an exact equality by introducing a
correction term o1(τ

−n−1
1 ) that summarizes the contributions of all the non-dominant

singularities in the inverse z-transform of the function Vm :

u1(n)Fm|n = Wmτ−n−1
1 + o1(τ

−n−1
1 ), (41)

where, for notational convenience we have (temporarily) omitted the arguments of
the functions Fm|n and Wm , and o1(τ

−n−1
1 ) is a function of n that goes to zero more

rapidly than τ−n−1
1 as n → ∞. Next, take a similar action on Eq. (37), introducing a
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similar function o2(τ
−n−1
1 ):

u1(n) = (1 − λ1)τ1(τ1 − 1)

A′
1(τ1) − 1

τ−n−1
1 + o2(τ

−n−1
1 ). (42)

From (41) and (42), we then get the following exact expression for Fm|n :

Fm|n = Wmτ−n−1
1 + o1(τ

−n−1
1 )

(1−λ1)τ1(τ1−1)
A′
1(τ1)−1 τ−n−1

1 + o2(τ
−n−1
1 )

=
Wm + o1(τ

−n−1
1 )

τ−n−1
1

(1−λ1)τ1(τ1−1)
A′
1(τ1)−1 + o2(τ

−n−1
1 )

τ−n−1
1

. (43)

Taking the limit for n → ∞ in (43), and in view of the properties of the auxiliary
functions o1 and o2, we then easily get

lim
n→∞ Fm|n = Wm

(1−λ1)τ1(τ1−1)
A′
1(τ1)−1

. (44)

Finally, restoring the full notations again, and using (36), we obtain the following
exact result:

Fm(x1, y1, . . . , xm, ym) � lim
n→∞ Fm|n(x1, y1, . . . , xm, ym) =

m∏

�=1

A∗(x�, y�). (45)

We note that the “asymptotic” conditional joint pgf Fm has a similar product form
as the unconditional joint pgf Bm , defined in (18), the only difference being that the
unconditional joint pgf A(x, y) of the numbers of type-1 and type-2 arrivals in one
slot has been replaced by the “asymptotic” conditional joint pgf A∗(x, y), defined in
(39).

4.3 The“asymptotic” system

In this paper, we basically study a system of two parallel single-server queues with 1-
slot service times and independent arrivals from slot to slot, characterized by the joint
pgf A(x, y), as defined in (1). Intuitively speaking, we have shown in the previous
section that, conditional on the fact that the system content u1 = n and n is large
at the beginning of an arbitrary slot in the steady state, the arrivals into the two-
queue system during the preceding slots are (approximately) independent from slot
to slot, and distributed according to the joint pgf A∗(x, y), as defined in (39); the
approximation becomes exact when n → ∞. Let us define the “asymptotic system”
as the (conditional) “limit version” of the (original) systemwhere the condition “u1 →
∞” is imposed. We have shown in the previous section that the asymptotic system
is almost identical to the original system, the only difference being that the arrivals
are characterized by the joint pgf A∗(x, y) instead of A(x, y). We emphasize that the
asymptotic system is not a new, different system than the original system; it is just
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a convenient short terminology to refer to the original system, whenever the latter is
observed under the condition of u1 approaching infinity.

In the asymptotic system, according to Eq. (39), the marginal pgfs of the numbers
of arrivals (per slot) of type 1 and type 2 are given by

A∗
1(x) � A∗(x, 1) = A(τ1x, 1)

τ1
= A1(τ1x)

τ1
, A∗

2(y) � A∗(1, y) = A(τ1, y)

τ1
.

(46)

The mean arrival rates (per slot) in queues 1 and 2 are

λ∗
1 � A∗′

1 (1) = A′
1(τ1) , λ∗

2 � A∗′
2 (1) = 1

τ1

∂A

∂ y
(τ1, 1). (47)

According to (14), A′
1(τ1) > 1, and we can thus conclude that

λ∗
1 > 1, (48)

i.e., in the asymptotic system, the arrival rate in queue 1 is strictly greater than 1. This
matches perfectly with the defining condition of the asymptotic system: u1 → ∞,
i.e., queue 1 builds up continuously in the asymptotic system. On the other hand, the
stability of queue 2 in the asymptotic system depends on the value of λ∗

2. Specifically,
in the asymptotic system, the second queue is stable if and only if

λ∗
2 = 1

τ1

∂A

∂ y
(τ1, 1) < 1 ⇔ ∂A

∂ y
(τ1, 1) < τ1.

The correct interpretation of these results deserves some discussion. Recall that we
are studying the original two-queue system under the assumption that it has reached a
steady state, globally speaking. To that end, we have assumed that both λ1 and λ2 are
strictly smaller than 1, i.e., on average both queue 1 and queue 2 receive less than 1
customer per slot. However, this does not imply that the (conditional) mean arrival rate
in either queue cannot be temporarily greater than 1. As far as queue 1 is concerned,
according to (48), this is exactly what happens in the asymptotic system. We assume
there that, at some moment in time, the system content u1 is very large (theoretically:
goes to infinity). Of course, this can only happen if the arrivals during (infinitely)
many preceding slots have (on average) exceeded the service capacity of the queue.
We emphasize that the probability of u1 being very large may not be very high in a
system that is globally stable, but yet the event is possible (as illustrated in equation
(15)) and—in the asymptotic system—we study exactly this case. Our results reveal
that, in the asymptotic system, i.e., the original system conditioned on the event that,
at some time instant in the steady state, u1 → ∞, the (conditional) mean arrival rate
λ∗
1 in queue 1 (in the preceding slots) is indeed larger than 1, as could be expected.

More interestingly, they also show that, if u1 takes very large values, then queue 2
may be either stable or instable, depending on λ∗

2 being smaller or greater than 1.
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The essential reason why the system content in queue 1 has an impact on the
arrivals in queue 2 is, of course, that the arrival streams in both queues are possibly
nonindependent (within a slot). It is therefore to be expected that, in the special case
where the arrivals in queues 1 and 2 are strictlymutually independent, this phenomenon
disappears. Indeed, assume that

A(x, y) = A1(x)A2(y),

then, according to (46) and (13),

A∗
2(y) = A(τ1, y)

τ1
= A1(τ1)A2(y)

τ1
= A2(y),

i.e., the arrivals in queue 2 in the asymptotic system are identical to their counterparts
in the original, unconditioned system.

4.4 Conditional system content in queue 2

We now take a closer look at the behavior of queue 2 in the asymptotic system. From
our study of the conditional arrival process in Sect. 4.2, it follows that queue 2 behaves
as a regular discrete-time single-server system with 1-slot service times, independent
arrivals from slot to slot, and arrival pgf A∗

2(y), as defined in Eq. (46). Queue 2 is
stable if and only if λ∗

2, as defined in (48), is smaller than 1. If this is the case, then the
steady-state pgf of the system content in queue 2, i.e., the pgf U∗

2 (z), defined in (17),
exists and is given by a formula similar to the ones in Eq. (9), but with a modified
arrival process:

U∗
2 (z) = (1 − λ∗

2)
(z − 1)A∗

2(z)

z − A∗
2(z)

. (49)

Various (conditional) moments of u2, given that u1 → ∞, can be easily computed
from (49), in the usual way. For instance, the mean value can be obtained from

E[u2|u1 → ∞] = U∗′
2 (1) = λ∗

2 + A∗′′
2 (1)

2(1 − λ∗
2)

. (50)

It is also possible to derive an accurate approximation for the (conditional) tail
distribution of u2, given that u1 → ∞, by using a dominant-pole approximation as
summarized in the Eqs. (11) and (12), with X(z) replaced by U∗

2 (z), i.e., for large
values of �,

Prob[u2 = �|u1 → ∞] ≈ dσ−�−1, (51)

where

d � − lim
z→σ

(z − σ)U∗
2 (z), (52)
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and where σ denotes the dominant pole of U∗
2 (z), i.e., σ is the smallest real positive

solution, larger than 1, of the equation

σ = A∗
2(σ ). (53)

The existence of a dominant pole σ for the pgfU∗
2 (z) basically follows from the same

kind of argument as the existence of the dominant pole τi of the pgfUi (z), as discussed
in “Appendix A”, and the observation (in all the examples that we considered) that
A∗
2(z) is a well-behaved pgf if A2(z) is well-behaved.

5 Some specific examples

In this section, we explore some specific instances of the general two-queue model
discussed in the previous sections. This amounts to considering specific choices for
A(x, y).

