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Abstract
In this paper, we consider the occupancy distribution for an open network of infinite
server queues with multivariate batch arrivals following a non-homogeneous Poisson
process, and general service time distributions. We derive a probability generating
function for the transient occupancy distribution of the network and prove that it is
necessary and sufficient for ergodicity that the expected occupancy time for each batch
be finite. Further, we recover recurrence relations for the transient probability mass
function formulated in terms of a distribution obtained by compounding the batch size
with a multinomial distribution.

Keywords Infinite server queue · Open network · Multivariate batch arrivals

1 Introduction

Infinite server queues with Poisson batch arrivals—denoted MX
t /G/∞ queues in

Kendall’s notation—have elicited significant research attention, from the canonical
work of [2, 20, 22] in the 1960s, to studies by Liu and Templeton [3, 13] and the recent
treatise of [6]. The independence between customers within the queue—termed the
‘non-interacting property’ by [13]—allows for an analytic characterisation of the num-
bers of busy servers and departures, typically in the form of a probability generating
function (PGF) [2, 3, 6].

A natural generalisation is an open network of infinite server queues, withmultivari-
ate batch arrivals following a non-homogeneous Poisson process and general service
time distributions.With customers arriving one at a time, networks ofMt/G/∞ queues
have been studied by refs [7, 9, 14], amongst others. In contrast, networks with mul-
tivariate batch arrivals have received comparatively little attention. Models have been
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proposed for specific applications such as private-line telecommunication services [15]
and malarial relapses [16], while stochastic fluid networks have been shown to arise
as scaling limits of appropriate batch-arrival infinite server queueing networks [10].
To the best of our knowledge, results for more general networks of ·/G/∞ queues
with multivariate batch arrivals are yet to appear in the literature.

Here, we analyse the occupancy distribution in a network of infinite server queues,
with multivariate batches arriving according to a non-homogeneous Poisson process.
Our model assumptions are set out in Sect. 2. We derive the PGF for the transient
queue length distribution in Theorem 3.1, extending the construction we adopted in
[16]; similar arguments have been presented previously by [2, 3, 7] and others.

While infinite server queues with single arrivals are necessarily stable when the
expected service time is finite, the queue length Markov chain can be transient or null-
recurrent when batch arrivals are permitted. Stability conditions for the MX/G/∞
queue, accommodating heterogenous customers within each batch, have been charac-
terised by [5].When service times are exponential, [30] have shown that it is necessary
and sufficient for an infinite server queue with a batch Markovian arrival process to be
stable that the batch size distribution has a bounded logarithmicmoment. For networks
with multivariate batch arrivals, we extend these results in Sect. 4 to show that a nec-
essary and sufficient condition for ergodicity is that the expected occupancy time for
each batch be finite (Theorem 4.1). When the customer occupancy time distributions
have exponential tails, this is equivalent to the logarithmic moment condition of [5,
30] (Corollaries 4.1.2 and 4.1.3).

We recover recurrence relations for the probability mass function (PMF) of the
time-dependent queue length distribution, formulated with respect to the PMF of the
batch size compounded with a multinomial distribution in Theorem 5.1. The utility
of these formulae is constrained by the underlying compound distribution. In the con-
text of the MX/G/∞ queue, [27–29] found that for distributions within ‘Sundt and
Jewell’s family’—encompassing the binomial, Poisson, logarithmic, geometric and
negative binomial distributions, and zero-inflated analogues thereof [26]—the recur-
rence relations may be computationally tractable. Here, we find that univariate batch
sizes within ‘Sundt and Jewell’s family’ [26] may likewise yield tractable formulae
when the initial queue allocation for each customer is independent and identically
distributed (i.i.d.) (Sect. 5.1.1).

2 Model structure

Consider an open network of J infinite server queues, indexed by j = 1, . . . , J , such
that

• Arrivals occur at points T1, T2, . . . of a non-homogeneous Poisson process with
rate λ(t).

• At time point Ti , for j = 1, . . . , J , �i j customers arrive at queue j . The vec-
tors �i = (�i1, . . . , �i J ) are independent vector-valued random variables with
non-negative integer components selected from a multivariate distribution with
probability generating function

123



Queueing Systems (2023) 105:171–187 173

GS(z1, . . . , z J ) := E

[ J∏
j=1

z
S j
j

]
(1)

defined on a subset D ⊆ C J that contains the J -dimensional unit polydisc with
|z j | ≤ 1. Note that the distribution of �i does not depend on i . We use the generic
random variable S to denote a random variable with this distribution.