5.1 Identical arrivals in both queues

Assume that the two queues receive exactly the same number of arrivals in each slot,
i.e., for all values of the slot index k, a1,k = a2,k . In this case, A(x, y) can be expressed
as a function of the product of its arguments x and y, i.e., A(x, y) = B(xy), where
B(z) is a well-behaved pgf with radius of convergence � > 1. The marginal arrival
pgfs and mean values are

A1(z) = A2(z) = B(z) , λ1 = λ2 = B ′(1) � λ < 1.

It is very clear that, in the steady state (possibly after some finite transient period), the
two queues contain exactly the same number of customers (at the beginning of each
slot), and, consequently, the joint pgf U (z1, z2) of the two system contents can also
be expressed as a function of the product of its two arguments. Specifically,

U (z1, z2) = U1(z1z2) = U2(z1z2) = (1 − λ)
(z1z2 − 1)B(z1z2)

z1z2 − B(z1z2)
,

whereU1(·) andU2(·) are the known functions defined in (9). We note that, according
to Bruneel [7], this is one of the few known cases in which a fully explicit analytic
expression for the joint pgf U (z1, z2) can be derived, which is, of course, due to the
very specific and simple nature of the system.

From our formulas derived in Sect. 4, we easily find that the dominant poles τi (as
defined in (13)) of the marginal system-content pgfs are τ1 = τ2 � τ , where τ is the
only (real positive) solution of the equation τ = B(τ ), 1 < τ < �, and from (14),
we also know that B ′(τ ) > 1. According to (39), in the asymptotic system, the joint
arrival pgf is given by
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α
C(z)

1− α

A1(x)

A2(y)

1

2
Fig. 3 A global arrival stream with pgf C(z) is split probabilistically into two substreams with pgfs A1(x)
and A2(y), where α and 1 − α indicate the fractions of customers routed to queues 1 and 2, respectively

A∗(x, y) = A(τ x, y)

τ
= B(τ xy)

τ
,

which is also a function of the product x · y. It then easily follows that the marginal
arrival pgfs and mean values in the asymptotic system are

A∗
1(z) = A∗(z, 1) = A∗

2(z) = A∗(1, z) = B(τ z)

τ
, λ∗

1 = λ∗
2 = B ′(τ ). (54)

As expected, we find that λ∗
1 > 1, signifying that, in the (conditional) asymptotic

system, queue 1 is unstable, in accordance with its defining condition u1 → ∞.
However, since in this particular case, λ∗

1 = λ∗
2, we find that queue 2 is unstable too,

i.e., if u1 → ∞ then also u2 → ∞, which is in complete agreement with the fact that
the system contents in both queues, at the beginning of any slot in the steady state, are
identical. In conclusion, our methodology clearly reveals that, in the case of identical
arrivals in both queues, a steady-state pgf U∗

2 (z), as defined in (49), does not exist.

5.2 One global arrival stream probabilistically routed to both queues

In our model, the total number of arrivals into the system (i.e., both queues together)
during slot k is given by ck = a1,k + a2,k . It is easily seen that the cks also
form a sequence of i.i.d. nonnegative discrete random variables with common pgf
C(z) � A(z, z). We call C(z) the “pgf of the global arrival stream”. In this subsec-
tion, we assume that a global arrival stream of customers with corresponding pgfC(z)
presents itself at the entrance of our two-queue system. Consecutive customers are
then routed probabilistically, i.e., independently from customer to customer, and with
fixed probabilities, to queue 1 or queue 2, respectively. Let α and 1 − α denote the
probabilities that an arriving customer is routed to queue 1 or queue 2, respectively.
Figure3 represents this setting graphically.

It is readily seen that, in this situation, the joint arrival pgf A(x, y) and the marginal
arrival pgfs A1(x) and A2(y) are given by

A(x, y) = C(αx + (1 − α)y), A1(x) = C(1 − α + αx),

A2(y) = C(α + (1 − α)y). (55)
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Let μ indicate the total mean arrival rate, i.e., μ � C ′(1). Then, the mean arrival rates
in the individual queues (see (3)) are

λ1 = μα , λ2 = μ(1 − α), (56)

and, of course, λ1 + λ2 = μ. The two-queue system is stable if and only if λ1 < 1
and λ2 < 1 (see (4)), or, in this setting, if and only if

μ < min

(
1

α
,

1

1 − α

)
or max

(
0,

μ − 1

μ

)
< α < min

(
1,

1

μ

)
. (57)

Note that this implies μ < 2.
It is not possible to obtain more detailed results on the behavior of the asymptotic

system for general C(z). In the following subsections, we therefore consider some
specific choices for C(z).

5.2.1 Global geometric arrivals

Assume a geometric distribution with mean μ for the global arrival stream, i.e.,

C(z) = 1

1 + μ − μz
, C ′(1) = μ ≥ 0.

The joint and marginal arrival pgfs A(x, y), A1(x) and A2(y) can be obtained from
(55) as

A(x, y) = 1

1 + λ1 + λ2 − λ1x − λ2y
, A1(x) = 1

1 + λ1 − λ1x
,

A2(y) = 1

1 + λ2 − λ2y
. (58)

Note the remarkable property that the marginal arrival distributions in queues 1 and
2 are also geometric, with means λ1 = μα and λ2 = μ(1 − α), respectively. The
marginal pgf and mean value of the system content in queue i can be found from (9)
and (10) as

Ui (z) = 1 − λi

1 − λi z
, E[ui ] = λi

1 − λi
. (59)

We thus observe that the system content in queue i is also geometrically distributed,
notably with parameter λi . The corresponding pmf is well-known:

Prob[ui = n] = (1 − λi )λ
n
i , n ≥ 0 . (60)

The dominant pole τi is the (only) zero of the denominator ofUi (z), as given in (59):

τ1 = 1

λ1
= 1

μα
> 1, τ2 = 1

λ2
= 1

μ(1 − α)
> 1. (61)
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According to (46), (58), the marginal arrival pgfs and mean values in the asymptotic
system are

A∗
1(x) = λ1

1 + λ1 − x
= 1

1 + λ∗
1 − λ∗

1x
, λ∗

1 = 1

λ1
(62)

and

A∗
2(y) = λ1

λ1 + λ2 − λ2y
= 1

1 + λ∗
2 − λ∗

2y
, λ∗

2 = λ2

λ1
= 1 − α

α
. (63)

Some first conclusions can be drawn from these results. In the asymptotic system,
the marginal arrival distributions are geometric, just as in the original system, but the
mean arrival rates are λ∗

1 and λ∗
2 instead of λ1 and λ2. From (62), we learn that λ∗

1 is
strictly greater than one, because it is the inverse of λ1 < 1, which again illustrates
the instability of queue 1 in the asymptotic system. On the other hand, (63) shows that
the stability of queue 2 in the asymptotic system is determined solely by the value of
the routing probability α, or, equivalently, the ratio of λ1 and λ2. Queue 2 is stable if
and only if

λ∗
2 < 1 ⇔ λ2 < λ1 ⇔ α >

1

2
. (64)

This result is intuitively appealing: in order for queue 2 to be stable when queue 1 goes
into saturation (i.e., u1 → ∞), it should receive less customers per slot than queue
1. Moreover, the (conditional) arrival process in queue 2 does not depend on the total
arrival rate μ of the original system, but is fully determined by the value of α, a most
intriguing result.

Now let us assume that λ2 < λ1. Then, in the asymptotic system, queue 2 behaves
as a stable single-server queue with 1-slot service times and geometric arrivals with
mean λ∗

2, implying that the pgf and the mean value of the queue-2 system content exist
and are given by

U∗
2 (z) = 1 − λ∗

2

1 − λ∗
2z

= λ1 − λ2

λ1 − λ2z
= 2α − 1

α − (1 − α)z
,

E[u2|u1 → ∞] = λ∗
2

1 − λ∗
2

= 1 − α

2α − 1
. (65)

The dominant pole σ ofU∗
2 (z), as defined in (53), is the (only) zero of its denominator,

i.e.,

σ = 1

λ∗
2

= λ1

λ2
= α

1 − α
> 1. (66)
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As discussed in Sect. 4.4, the (conditional) tail distribution of u2, given that u1 → ∞,
can be well approximated by using the dominant-pole technique, i.e., for large �,

Prob[u2 = �|u1 → ∞] ≈ dσ−�−1, where d � − lim
z→σ

(z − σ)

U∗
2 (z) = 1 − λ∗

2

λ∗
2

= 2α − 1

1 − α
. (67)

Hence, combining (66) and (67), we get, for large �,

Prob[u2 = �|u1 → ∞] ≈ (1 − λ∗
2)(λ

∗
2)

� = 2α − 1

α

(
1 − α

α

)�

. (68)

The joint pmf of (u1, u2) can be expressed, in general, as

Prob[u1 = n, u2 = �] = Prob[u1 = n] Prob[u2 = �|u1 = n] . (69)

Here the first factor is given by the exact formula (60), valid for any n, and the second
factor can be well approximated by the dominant-pole form (68), valid for large n and
�. As a result, we obtain a closed-form approximation for the joint tail distribution of
(u1, u2), i.e., for large values of both n and �,

Prob[u1 = n, u2 = �] ≈ (2α − 1)(1 − μα)

α
(μα)n

(
1 − α

α

)�

, if α >
1

2
. (70)

The high accuracy of formula (70) for large n (say n ≥ 10), is illustrated by one
specific example, in Fig. 4, where a comparison is made with simulation results. Note
that we did not even select high values of � here. We obtained a similar accuracy when
keeping n fixed and varying �. Producing simulation results for high n and � at the
same time, is extremely time-consuming, since it concerns very rare events; evaluating
the closed formula (70), on the contrary, requires virtually no time at all.

An additional result can be obtained by exploiting the symmetry of our model.
Indeed, we can interchange the roles of queue 1 and queue 2, in the sense that we
define the asymptotic system by the condition “u2 → ∞” instead of “u1 → ∞”, and
then study the behavior of queue 1 under this condition. This implies that the roles of
the routing probabilities α and 1− α must also be interchanged. As a result, we find,

Prob[u1 = n, u2 = �] ≈ (1 − 2α)[1 − μ(1 − α)]
1 − α

(
α

1 − α

)n

[μ(1 − α)]�,

if α <
1

2
. (71)

We note that, to the best of our knowledge, a fully explicit analytic expression
for the whole joint pgf U (z1, z2) has never been derived for the specific joint arrival
distribution considered here, i.e., for the joint arrival pgf A(x, y) defined in Eq. (58).
We strongly suspect that the fact that the approximative expressions (70) and (71) for
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Fig. 4 Dominant-pole approximation (70) for Prob[u1 = n, u2 = �] versus simulation results, for fixed
� = 1, 2, 3, 4 and α = 0.7 and μ = 1

the joint tail distribution of (u1, u2) are profoundly different depending on the routing
probability α being greater or smaller than 1

2 implies that such an analytic expression
of U (z1, z2), valid for all possible values of α, may not exist. We also note that, if α

is exactly equal to 1
2 , then queue 2 is unstable when u1 → ∞ and queue 1 is unstable

when u2 → ∞, and we cannot find a joint tail approximation at all.

5.2.2 Global shifted geometric arrivals

Assume a shifted geometric distributionwithmeanμ ≥ 1 for the global arrival stream,
i.e.,

C(z) = z

μ − (μ − 1)z
, C ′(1) = μ ≥ 1.

The joint and marginal arrival pgfs A(x, y), A1(x) and A2(y) can be obtained from
(55) as

A(x, y) = αx + (1 − α)y

μ − (μ − 1)αx − (μ − 1)(1 − α)y
, (72)

A1(x) = 1 − α + αx

1 + (μ − 1)α(1 − x)
, A2(y) = α + (1 − α)y

1 + (μ − 1)(1 − α)(1 − y)
.

The marginal pgfs of the system contents in queues 1 and 2 can be found from (9) as

U1(z) = (1 − μα)(1 − α + αz)

1 − α − (μ − 1)αz
, U2(z) = [1 − μ(1 − α)][α + (1 − α)z]

α − (μ − 1)(1 − α)z
. (73)
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The mean system content E[u2] = U ′
2(1) follows from (73) as

E[u2] = μα(1 − α)

1 − μ(1 − α)
= λ1λ2

μ(1 − λ2)
. (74)

The dominant pole τi is the (only) zero of the denominator ofUi (z); from (73) we get

τ1 = 1 − α

(μ − 1)α
> 1, τ2 = α

(μ − 1)(1 − α)
> 1. (75)

According to (46), the marginal arrival pgfs in the asymptotic system are

A∗
1(x) = μα + α(x − 1)

μα − (1 − α)(x − 1)
, A∗

2(y) = α[1 + (μ − 1)y]
μ − (1 − α)[1 + (μ − 1)y] . (76)

The corresponding mean arrival rates (per slot) in queues 1 and 2 are

λ∗
1 � A∗′

1 (1) = 1

μα
= 1

λ1
, λ∗

2 � A∗′
2 (1) = μ − 1

μα
= μ − 1

λ1
. (77)

Again, just as in the case of (unshifted) geometric arrivals, it is clear that λ∗
1 is strictly

greater than one, because it is the inverse of λ1 < 1, reflecting the instability of queue
1 in the asymptotic system. On the other hand, in this case, λ∗

2 turns out to be always
strictly smaller than one, regardless of the value of the routing probability α. This
follows easily from the stability condition (57). This means that queue 2 is always
stable when u1 → ∞, in this case. Hence, the asymptotic pgf and mean value of the
system content in queue 2 always exist and can be found from (49), (76), (77) and
(50):

U∗
2 (z) = [1 − μ(1 − α)][1 + (μ − 1)z]

μ[α − (μ − 1)(1 − α)z] ,

E[u2|u1 → ∞] = μ − 1

μ[1 − μ(1 − α)] = μ − 1

μ(1 − λ2)
. (78)

It is remarkable thatU2(z) andU∗
2 (z)have the samedenominator (upon amultiplicative

constant). The dominant pole σ of U∗
2 (z) is therefore equal to τ2, i.e.,

σ = α

(μ − 1)(1 − α)
= τ2. (79)

As discussed in Sect. 4.4, the (conditional) tail distribution of u2, given that u1 → ∞,
can be well approximated, for large values of �, as

Prob[u2 = �|u1 → ∞] ≈ dσ−�−1, where d � − lim
z→σ

(z − σ)

U∗
2 (z) = 1 − μ(1 − α)

μ(μ − 1)(1 − α)2
. (80)
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Hence, combining (79) and (80), we get

Prob[u2 = �|u1 → ∞] ≈ 1 − μ(1 − α)

μα(1 − α)

(
(μ − 1)(1 − α)

α

)�

. (81)

Again, this can be combined with a tail approximation for the system-content distri-
bution in queue 1, as per Eqs. (15) and (16), i.e., for large values of n,

Prob[u1 = n] ≈ c1τ
−n−1
1 = c1

(
(μ − 1)α

1 − α

)n+1

, (82)

where

c1 = (1 − λ1)(τ1 − 1)τ1
A′
1(τ1) − 1

= λ1τ1(τ1 − 1) = μ(1 − α)(1 − μα)

(μ − 1)2α
. (83)

Hence

Prob[u1 = n] ≈ μ(1 − μα)

μ − 1

(
(μ − 1)α

1 − α

)n

. (84)

Combining (81) and (84), we find that, for large values of both n and �,

Prob[u1 = n, u2 = �] ≈ (1 − μα)[1 − μ(1 − α)]
(μ − 1)α(1 − α)

(
(μ − 1)α

1 − α

)n(
(μ − 1)(1 − α)

α

)�

.

(85)

We note that, in this case, we have found an approximation which is valid for all
values of the parameter α. Moreover, formula (85) is invariant to the substitutions
α ↔ 1 − α, n ↔ �. In part, this is due to the remarkable property that the dominant
poles σ and τ2 are identical here, i.e., the decay rate of the tail distribution of u2 is not
influenced by u1, and vice versa. The case of global shifted geometric arrivals is also
one of the very few instances of our model where an explicit analytic expression for
the whole joint pgfU (z1, z2) of the two system contents can be found, as opposed, for
instance, to the seemingly very similar case of (unshifted) geometric arrivals, where
no solution has been reported so far. Indeed, using an adapted version of a technique
briefly discussed in Bruneel [7], we have been able to derive such an expression.
The details of this derivation—which is interesting in its own right—are discussed in
“Appendix B”; here we merely state the final result:

U (z1, z2) = (τ1 − 1)(τ2 − 1)[αz1 + (1 − α)z2]
(τ1 − z1)(τ2 − z2)

, (86)

where τ1 and τ2 are the dominant poles of U1(z) and U2(z), respectively, given in
(75). Note that, apparently, τ1 and τ2 are also the only singularities of the joint pgf
U (z1, z2).
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Having an explicit expression for U (z1, z2) at our disposal, gives a unique
opportunity to check the correctness of the asymptotic results obtained through the
methodology developed in this paper. First, consider the series expansion ofU (z1, z2)
in powers of z1, for given z2:

U (z1, z2) =
∞∑

n=0

zn1Sn(z2), where Sn(z2) �
∞∑

�=0

z�2Prob[u1 = n, u2 = �] .