• The �th customer that enters queue j at time point Ti is marked with a stochastic
process X j

i,�(t)where X
j
i,�(t) = k if the customer will be in queue k at time Ti + t .

For each i and � = 1, . . . , �i j , the X j
i,�(t) are selected independently with a law

such that P(X j
i,�(t) = k) = q j

k (t).

Under this model, the routes of customers through the network (that is, the sequence of
visited nodes and associated service times) are mutually independent and identically
distributed, conditional on the node of entry. This ‘non-interacting property’ [13]
enables explicit analysis. Here, we focus on the number of customers in the network
at time t , denoted by the random vector N(t) = (N1(t), . . . , NJ (t)).

Remark 2.1 We make no assumptions on the probability q j
k (t), barring the constraint

that it is non-negative and
∑

k q
j
k (t) ≤ 1 is a monotonically decreasing function

of t . A common example may be where each customer follows a continuous time
Markov chain with transition rate matrix Q through a set of compartments, in which
case q j

k (t) is the ( j, k)th entry of the matrix exponential eQt (see, for example, the

model of hypnozoite dynamics in [16]). However, the quantity q j
k (t) could be more

complicated, with a customer staying in each node for arbitrary service times that may
be correlated; we require the independence of customer paths, but not along customer
paths. In generality, a straightforward expression forq j

k (t)maynot be readily available.

For notational convenience, we introduce the random vector Ci (t) =
(Ci,1(t), . . . ,Ci,J (t)), with

Ci,k(t) =
J∑

j=1

�i j∑
�=1

1{X j
i,�(t) = k} (2)

giving the number of customers from the i th batch that are in queue k at time Ti + t .
It follows from our assumptions above that the distribution of Ci (t) is independent of
i and we denote by C(t) a generic random variable with this distribution.

3 The transient queue length distribution

We first characterise the time-dependent PGF for the state of the network, generalis-
ing the construction of [16] (which was used to analyse an open network of infinite
server queues tailored to within-host superinfection and hypnozoite dynamics for
Plasmodium vivax malaria).
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Theorem 3.1 (Multivariate PGF) For z = (z1, . . . , z J ) ∈ D

φt (z) := E

[ J∏
k=1

z
N j (t)
j

]

= exp

{
−

∫ t

0
λ(τ)

[
1 − GS

(
1 +

J∑
k=1

(zk − 1)q1k (t − τ), . . . , 1 +
J∑

k=1

(zk − 1)q J
k (t − τ)

)]
dτ

}
. (3)

Proof We use similar reasoning to [16]. In short, we condition on the multivariate
batch size, and the sequence of arrival times. For related systems, similar proofs have
been previously presented by others, including [2, 3, 7].

Webegin by deriving the PGF for the generic randomvectorC(t) described inEqua-
tion (2). Since X j

i,�(t) are independent random variables taking values in {1, . . . , J },
the number of customers originating in queue j that are in queue k at time Ti + t
has a multinomial distribution with parameters q j

k (t). Therefore, conditional on a
multivariate batch of size �i1 = n1, . . . , �i J = nJ ,

E

[ J∏
k=1

zCk (t)
k

∣∣∣�i1 = n1, . . . , �i J = nJ

]

=
J∏

j=1

(
1 +

J∑
k=1

(zk − 1)q j
k (t)

)nk
.

By the law of total expectation, it follows that

E

[ J∏
k=1

zCk (t)
k

]
=

∞∑
n1=0

· · ·
∞∑

nJ=0

P(�i1 = n1, . . . , �i J = nJ )

× E

[ J∏
k=1

zCk (t)
k

∣∣∣�i1 = n1, . . . , �i J = nJ

]

= GS

(
1 +

J∑
k=1

(zk − 1)q1k (t), . . . , 1 +
J∑

k=1

(zk − 1)q J
k (t)

)
. (4)

Equation (4) is the PGF for the occupancy of the network time t after the arrival of a
single batch.

Under the assumption that arrivals follow a non-homogeneous Poisson process, the
number of arrivals M(t) in the interval [0, t)

M(t) ∼ Poisson(�(t))

where

�(t) =
∫ t

0
λ(τ)dτ.
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Following [7], conditional on the event {M(t) = m}, the distribution of T1, . . . , Tm
is the same as the distribution of the order statistics of m i.i.d. variables with density

f (τ ) = λ(τ)

�(t)
1{τ∈[0,t)}.

Therefore, given M(t) = m arrivals in the interval [0, t), we can apply the law of
total probability over the arrival times T1, . . . , Tm to yield the conditional PGF

E

[ J∏
k=1

zNk (t)
k

∣∣∣M(t) = m

]
=

( ∫ t

0

λ(τ)

�(t)
· E

[ J∏
k=1

zCk (t−τ)
k

]
dτ

)m

.

Using the law of total expectation, we thus deduce

E

[ J∏
j=1

z
N j (t)
j

]
=

∞∑
m=0

E

[ J∏
j=1

z
N j (t)
j

∣∣∣M(t) = m

]
· P(M(t) = m)

= exp

{
−

∫ t

0
λ(τ)

(
1 − E

[ J∏
j=1

z
C j (t−τ)

j

])
dτ

}
. (5)

Substituting Eq. (4) into Eq. (5) yields expression (3). ��

4 Necessary and sufficient conditions for ergodicity

Here, we characterise the stability, that is, ergodicity, of the network, assuming a
homogeneous arrival rate λ(t) = λ. For M/G/∞ queues, a necessary and sufficient
condition for ergodicity is that the occupation time distribution has finite expectation.
The analogous constraint in this setting is that at least one customer from each batch
will be present somewhere in the network for a time W that has finite expectation.

A customer who arrives to queue j at time T has left the network before time T + t
with probability

1 − Q j (t) = 1 −
J∑

k=1

q j
k (t).

The expected time that at least one customer from a batch is present in the network
can then be written

E[W ] =
∞∑

n1=0

· · ·
∞∑

nJ=0

P(S = (n1, . . . , nJ )) ·
∫ ∞

0

(
1 −

J∏
j=1

[
1 − Q j (t)

]n j

)
dτ

=
∫ ∞

0

[
1 − GS

(
1 − Q1(τ ), . . . , 1 − QJ (τ )

)]
dτ. (6)

123



176 Queueing Systems (2023) 105:171–187

where we have used Tonelli’s theorem to swap the order of summation and integration;
and noted that the resultant integrand can be written as a sum of two absolutely
convergent series. This expression is central to the ergodicity of the network.

Theorem 4.1 The network is ergodic if and only if E[W ] < ∞
Proof Let � ∈ C J denote the open J -dimensional polydisc with |z j | < 1 for each
j ∈ {1, . . . , J }. By the dominated convergence theorem, for all z ∈ �,

lim
t→∞E

[ J∏
k=1

z
N j (t)
k

]
= E

[ J∏
k=1

z
limt→∞ N j (t)
k

]

since P(N(t) = n) ≤ 1 for all n ∈ ZJ , t ≥ 0.
Observe that the transient PGF φt (z) for N(t) defines a family of functions {φt }t≥0

that is both analytic and bounded on �, with |φt (z)| ≤ 1 for all t ≥ 0. By Montel’s
theorem, there exists a subsequence φti which converges uniformly on all compact
subsets K ⊂ � (Theorem 1.7.3 of [11]). It follows from a theorem of Weierstrass
(Theorem1.7.1 of [11]) that limt→∞ φt is analytic on�, with the uniform convergence
of partial derivatives

lim
ti→∞

{
∂v1+···+vn∏n
k=1 ∂zvkk

φti (z)
}

= ∂v1+···+vn∏n
k=1 ∂zvkk

{
lim
t→∞ φt (z)

}

on all compact subsets K ⊂ �. In particular, for all v ∈ ZJ , we note that

lim
ti→∞ P(N(ti ) = v) = ∂v1+···+vn∏n

k=1 ∂zvkk

{
lim
t→∞ φt (z)

}∣∣∣
z=0

.