If we considerU (z1, z2) as a function of the variable z1, then (86) shows thatU (z1, z2)
has a single dominant pole at z1 = τ1, and hence, for large n, Sn(z2) can be well
approximated as

Sn(z2) ≈ cS(z2)τ
−n−1
1 , (87)

where cS(z2) is given by

cS(z2) � − lim
z1→τ1

(z1 − τ1)U (z1, z2) = (τ1 − 1)(τ2 − 1)[ατ1 + (1 − α)z2]
τ2 − z2

. (88)

The conditional marginal pgf of the system content in queue 2, given that u1 = n, can
be derived from this through

U∗
2 (z|n) =

∞∑

�=0

z�Prob[u2 = �|u1 = n] =
∞∑

�=0

z�
Prob[u1 = n, u2 = �]

Prob[u1 = n]

= Sn(z)

Prob[u1 = n]
.

For large n, according to (87), (83), (82) and (88), this can be well approximated by

U∗
2 (z) = cS(z)

c1
= (τ2 − 1)[ατ1 + (1 − α)z2]

λ1τ1(τ2 − z)
= [1 − μ(1 − α)][1 + (μ − 1)z]

μ[α − (μ − 1)(1 − α)z] .

This is exactly the same expression as we obtained earlier in Eq. (78).
Next, we can also invert the known pgfU (z1, z2) completely, i.e., compute the joint

probabilities Prob[u1 = n, u2 = �] such that

U (z1, z2) =
∞∑

n=0

∞∑

�=0

zn1z
�
2Prob[u1 = n, u2 = �] . (89)
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Departing from expression (86), we easily get

U (z1, z2) = [αz1 + (1 − α)z2]
1 − 1

τ1

1 − z1
τ1

1 − 1
τ2

1 − z2
τ2

= [αz1 + (1 − α)z2](1 − 1

τ1
)(1 − 1

τ2
)

∞∑

i=0

∞∑

j=0

τ−i
1 τ

− j
2 zi1z

j
2

= (τ1 − 1)(τ2 − 1)

τ1τ2

( ∞∑

i=0

∞∑

j=0

ατ−i
1 τ

− j
2 zi+1

1 z j2 +
∞∑

i=0

∞∑

j=0

(1 − α)τ−i
1 τ

− j
2 zi1z

j+1
2

)
.

(90)

Identifying equal powers of z1 and z2 in (89) and (90), we can compute Prob[u1 = n, u2 = �]
explicitly, for any n, � ≥ 0. It is not difficult to see that this leads precisely to expression (85),
as soon as n ≥ 1, � ≥ 1, which illustrates, once again, the accuracy, and, in this case even the
exact nature of the asymptotic dominant-pole results derived via the methodology developed in
this paper.

5.2.3 Global binomial arrivals of order two

Assume a binomial distribution of order two with mean μ for the global arrival stream, i.e.,

C(z) =
(
1 − μ

2
+ μ

2
z

)2

, C ′(1) = μ.

The mean arrival rates are λ1 = μα and λ2 = μ(1 − α) (see (56)) and the joint and marginal
arrival pgfs can be expressed in terms of these as (see (55))

A(x, y) =
(
1 − λ1

2
− λ2

2
+ λ1

2
x + λ2

2
y

)2

, A1(x) =
(
1 − λ1

2
+ λ1

2
x

)2

,

A2(y) =
(
1 − λ2

2
+ λ2

2
y

)2

. (91)

Here, again, we observe the remarkable property that the marginal arrival processes in queues 1
and 2 are also binomial of order two, with means λ1 and λ2, respectively. The marginal pgf and
mean value of the system content in queue i are (see(9))

Ui (z) = 4(1 − λi )Ai (z)

(2 − λi )2 − (λi )2z
, E[ui ] = U ′

i (1) = λi (4 − 3λi )

4(1 − λi )
. (92)

The dominant pole τi is the (only) zero of the denominator of Ui (z); from (92), we get

τi =
(
2 − λi

λi

)2

(93)

According to (46), the marginal arrival pgfs and mean arrival rates in the asymptotic system are

A∗
1(x) =

(
1 − λ1

2 + λ1
2 τ1x

)2

τ1
=

(
1 − λ∗

1

2
+ λ∗

1

2
x

)2

, λ∗
1 = 2 − λ1 > 1,
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A∗
2(y) =

(
1 − λ1

2 − λ2
2 + λ1τ1

2 + λ2
2 y

)2

τ1
=

(
1 − λ∗

2

2
+ λ∗

2

2
y

)2

, λ∗
2 = λ1λ2

2 − λ1
< 1. (94)

Some conclusions can be drawn from these expressions. First, we observe that the two
marginal arrival streams in the asymptotic system are also of type “binomial of order two”,
but with different mean arrival rates, i.e., λ∗

i instead of λi . Again, as expected, it is clear that λ∗
1

is strictly greater than one, because λ1 < 1. And, just as in the case of global shifted geometric
arrivals, λ∗

2 turns out to be always strictly smaller than one, regardless of the value of the routing
probability α, because λ1 < 1 and λ2 < 1. So, queue 2 is always stable when u1 → ∞. Hence,
the asymptotic marginal pgf and mean value of the system content in queue 2 always exist.
Exploiting the formal resemblance between A∗

2(y) and A2(y), we easily find similar expressions
as in the unconditional case (see (92)):

U∗
2 (z) = 4(1 − λ∗

2)A
∗
2(z)

(2 − λ∗
2)

2 − (λ∗
2)

2z
, E[u2|u1 → ∞] = λ∗

2(4 − 3λ∗
2)

4(1 − λ∗
2)

. (95)

The dominant pole σ of U∗
2 (z) is the (only) zero of its denominator, i.e.,

σ =
(
2 − λ∗

2

λ∗
2

)2

> 1, (96)

i.e., a similar formula as for τi in (93). As before, the (conditional) tail distribution of u2, given
that u1 → ∞, can be well approximated by using the dominant-pole technique, i.e., for large �,

Prob[u2 = �|u1 → ∞] ≈ dσ−�−1, (97)

where

d � − lim
z→σ

(z − σ)U∗
2 (z) = 4(1 − λ∗

2)A
∗
2(σ )

(λ∗
2)

2 = 4(1 − λ∗
2)σ

(λ∗
2)

2 . (98)

Hence, combining (96), (97) and (98), we get, for large �,

Prob[u2 = �|u1 → ∞] ≈ 4(1 − λ∗
2)

(λ∗
2)

2

(
1

σ

)�

= 4(1 − λ∗
2)

(λ∗
2)

2

(
λ∗
2

2 − λ∗
2

)2�

. (99)

Again, this can be combined with a tail approximation for the system-content distribution in
queue 1, as per Eqs. (15) and (16), i.e., for large values of n,

Prob[u1 = n] ≈ c1τ
−n−1
1 , where c1 � − lim

z→τ1
(z − τ1)U1(z) = 4(1 − λ1)τ1

(λ1)2
,

so that

Prob[u1 = n] ≈ 4(1 − λ1)

(λ1)2

(
1

τ1

)n

= 4(1 − λ1)

(λ1)2

(
λ1

2 − λ1

)2n

. (100)
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Combining (99) and (100), we find that, for large values of both n and �,

Prob[u1 = n, u2 = �] ≈ u1(n, �) � 16(1 − λ1)(1 − λ∗
2)

(λ1)2(λ
∗
2)

2

(
λ1

2 − λ1

)2n( λ∗
2

2 − λ∗
2

)2�

. (101)

In terms of the original parameters μ and α of our model, u1(n, �) can be expressed as

u1(n, �) = 16(2 − μα)(1 − μα)[2 − μα − μ2α(1 − α)]
μ6α4(1 − α)2

·
(

μα

2 − μα

)2n

(
μ2α(1 − α)

4 − 2μα − μ2α(1 − α)

)2�

. (102)

Interchanging the roles of queues 1 and 2, we can similarly obtain a dual approximation:

u2(n, �) � 16[2 − μ(1 − α)][1 − μ(1 − α)][2 − μ(1 − α) − μ2α(1 − α)]
μ6(1 − α)4α2

·
(

μ2α(1 − α)

4 − 2μ(1 − α) − μ2α(1 − α)

)2n(
μ(1 − α)

2 − μ(1 − α)

)2�

. (103)

It may seem surprising that expressions (102) and (103) are not identical, i.e., are not invariant
to the substitutions α ↔ 1 − α, n ↔ �. In order to clarify this observation, let us consider
the special case α = 1

2 . Our model then reduces to the well-known model of the “(symmetric)
clocked buffered switch”, that has been analyzed by various authors in the past (Jaffe [22, 23],
Boxma and van Houtum [6], Cohen [10], Adan et al. [1]), by using various kinds of techniques.
For α = 1

2 , we get the following results for the dominant poles τ1, τ2 and σ :

τ1 = τ2 =
(
4 − μ

μ

)2

, σ =
(
16 − 4μ − μ2

μ2

)2

.