It is therefore sufficient to consider the infinite time limit of the multivariate PGF
(3)

lim
t→∞ φt (z) = exp

{
− λ

∫ ∞

0

[
1 − GS

(
1 +

J∑
k=1

(zk − 1)q1k (τ ), . . . , 1 +
J∑

k=1

(zk − 1)q J
k (τ )

)]
dτ

}
.

As in [5], it is necessary and sufficient for the limiting function to be a PGF that the
multivariate limit

lim
zk↑1, k∈{1,...,J }

{
lim
t→∞ φt (z)

}
= 1,

where (z1, . . . , z J ) → (1, . . . , 1) along any path through �. Since the generating
function is analytic inside �, this is equivalent to the condition

lim
z↑1

∫ ∞

0

[
1 − GS

(
1 + (z − 1)Q1(τ ), . . . , 1 + (z − 1)QJ (τ )

)]
dτ

}
= 0. (7)

For notational convenience, we denote the integrand

H(z, τ ) := 1 − GS
(
1 + (z − 1)Q1(τ ), . . . , 1 + (z − 1)QJ (τ )

)
,
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and observe from Eq. (6) that

E[W ] =
∫ ∞

0
H(0, τ )dτ.

Since GS is a multivariate PGF, for fixed τ , H(z, τ ) is a decreasing function of z
in the domain [0, 1]. In particular, for each τ ≥ 0 we have pointwise convergence
H(z, τ ) → 0 as z → 1, with |H(z, τ )| ≤ H(0, τ ). Suppose E[W ] < ∞. Then by
the dominated convergence theorem,

lim
z↑1

∫ ∞

0
H(z, τ )dτ =

∫ ∞

0
lim
z↑1 H(z, τ )dτ = 0.

We thus see that E[W ] < ∞ is a sufficient condition for Eq. (7) to hold.
Now, suppose that the network is ergodic. Then the limiting probability of the queue

being empty can be written

lim
t→∞ P(N(t) = 0) = e−λE[W ] > 0,

which necessarily implies E[W ] < ∞. ��
In direct analogy to Lemma 1 of [5], under the constraint that the time spent in

the network by each customer has finite expectation—which is necessary for batch
occupancy time to havefinite expectation, that is,E[W ] < ∞—we recover a sufficient
condition for ergodicity.

Corollary 4.1.1 Suppose the network occupation time distributions Q j (t) have finite
expectation. Then the network is ergodic if E[S1 + · · · + SJ ] < ∞.

Proof Similarly to [5], we observe that

1 −
J∏

j=1

[1 − Q j (τ )]n j ≤
J∑

j=1

n j Q j (τ ).

Therefore, from Eq. (6), it follows that

E[W ] ≤
∞∑

n1=0

· · ·
∞∑

nJ=0

P(S = (n1, . . . , nJ ))

∫ ∞

0

J∑
j=1

n j Q j (τ )dτ

=
J∑

j=1

E[S j ] ·
∫ ∞

0
Q j (τ )dτ.

A finite expected network occupation time for each customer
∫ ∞
0 Q j (τ )dτ < ∞

and a finite mean batch size E[S j ] < ∞ for each j ∈ {1, . . . , J } is thus a sufficient
condition for E[W ] < ∞ and, by Theorem 4.1, the ergodicity of the network. ��
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For MX/M/∞ queues, [5, 30] have shown that a necessary and sufficient condition
for stability is the batch size S has a finite logarithmic moment, that is,

E[log(S + 1)] < ∞.

Given an exponential service time of mean duration μ per customer, the expected
occupancy time for a batch can written

E[W ] =
∞∑
j=1

P(S = j)
j∑

k=1

1

μk
.

Since

n∑
j=1

1

j
− log(n + 1) → γe as n → ∞ (8)

where γe denotes the Euler–Mascheroni constant [25], in the case of the MX/M/∞
queue

E[log(S + 1)] < ∞ ⇐⇒ E[W ] < ∞.

We can generalise this observation to recover a sufficient condition for ergodicity
when the network occupancy time distributions Q j (t) have exponentially-bounded
tails, that is, there exists δ > 0, t0 > 0 such that

Q j (τ ) ≤ e−δτ for all τ ≥ t0 and j ∈ {1, . . . , J }.

Corollary 4.1.2 Suppose the occupancy time distributions Q j (t) have exponentially
bounded tails. Then the network is ergodic if E[log(S1 + · · · + SJ + 1)] < ∞.