The joint tail approximations u1(n, �) and u2(n, �), given in (102) and (103), reduce to

u1(n, �) = 64(2 − μ)2(16 − μ2)

μ6 τ−n
1 σ−�

= 64(2 − μ)2(16 − μ2)

μ6

(
μ

4 − μ

)2n(
μ2

16 − 4μ − μ2

)2�

,

u2(n, �) = 64(2 − μ)2(16 − μ2)

μ6 σ−nτ−�
2

= 64(2 − μ)2(16 − μ2)

μ6

(
μ2

16 − 4μ − μ2

)2n(
μ

4 − μ

)2�

.

Jaffe [22, 23] also provides an approximative expression for the joint tail distribution of the
two “queue contents” (q1, q2), where the queue content qi in queue i is defined as the number
of customers in queue i , excluding the customer in service, if any. It is clear that the “queue
content” qi is related to the “system content” ui in queue i (as we use in this paper) by the simple
equation qi = (ui − 1)+, and, therefore, for large values of n and �,

Prob[q1 = n, q2 = �] = Prob[u1 = n + 1, u2 = � + 1] .
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Fig. 5 Joint tail approximation q1(n, �) versus simulation results, for fixed � = 1, 2, 3, 4 and μ = 1.8

Our two tail approximations u1(n, �) and u2(n, �) for Prob[u1 = n, u2 = �] can thus be trans-
lated to two corresponding tail approximations q1(n, �) and q2(n, �) for Prob[q1 = n, q2 = �]
as follows:

q1(n, �) � u1(n + 1, � + 1) = 64(2 − μ)2(16 − μ2)

(4 − μ)2(16 − 4μ − μ2)2

(
μ

4 − μ

)2n(
μ2

16 − 4μ − μ2

)2�

,

(104)

q2(n, �) � u2(n + 1, � + 1) = 64(2 − μ)2(16 − μ2)

(4 − μ)2(16 − 4μ − μ2)2

(
μ2

16 − 4μ − μ2

)2n(
μ

4 − μ

)2�

.

We illustrate the accuracy of formula (104) for large n (say n ≥ 10) by one specific example,
in Fig. 5, where a comparison is made with simulation results. Producing simulation results for
high n and � at the same time, is extremely time-consuming, since it concerns very rare events;
evaluating the closed formula (104), on the contrary, requires virtually no time at all.

The corresponding result obtained by Jaffe [22, 23], in his original notations, is

Prob[q1 = n, q2 = �] ≈ q3(n, �) � M

b1b2

(
1

b1b2

)(n+�)/2
((

b2
b1

)(n−�)/2

+
(
b1
b2

)(n−�)/2
)

,

where

p � μ

2
, M � 16

p6
(1 − p)2(4 − p2), b1 �

(
2

p
− 1

)2

, b2 �
(
1 + 2

p
− 4

p2

)2

.

Translating this to our notations, we thus find that b1 = τ1, b2 = σ and

q3(n, �) = q1(n, �) + q2(n, �).

Hence, we see that Jaffe’s approximation is symmetric in the parameters n and �, and corresponds
to the sum of our two approximations; q3(n, �) is compared to simulation results in Fig. 6 and is
clearly more accurate than q1(n, �) for lower values of n.
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Fig. 6 Joint tail approximation q3(n, �) versus simulation results, for fixed � = 1, 2, 3, 4 and μ = 1.8

In order to better understand why this is the case, we need some context. First, it is important
to know that both Cohen [10] and Jaffe [22, 23] prove that U (z1, z2) has an infinite number
of poles, and that the locations of the poles of U (z1, z2), considered as a function of z1, are
independent of z2, and vice versa. Thus, the joint pgf U (z1, z2) has two countably infinite sets
of poles, one set with respect to the variable z1 and another set with respect to the variable z2.
Since α = 1

2 , these two sets are identical. Using our notations, it turns out that, in both sets
of poles, the dominant pole is τ1 = τ2 and the second most dominant pole is σ . The reason
why Jaffe obtains a more accurate result is that he – explicitly, from the very beginning – not
only uses the most dominant poles, but also the second most dominant poles of U (z1, z2) with
respect to the dimensions z1 and z2, in his joint tail approximation, whereas we basically only
use the most dominant pole in one direction, and then look for the most dominant pole in the
other direction, given this earlier choice, which turns out to be the second most dominant pole
in that direction. Apparently, as also explicitly noticed by Jaffe, there is no contribution to the
joint tail from the two most dominant poles in both directions (i.e., τ1 = τ2) together. We further
note that, if n is much larger than �, then, since b1 = τ1 = τ2 < b2 = σ , q2(n, �) becomes
negligible with respect to q1(n, �); the opposite is true if � is much larger than n; in both cases,
Jaffe’s approximation basically reduces to one of our two approximations.

Finally, we emphasize that our approach does lead to the same, more accurate, approximation
as Jaffe’s analysis, if we simply add up our two approximations. This adding up is not just a
heuristic trick: it corresponds to taking into account the contributions of more singularities (with
respect to both z1 and z2) when inverting the pgfU (z1, z2) to find the pmf Prob[u1 = n, u2 = �].
This approach could be taken for other arrival processes A(x, y) too, if multiple expressions
for Prob[u1 = n, u2 = �] are obtained. The reason we did not need it in Sect. 5.2.1 (global
geometric arrivals) is that there, for a given routing probability α, we only got one expression
for Prob[u1 = n, u2 = �]; in Sect. 5.2.2 (global shifted geometric arrivals), the two approximate
expressions were identical.

6 Discussion of results

In the previous section, we have observed that, depending on the precise nature of the arrival pgf
A(x, y), different scenarios may occur with respect to the behavior of queue 2 when the number
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of customers in queue 1 is large (i.e., in the asymptotic system). In case of identical arrivals,
queue 2 is always unstable; for global geometric arrivals, queue 2may be either stable or unstable,
depending on the relative values of λ1 and λ2, whereas in case of global shifted geometric or
binomial arrivals, queue 2 is always stable. Intuitively, one might expect that the amount and
the nature of the intra-slot correlation between the arrivals of type 1 and type 2, should play an
important role in the type of behavior that is observed. If this correlation is positive, we expect
both queues to exhibit similar behavior, i.e., the system content in queue 2 is large (small) when
the system content in queue 1 is large (small); if the correlation is positive and large, we even
expect that u2 → ∞ when u1 → ∞, and this is what we observe in case of identical arrivals,
indeed. On the other hand, if the arrival correlation is negative, queues 1 and 2 are expected to
behave differently, in the sense that u2 typically takes small values when u1 takes high values,
and vice versa, and therefore, queue 2 should remain stable when u1 → ∞, i.e., in the asymptotic
system. This looks like what we observe in case of global shifted geometric or binomial arrivals.
But it is not a priori clear what should happen if the arrival correlation is moderately positive;
this seems to be what happens in case of global geometric arrivals.

Let us corroborate these intuitive expectations by means of formulas. We start by computing
the arrival correlation. Let a1 and a2 denote the numbers of type-1 arrivals and type-2 arrivals in
one slot, respectively. Then, the correlation coefficient ρa between a1 and a2 is defined as

ρa � E[a1a2] − λ1λ2√
E

[
a21

] − λ21

√
E

[
a22

] − λ22

= cov[a1, a2]√
E

[
a21

] − λ21

√
E

[
a22

] − λ22

,

where λ1 = E[a1] and λ2 = E[a2] are the quantities defined earlier in Eq. (3), and

E[a1a2] = ∂2A

∂x∂ y
(1, 1), E

[
a21

]
= ∂2A

∂x2
(1, 1) + λ1, E

[
a22

]
= ∂2A

∂ y2
(1, 1) + λ2.

The quantity cov[a1, a2] � E[a1a2] − λ1λ2 is the covariance of a1 and a2, and has the same
sign as the correlation coefficient ρa , but is easier to compute.

6.1 Global geometric arrivals

For the case of global geometric arrivals, where A(x, y) is given in Eq. (58), the arrival correlation
turns out to be positive, between 0 and +1, i.e.,

ρa(geom) = μ
√

α(1 − α)√
(1 + μα)[1 + μ(1 − α)] =

√
λ1λ2√

(1 + λ1)(1 + λ2)
> 0.

We thus expect queue 2 in the asymptotic system (where u1 → ∞) to be more heavily loaded
than in the unconditional system. This expectation is confirmed by Eq. (63), i.e.,

λ∗
2 = λ2

λ1
> λ2.

Moreover, λ∗
2 only remains smaller than one, i.e., the stability of queue 2 is only guaranteed, if

λ2 < λ1 < 1. Apparently, the correlation coefficient ρa(geom), which is an increasing function
of λ2, for given λ1, gets too big to ensure stability of queue 2 beyond this point. But, if λ2 < λ1,
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then E[u2|u1 → ∞] exists and, according to (59) and (65), is greater than E[u2]:

E[u2|u1 → ∞] = λ∗
2

1 − λ∗
2

>
λ2

1 − λ2
= E[u2] .

Comparing the tail distributions of u2 in the asymptotic system and the original system, we also
see a heavier tail in the asymptotic system, as, according to (60) and (68), for large �,

Prob[u2 = �|u1 → ∞] ≈ (1 − λ∗
2)(λ

∗
2)

� > (1 − λ2)λ
�
2 ≈ Prob[u2 = �] .

6.2 Global shifted geometric arrivals

The situation is different for global shifted geometric arrivals, where A(x, y) is given by expres-
sion (72) and we find

ρa(shift) = (μ − 2)
√

α(1 − α)
√

μ − 1 + (2 − μ)2α(1 − α)
= −

√
(2 − μ)2λ1λ2√

(2 − μ)2λ1λ2 + μ2(μ − 1)
,

which is clearly negative, between 0 and −1, because 1 ≤ μ < 2. The mean asymptotic arrival
rate in queue 2 is given by formula (77):

λ∗
2 = μ − 1

λ1
<

λ1λ2

λ1
= λ2 < 1, (105)

where we have used the inequality

μ − 1 < λ1λ2 ⇔ λ1λ2 − (μ − 1) = λ1λ2 − (λ1 + λ2) + 1 = (1 − λ1)(1 − λ2) > 0.

(106)

Equation (105) not only implies that queue 2 is always stable in the asymptotic system, but also
that it is less heavily loaded than in the original system. This observation is confirmed by a
comparison of the expressions (74) and (78) for the mean system content in queue 2:

E[u2|u1 → ∞] = μ − 1

μ(1 − λ2)
<

λ1λ2

μ(1 − λ2)
= E[u2] ,

where we have, again, used the inequality (106). A comparison of the tail distributions of u2
in the asymptotic system and the original system now reveals that both have the same decay
rate, because, according to (79), in this case, the dominant poles τ2 (of U2(z)) and σ (of U∗

2 (z))
coincide:

σ = τ2 = α

(μ − 1)(1 − α)
= λ1

(μ − 1)λ2
.
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Nevertheless, we can derive from (81) and (84) that, for large �,

Prob[u2 = �|u1 → ∞] ≈ μ(1 − λ2)

λ1λ2

(
(μ − 1)λ2

λ1

)�

<
μ(1 − λ2)

μ − 1

(
(μ − 1)λ2

λ1

)�

≈ Prob[u2 = �] ,

using, once again, the inequality (106).

6.3 Global binomial arrivals

The case of global binomial arrivals of order two can be dealt with similarly. Here, A(x, y) is
given by (91) and, again, we find a negative arrival correlation, between 0 and −1, i.e.,

ρa(binom) = −
√

λ1λ2√
(2 − λ1)(2 − λ2)

< 0.

According to (94), the mean arrival rate in queue 2 in the asymptotic system is given by

λ∗
2 = λ1λ2

2 − λ1
< λ2 < 1.

Here again, queue 2 is always stable in the asymptotic system, but less loaded than in the original
system. Expressions (92), (95) for the mean system content in queue 2 confirm this:

E[u2|u1 → ∞] = λ∗
2(4 − 3λ∗

2)

4(1 − λ∗
2)

<
λ2(4 − 3λ2)

4(1 − λ2)
= E[u2] ,

because the function

g(x) � x(4 − 3x)

4(1 − x)

is a monotonically increasing function of its argument x (since g′(x) > 0, for all real x).
Comparing the tail distributions of u2 in the asymptotic system and the original system, we also
see a lighter tail in the asymptotic system, as, according to (99) and (100), for large �,

Prob[u2 = �|u1 → ∞] ≈ 4(1 − λ∗
2)

(λ∗
2)

2

(
λ∗
2

2 − λ∗
2

)2�

<
4(1 − λ2)

(λ2)2

(
λ2

2 − λ2

)2�

≈ Prob[u2 = �] .

6.4 General global arrivals

The above results for global geometric, shifted geometric and binomial arrivals with probabilistic
routing to both queues, suggest that the (sign of) the correlation coefficient (or, the covariance)
between a1 and a2 gives a good indication of the type of behaviorwemay expect for queue 2 in the
asymptotic system: if the arrival correlation is positive, then queue 2 receives more arrivals in the
asymptotic system than in the original system, whereas the opposite implication seems to hold in
case of negative arrival correlation. In an attempt to examine this more generally, we have found
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that the reality is somewhat more subtle, and, in particular, that a second-order characteristic of
the joint arrival process such as the covariance or the correlation coefficient cannot completely
predict the type of behavior of the asymptotic system. Let us reconsider – more generally –
the case where a global arrival stream with pgf C(z) is split into two substreams with routing
probabilities α and 1 − α for queues 1 and 2, respectively, as discussed in the introduction of
Sect. 5.2. Let us denote the mean and the variance of the total number of arrivals per slot in the
system as E[c] and var[c], respectively. Then

E[c] = C ′(1), var[c] = C ′′(1) + C ′(1) − [C ′(1)]2.

As the joint pgf A(x, y) is given by A(x, y) = C(αx + (1 − α)y) (see (55)), we easily get

λ1 = αC ′(1), λ2 = (1 − α)C ′(1), E[a1a2] = α(1 − α)C ′′(1),

and, from this,

cov[a1, a2] = α(1 − α){C ′′(1) − [C ′(1)]2} = α(1 − α){var[c] − E[c]}. (107)

Among other things, this simple result reveals that the arrival correlation is positive or negative
depending on var[c] being larger or smaller than E[c].

We have seen in the earlier examples that λ∗
2 was larger than λ2 when the arrival correlation

was positive, and vice versa when it was negative. Let us examine whether this also holds more
generally. More specifically, we examine whether the quantities 
2 � λ∗

2 − λ2 and cov[a1, a2]
always have the same sign. In order to do so, we compute 
2 as


2 � λ∗
2 − λ2 = 1

τ1

∂A

∂ y
(τ1, 1) − (1 − α)C ′(1) = 1 − α

τ1
[C ′(1 − α + ατ1) − τ1C

′(1)],

where we have used (47) and (55). From its definition, it follows that τ1 satisfies the equation
τ1 = C(1 − α + ατ1), and, therefore


2 = 1 − α

τ1
[C ′(1 − α + ατ1) − C(1 − α + ατ1)C

′(1)] = 1 − α

τ1
D(1 − α + ατ1), (108)

where D(z) � C ′(z)−C ′(1)C(z).We now introduce the power series expansions of the functions
C(z) and C ′(z) about z = 1:

C(z) = 1 +
∞∑

n=1

C (n)(1)
(z − 1)n

n! , C ′(z) = C ′(1) +
∞∑

n=1

C (n+1)(1)
(z − 1)n

n! , (109)

where C (n)(z) denotes the nth derivative of the function C(z). Using (109), we get D(z) as

D(z) =
∞∑

n=1

[C (n+1)(1) − C ′(1)C (n)(1)] (z − 1)n

n! .
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Inserting this result in (108), we obtain a useful expression for 
2:


2 = 1

τ1

∞∑

n=1

ωn[a1, a2] (τ1 − 1)n

n! = τ1 − 1

τ1
cov[a1, a2] + 1

τ1

∞∑

n=2

ωn[a1, a2] (τ1 − 1)n

n! ,

(110)

where the quantities ωn[a1, a2] are, in fact, higher-order covariances of the arrival process, i.e.,

ωn[a1, a2] � αn(1 − α)[C (n+1)(1) − C ′(1)C (n)(1)] = cov

⎡

⎣
n−1∏

j=0

(a1 − j), a2

⎤

⎦ .