Proof By assumption, there exist δ > 0, t0 > 0 such that

0 < GS
(
1 − e−δτ , . . . , 1 − e−δτ

)
≤ GS

(
1 − Q1(τ ), . . . , 1 − QJ (τ )

) ≤ 1 for all τ ≥ t0

since GS is a generating function. Equation (6) then yields the bound

E[W ] ≤ t0 +
∫ ∞

t0

[
1 − GS

(
1 − e−δτ , . . . , 1 − e−δτ

)]
dτ.

Setting S = S1 + · · · + SJ , we observe that

GS
(
1 − e−δτ , . . . , 1 − e−δτ

) =
∞∑
n=0

P(S = n)(1 − e−δτ )n .
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Therefore, a sufficient condition for E[W ] < ∞—and, by Theorem 4.1, the
ergodicity of the network—is that

Y :=
∫ ∞

0

∞∑
n=0

P(S = n)
[
1 − (1 − e−δτ )n

]
dτ < ∞.

Using the binomial expansion and identity 0.155.4 of [8], we compute.

Y =
∞∑
n=1

P(S = n)

n∑
k=1

(
n

k

)
(−1)k+1

δk
=

∞∑
n=1

P(S = n)

n∑
k=1

1

δk
,

so from Eq. (8) [25]

Y < ∞ ⇐⇒ E[log(S + 1)] < ∞.

Therefore, E[log(S + 1)] < ∞ is a sufficient condition for the ergodicity of the
network. ��

ForMarkovian queueing networks, where the time spent by a customer is each node
is exponentially-distributed, we can strengthen Corollary 4.1.2 to recover a necessary
and sufficient condition for ergodicity.

Corollary 4.1.3 For each j ∈ {1, . . . , J }, suppose there exists δ j > 0 such that
Q j (t) = �(e−δ j τ ) in the limit τ → ∞. Then the network is ergodic if and only
if E[log(S1 + · · · + SJ + 1)] < ∞.

Proof Sufficiency follows directly from Corollary 4.1.2. By assumption, there exists
η > δ j and t0 > 0 such that

Q j (τ ) ≥ e−ητ for all τ ≥ t0 and j ∈ {1, . . . , J }.

Set S = S1 + · · · + SJ . Adopting much the same reasoning as the proof of Corollary
4.1.2, we obtain a lower bound for the expected batch occupancy time

E[W ] + t0 ≥
∫ ∞

0

[
1 − GS

(
1 − e−ητ , . . . , 1 − e−ητ

)]
dτ =

∞∑
n=1

P(S = n)

n∑
k=1

1

ηk
.

From Eq.(8) [25], we observe that

E[log(S + 1)] = ∞ �⇒
∞∑
n=1

P(S = n)

n∑
k=1

1

ηk
= ∞

�⇒ E[W ] = ∞,

so by Theorem 4.1, E[log(S + 1)] < ∞ is a necessary condition for ergodicity. ��
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In a similar vein, we can recover a sufficient condition for ergodicity in the case of
fat-tailed customer occupancy time distributions.

Corollary 4.1.4 Suppose there exists α > 1 and t0 > 0 such that Q j (t) ≤ t−α for all
j ∈ {1, . . . , J } and t ≥ t0. Then the network is ergodic ifE[(S1+· · ·+ SJ )1/α] < ∞.

Proof Using similar reasoning to Corollary 4.1.2, we obtain the lower bound

E[W ] ≤ t0 +
∫ ∞

t0

∞∑
n=0

P(S = n)
[
1 − (1 − τ−α)n

]
dτ.

Performing a change of variables u = 1 − τ−α , we find that the condition

Z :=
∞∑
n=0

P(S = n)

∫ 1

0

[ n−1∑
i=0

(1 − u)−
1
α ui

]
du < ∞ (9)

is sufficient to ensureE[W ] < ∞, where the interchanging of the order of summation
and integration is justified by Tonelli’s theorem. Using the integral representation of
the beta function and identity 8.384.1 of [8], we compute

∫ 1

0

[ n−1∑
i=0

(1 − u)−1/αui
]
du =

n−1∑
k=0

B
(
1 − 1

α
, k + 1

)

= �
(
1 − 1

α

) n−1∑
k=0

�(k + 1)

�
(
k + 2 − 1

α

) . (10)

SubstitutingEq. (10) in (9) and interchanging theorder of summation (which is justified
by Tonelli’s theorem) yields

Z = �
(
1 − 1

α

) ∞∑
k=0

�(k + 1)

�
(
k + 2 − 1

α

) P(S ≥ k + 1).