Expression (110) reveals that, indeed, there is a relationship between the quantities 
2 and
cov[a1, a2], but cov[a1, a2] does not completely determine 
2. It turns out that the higher-order
covariances ωn[a1, a2], n ≥ 2, of the arrival process are also important. This implies that arrival
distributionsmay exist for which
2 and cov[a1, a2] do not have the same sign.We have searched
for an example, and, indeed, found one. Specifically, consider the case where the total number
of arrivals per slot is either zero or two, i.e., the global arrival pgf C(z) takes the form

C(z) = 1 − μ

2
+ μ

2
z2, C ′(1) = μ < 2.

In this case, the dominant pole τ1, solution of the equation τ1 = C(1 − α + ατ1), is given by

τ1 = 1 + 2(1 − μα)

μα2 ,

and the ωns are

ω1[a1, a2] = α(1 − α)μ(1 − μ), ω2[a1, a2] = −μ2, ωn[a1, a2] = 0, n > 2.

According to (110), 
2 is equal to


2 = τ1 − 1

τ1
cov[a1, a2] + 1

τ1
ω2[a1, a2] (τ1 − 1)2

2! = μ(1 − α)2
1 − τ1

τ1
< 0.

We thus have the situation that 
2 is clearly negative for all possible values of the system
parameters, whereas the arrival covariance

cov[a1, a2] = ω1[a1, a2] = α(1 − α)μ(1 − μ),

can be either positive or negative, depending on μ being smaller or larger than one. So, in this
particular example, the arrival covariance only predicts the behavior of the asymptotic system
well in case the overall mean arrival rate μ is big enough. Whether this conclusion can be
generalized to other global arrival distributions is not clear.

The main conclusion from Sect. 6 seems to be that the arrival covariance cov[a1, a2] is indeed
related to the performance difference of queue 2 in a comparison between the original system
and the asymptotic system, but does not simply predict it. The intuition that it should do so is
thus not always correct.
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7 Conclusions and further research

In this paper, we have considered a system of two parallel (coupled) discrete-time single-server
queueswith general independent arrivals per slot, butwith possible intra-slot dependence between
the arrival streams into both queues. To explicitly derive the joint steady-state pgf U (z1, z2) of
the system contents in queues 1 and 2 for a general joint arrival pgf A(x, y) is extremely hard
for this system. Only for some classes of arrival pgfs, such explicit solutions are known (Bruneel
[7]); we have provided two examples in Sect. 5, i.e., the cases of identical arrivals (Sect. 5.1)
and global shifted-geometric arrivals (Sect. 5.2.2). We have therefore focused on the derivation
of the performance of queue 2 under the condition that the system content u1 in queue 1 is
very large. We have shown that, under this condition, queue 2 behaves as a regular discrete-time
single-server queue with independent arrivals from slot to slot, but with a modified pgf (i.e.,
A∗
2(z) instead of A2(z)) for the number of arrivals per slot. Moreover, this is true for any choice

of the joint pgf A(x, y), i.e., even in cases where an explicit solution forU (z1, z2) is not known,
and we have derived a simple formula to deduct A∗

2(z) from the original A(x, y). Using this
fundamental result, we were able not only to determine the stability condition but also to derive
all the usual performance characteristics of queue 2, such as the pgf U∗

2 (z), the mean value
E[u2|u1 → ∞] (or any higher-order moment), and a very accurate approximation for the tail
distribution of the system content of queue 2, in the so-called “asymptotic system”. Moreover,
we could also derive closed-form approximative expressions for the joint tail distribution of the
system contents (u1, u2) in the two queues in the original system. These approximations, too,
are very accurate, especially when we combine the two dual formulas (one for the condition
u1 → ∞ and one for the condition u2 → ∞) that are obtained with our approach in some cases.
Whether this concept can be further generalized could be subject of further research.

We have then applied our theoretical results to a number of specific choices of the arrival pgf
A(x, y), especially for the setting where one global arrival stream into the two-queue system
is split probabilistically into two substreams, each entering one of the two individual queues.
This application gave rise to a large number of explicit closed-form formulas for the main
performance metrics of queue 2 in the asymptotic system, which could then be compared with
their counterparts in the original unconditioned system. A serious attempt wasmade to intuitively
explain the observed differences, based on the intra-slot correlation (or covariance) in the arrival
streams, but it turned out that this was not always possible.

For some choices of A(x, y), where the explicit solution for U (z1, z2) or approximative
closed-form expressions for the joint tail distribution of (u1, u2) have been reported earlier in the
literature, we have verified that our solution technique gives rise to the same results. However,
our technique is applicable for any A(x, y) and can thus generate new - partial - results for
arrival processes that were, until now, not amenable to exact solution. In particular, we hope that
the dominant-pole approximation formulas that can be derived with our technique for the joint
tail distribution of (u1, u2) may, in some cases, be helpful in determining more (or even all)
singularities of the joint pgf U (z1, z2), both with respect to the variable z1 and the variable z2.
The results in Sect. 5.2.3 with respect to global binomial arrivals point in that direction. This too
could be a topic of future work.
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Appendix A: Dominant pole of Ui(z)

If Ai (z) is “well-behaved” with radius of convergence �i > 1, such that limz→�i Ai (z) = +∞,
then z−Ai (z) has exactly one real positive zero, say τi , with 1 < τi < �i , which hasmultiplicity
1; z−Ai (z) has no other zeroes outside the unit disk in the complex z-plane withmodulus smaller
than τi , and A′

i (τi ) > 1.

Proof Note that we may exclude the case where Ai (z) is a linear function of z, because in such
a case there is at most one arrival in each slot and no queue builds up, i.e., this case is not of
interest in the current context where very large values of the system content are considered. So,
either Ai (z) is a nonlinear entire function, analytic in the whole complex plane, i.e., the radius
of convergence �i = +∞, and then Ai (z) grows faster than linearly as |z| → ∞, or Ai (z) has
a finite radius of convergence �i > 1.

Let us consider the function h(z) � z− Ai (z) for real values of its argument z, as graphically
illustrated in Fig. 7. Because h(1) = 0 and h′(1) = 1−λi > 0 (in view of the stability condition
(4)), h(z) is positive in some real interval to the right of the value z = 1. Taking into account
that limz→�i Ai (z) = +∞, it then follows that limz→�i h(z) = −∞, both when �i is finite or
infinite. Since h(z) is a continuous function of z, there exist a τi ∈]1, �i [ such that h(τi ) = 0.
Obviously, the slope of the curve h(z) is negative at z = τi , where h(z) goes from positive to
negative values, i.e.,

h′(τi ) < 0 ⇔ A′
i (τi ) > 1.

Recall that Ai (z) is a pgf and hence a power series with non-negative coefficients. In particular,
A′′
i (z) > 0 for positive real z ∈]τi , �i [. It follows that h′′(z) < 0, i.e., h′(z) decreases, for positive

real z ∈]τi , �i [, and, thus, since h′(τi ) < 0, the slope h′(z) remains negative for z ∈]τi , �i [ and,
since h(τi ) = 0, the function h(z) does the same. We can thus conclude that τi is the only zero
of h(z) in the real interval ]1, �i [, i.e., h(z) has no real zeroes in ]1, τi [. By an application of
Rouché’s theorem (see, e.g., [8]) on the circle {|z| = τi } in the complex z-plane, it can be shown
that h(z) only has one single zero in the open complex disk {|z| < τi }, i.e., the real zero z = 1;
hence, h(z) has no complex zeroes outside the unit disk either with a modulus smaller than τi .
This concludes the proof. �

z (real)

h(z)

1 τi0

Fig. 7 The function h(z) � z − Ai (z) versus z, for real values of z
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Appendix B: Explicit computation of U(z1, z2) in case of global shifted
geometric arrivals