By identity 6.1.46 of [1]

�(k + 1)

�
(
k + 2 − 1

α

) ∼ k
1
α
−1 in the limit k → ∞.

Therefore,

Z < ∞ ⇐⇒
∞∑
k=1

k
1
α
−1P(S ≥ k + 1) =

∞∑
n=2

P(S = n)

n−1∑
k=1

k
1
α
−1 < ∞
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where we have interchanged the order of summation. Noting that

n∑
k=1

k
1
α
−1 ∼ 1

α
n

1
α in the limit n → ∞

(identity 0.121 of [8]), we further deduce that

E
[
S

1
α
]

< ∞ ⇐⇒
∞∑
n=1

P(S = n)

n∑
k=1

k
1
α
−1 < ∞.

Therefore,E
[
S

1
α

]
< ∞ �⇒ E[W ] < ∞ and the claim follows from Theorem 4.1.

��

5 Recurrence relations for the PMF of the transient occupancy
distribution

For a single batch arrival (MX/G/∞) queue with a homogeneous arrival process,
[27–29] recognised the PGF governing the number of customers at a fixed time t
as that of a compound Poisson distribution. They observed that application of the
Panjer–Adleson recursion scheme [19, 24] yields recurrence relations for the PMF of
the time-dependent queue length distribution, formulated with respect to the PMF of
a distribution obtained by compounding the batch size with a binomial distribution.
Using the transient PGF given by Eq. (3), we can likewise recover a recurrence relation
for the PMF of the time-dependent occupancy distribution, formulated in terms of the
PMF of C(t) (Eq. (2)), using an analogous argument to [19].

Theorem 5.1 (A recurrence relation for the multivariate PMF.)
For v ∈ {2, . . . , J } such that nv ≥ 1,

P
[
N(t) = (n1, . . . , nv, 0, . . . 0)

]

=
n1∑

i1=0

· · ·
nv−1∑

iv−1=0

nv∑
iv=1

[
iv
nv

· P[
N(t) = (n1 − i1, . . . , nv − iv, 0, . . . , 0)

]

·
∫ t

0
λ(τ) · P[

C(t − τ) = (i1, . . . , iv, 0, . . . , 0)
]
dτ

]
. (11)

Proof Following the proof of Theorem 3.1, given that there are M(t) = m arrivals
in the interval [0, t), the PMF for the number of customers in each queue 1, . . . , J at
time t attributable to each arrival event is i.i.d. with PMF

f (i1, . . . , i J ) =
∫ t

0

λ(τ)

�(t)
P

[
C(t − τ) = (i1, . . . , i J )

]
dτ.
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Denote by f (m) the m-fold convolution of f . Then by the law of total probability,
the PMF of N(t) can be written in the form

P
[
N(t) = (n1, . . . , nJ )

] =
∞∑

m=0

e−�(t)�(t)m

m! f (m)(n1, . . . , nJ ). (12)

Now, by symmetry,

n1∑
i1=0

· · ·
nJ∑

i J=0

iv
nv

f (i1, . . . , i J ) · f (m−1)(n1 − i1, . . . , nJ − i J )

= f (m)(n1, . . . , nJ )

m
; (13)

that is, given that the sumofm i.i.d. randomvectors, eachwith PMF f , is (n1, . . . , nJ ),
the conditional mean of the vth element is nv/m (Relation II of [19]).