In this case, the joint arrival pgf A(z1, z2) is given by Eq. (72), i.e.,

A(z1, z2) = αz1 + (1 − α)z2
μ − (μ − 1)αz1 − (μ − 1)(1 − α)z2

= τ1τ2[αz1 + (1 − α)z2]
τ1τ2 − ατ1(z2 − 1) − (1 − α)τ2(z1 − 1)

,

(111)

where we have introduced the dominant poles τ1 and τ2, given in Eq. (75), in the expression.
The unknown joint pgf U (z1, z2) is the “solution” of the functional Eq. (8), i.e.,

K (z1, z2)U (z1, z2) = A(z1, z2)L(z1, z2), (112)

where the kernel K (z1, z2) is defined as

K (z1, z2) � z1z2 − A(z1, z2) = ατ1z1(z2 − 1)(τ2 − z2) + (1 − α)τ2z2(z1 − 1)(τ1 − z1)

τ1τ2 − ατ1(z2 − 1) − (1 − α)τ2(z1 − 1)
,

(113)

and L(z1, z2) is an unknown function, defined as

L(z1, z2) � (z2 − 1)U (z1, 0) + (z1 − 1)U (0, z2) + (z1 − 1)(z2 − 1)U (0, 0). (114)

As discussed in Sect. 4.1, the radius of convergence of the marginal pgf Ui (z) is given by τi ,
defined in (13). This means that

|Ui (z)| = ∣∣
∞∑

n=0

Prob[ui = n] zn
∣∣ < ∞ ⇔ |z| < τi .

Now, the joint pgf U (z1, z2) can be expressed as

U (z1, z2) =
∞∑

i=0

∞∑

j=0

Prob[u1 = i, u2 = j] zi1z
j
2 .

Hence, if |z2| ≤ 1, we have

|U (z1, z2)| ≤
∞∑

i=0

∞∑

j=0

Prob[u1 = i, u2 = j] |zi1||z j2 | ≤
∞∑

i=0

∞∑

j=0

Prob[u1 = i, u2 = j] |z1|i

=
∞∑

i=0

Prob[u1 = i] |z1|i = U1(|z1|) < ∞, if |z1| < τ1. (115)

For reasons of symmetry, we can similarly prove that

|U (z1, z2)| < ∞, if |z1| ≤ 1, |z2| < τ2. (116)
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From (115) and (116),we conclude that the area of convergence of the joint pgfU (z1, z2) contains
at least the region

� � {(z1, z2) : |z1| < τ1, |z2| ≤ 1} ∪ {(z1, z2) : |z1| ≤ 1, |z2| < τ2}. (117)

Now suppose that (z1, z2) ∈ � is a zero-tuple of the kernel K (z1, z2), i.e., K (z1, z2) = 0, then,
since |U (z1, z2)| < ∞, Eq. (112) implies that L(z1, z2) = 0, or, equivalently,

U (z1, 0)

z1 − 1
+ U (0, z2)

z2 − 1
+U (0, 0) = 0. (118)

Further, assume that, for some value of z2, both (ẑ1, z2) ∈ � and (z̃1, z2) ∈ � are zero-tuples of
K (z1, z2). We then refer to ẑ1 and z̃1 as “connected” z1-values. It then follows from (118) that,
at the same time,

U (ẑ1, 0)

ẑ1 − 1
+ U (0, z2)

z2 − 1
+U (0, 0) = 0 and

U (z̃1, 0)

z̃1 − 1
+ U (0, z2)

z2 − 1
+U (0, 0) = 0,

so that

U (ẑ1, 0)

ẑ1 − 1
= U (z̃1, 0)

z̃1 − 1
. (119)

We now show that, in this particular case, such connected z1-values can indeed be found.
Specifically, we choose two z1-values on a circle with center in the origin and radius

√
τ1 in the

complex z1-plane as follows:

ẑ1 = √
τ1e

ıθ and z̃1 = √
τ1e

−ıθ .

Here ı denotes the imaginary unit, i.e., ı2 = −1. From (113), it is clear that the equation
K (z1, z2) = 0 is equivalent to

ατ1(z2 − 1)(τ2 − z2) + (1 − α)τ2z2(z1 − 1)(
τ1

z1
− 1) = 0.

If we substitute z1 in the above equation for either ẑ1 or z̃1, we obtain the same equation in both
cases:

f (z2) � ατ1(z2 − 1)(τ2 − z2) + (1 − α)τ2z2(
√

τ1e
ıθ − 1)(

√
τ1e

−ıθ − 1) = 0.

The above equation is a quadratic equation in the variable z2. It thus has two solutions for z2.
We now show that one of these solutions, say z2(θ), is real and lies in the interval [0, 1]. Indeed,
for z2 = 0, we have

f (0) = −ατ1τ2 < 0,

whereas for z2 = 1, we get

f (1) = (1 − α)τ2(τ1 − 2
√

τ1 cos θ + 1) ≥ (1 − α)τ2(τ1 − 2
√

τ1 + 1)

= (1 − α)τ2(
√

τ1 − 1)2 > 0.
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Hence, the polynomial f (z) (a continuous function) goes from negative to positive between
z2 = 0 and z2 = 1. Therefore, it has a zero, z2(θ) ∈ [0, 1]. As |ẑ1| = |z̃1| = √

τ1 < τ1 and
|z2(θ)| ≤ 1, we have thus shown that ẑ1 and z̃1 are connected z1-values and, hence, (119) is
valid. As |eıθ | = 1 and e−ıθ = 1

eıθ
, this can be written as

(
√

τ1z
−1 − 1)U (

√
τ1z, 0) = (

√
τ1z − 1)U (

√
τ1z

−1, 0), for |z| = 1. (120)

Introducing the series expansion

U (z, 0) =
∞∑

n=0

u(n, 0)zn, where u(n, 0) � Prob[u1 = n, u2 = 0] ,

we can express Eq. (120) as

(
√

τ1z
−1 − 1)

∞∑

n=0

u(n, 0)(
√

τ1)
nzn = (

√
τ1z − 1)

∞∑

n=0

u(n, 0)(
√

τ1)
nz−n, for |z| = 1.

Identifying equal (positive or negative) powers of z on both sides of the above equation leads to

τ1u(2, 0) − u(1, 0) = u(0, 0), τ1u(n + 1, 0) − u(n, 0) = 0, n ≥ 2.

We note that u(0, 0) = U (0, 0) = 0 in this particular model, because the total number of arrivals
during a slot into the system is always at least equal to 1 and, hence, the two-queue system can
never be completely empty at the beginning of a slot. It thus follows that

τ1u(n + 1, 0) − u(n, 0) = 0, n ≥ 1,

and, from this,

u(n, 0) = (τ1)
−(n−1)u(1, 0),

and, hence,

U (z, 0) =
∞∑

n=1

(τ1)
−(n−1)u(1, 0)zn = u(1, 0)z

∞∑

n=1

(
z

τ1

)n−1

= u(1, 0)τ1z

τ1 − z
. (121)

The remaining unknown u(1, 0) can be computed from the known equality

U (1, 0) � U2(0) = 1 − λ2 = 1 − μ(1 − α),

where U2(z) and λ2 were derived from (73) and (56). Choosing z = 1 in (121), we easily get

u(1, 0) = τ1 − 1

τ1
U (1, 0),

so that

U (z, 0) = [1 − μ(1 − α)] (τ1 − 1)z

τ1 − z
. (122)
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Using a completely symmetric approach, we can also prove that

U (0, z) = [1 − μα] (τ2 − 1)z

τ2 − z
. (123)

This concludes the hardest part of our analysis, i.e., the explicit computation of the boundary
functionsU (z, 0) andU (0, z). Using (122) and (123) in (114) and keeping inmind thatU (0, 0) =
0, we then get

L(z1,z2) � (z2 − 1)U (z1, 0) + (z1 − 1)U (0, z2)

= (τ1 − 1)(τ2 − 1)

τ1τ2(τ1 − z1)(τ2 − z2)
[ατ1z1(z2 − 1)(τ2 − z2) + (1 − α)τ2z2(z1 − 1)(τ1 − z1)].

(124)

The resemblance between the numerators of K (z1, z2) (Eq. (113)) and L(z1, z2) (Eq. (124)) is
striking. Combining these formulas and the known expression (111) for A(z1, z2), we can now
derive an explicit expression for the joint pgf U (z1, z2) of the two system contents from the
functional Eq. (112):

U (z1, z2) = A(z1, z2)L(z1, z2)

K (z1, z2)
= (τ1 − 1)(τ2 − 1)[αz1 + (1 − α)z2]

(τ1 − z1)(τ2 − z2))
.
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