Using Eqs. (12) and (13), for (n1, . . . , nJ ) �= 0, we obtain the expression

P
[
N(t) = (n1, . . . , nJ )

]

=
n1∑

i1=0

· · ·
nJ∑

i J=0

iv
nv

f (i1, . . . , i j )
∞∑

m=1

e−�(t)�(t)m

(m − 1)! f (m−1)(n1 − i1, . . . , nJ − i J )

=
n1∑

i1=0

· · ·
nJ∑

i J=0

iv
nv

�(t) f (i1, . . . , i j )P
[
N(t) = (n1 − i1, . . . , nJ − i J )

]
(14)

where interchanging the order of summation is justified since the series is absolutely
convergent. Sequential application of Eq. (14) along the lower triangular integer lattice
yields precisely the recurrence relation (11). The expression (11) can also be obtained
by computing partial derivatives of the multivariate PGF (3), using the formulae
provided in [18]. ��

Through an application of Faa di Bruno’s formula, we noted in [16] that the transient
distribution for the MX

t /G/∞ queue can also be formulated in terms of Bell polyno-
mials [4], which yield an analogous recurrence structure. For queueing networks with
multivariate batch arrivals, alternative representations of the transient PMF in terms
of multivariate Bell polynomials [21] can also be recovered.

Likewise, we can derive recurrence relations for the joint factorial moments ofN(t),
formulated with respect to those of C(t).

5.1 Some special cases

The recurrence relations derived in Theorem3.1 are formulated in terms of the PMF for
the distribution ofC(t). The tractability of these formulae are therefore constrained by
the multivariate PMF for C(t). Here, we provide explicit formulae for several special
cases.
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5.1.1 Univariate batch sizes

For MX/G/∞ queues, [27, 28] observed that batch sizes within ‘Sundt and Jewell’s
family of discrete distributions’ [23, 26] may yield tractable formulae. This class of
distributions has a probability mass function that is characterised by a recurrence
relation of the form

P(S = n) = P(S = n − 1) ·
(
a + b

n

)

for fixed a, b and n ≥ 2. It was shown in Theorem 1 of [26] that this class includes
Poisson, negative binomial and logarithmic distributions, and zero-inflated analogues
thereof (that is, mixtures of the relevant distribution and a point mass at zero).

In the context of queueing networks, we restrict our attention to multivariate batch
size distributions S that can be expressed in the form

E

[ J∏
j=1

z
S j
j

]
= GS

( J∑
j=1

p j z j

)

where S is a univariate random variable within Sundt and Jewell’s family [23, 26] and
p j ≥ 0 with

∑
j p j = 1. This corresponds to a univariate batch, with each incom-

ing customer independently assigned an entry point j ∈ {1, . . . , J }. For notational
convenience, we set

qk(t) =
J∑

j=1

p j · q j
k (t)

to be the probability that a customer is situated in queue k time t after their arrival into
the network. In the corollaries below, we state explicit formulae for binomial, Poisson,
negative binomial and logarithmic batch sizes.

Corollary 5.1.1 Suppose S ∼ Binomial(N , α). Then for v ∈ {2, . . . , J } and nv ≥ 1

P
[
N(t) = (n1, . . . , nv, 0, . . . 0)

]

=
n1∑

i1=0

· · ·
nv−1∑

iv−1=0

nv∑
iv=1

[
iv
nv

· P[
N(t) = (n1 − i1, . . . , nv − iv, 0, . . . 0)

] · 1∑v
j=1 i j≤N

·
∫ t

0
λ(τ)

N !(
N − ∑v

k=1 ik
)!

(
1 − α

v∑
k=1

qk(t − τ)
)N−∑v

k=1 ik
v∏

k=1

(αqk(t − τ))ik

ik ! dτ

]
.

Corollary 5.1.2 Suppose S ∼ Poisson(μ). Then for v ∈ {2, . . . , J } and nv ≥ 1

P
[
N(t) = (n1, . . . , nv, 0, . . . 0)

]

=
n1∑

i1=0

· · ·
nv−1∑

iv−1=0

nv∑
iv=1

[
iv
nv

· P[
N(t) = (n1 − i1, . . . , nv − iv, 0, . . . , 0)

]
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·
∫ t

0
λ(τ)

[ v∏
k=1

(qk(t − τ)μ)ik

ik !
]
e−μdτ

]
.

Corollary 5.1.3 Suppose S follows a negative binomial distribution with PGF

G(z) := E
[
zS] = 1[

1 + ν(1 − z)
]r .

Then for v ∈ {2, . . . , J } and nv ≥ 1

P
[
N(t) = (n1, . . . , nv, 0, . . . 0)

]

=
n1∑

i1=0

· · ·
nv−1∑

iv−1=0

nv∑
iv=1

[
iv
nv

· P[
N(t) = (n1 − i1, . . . , nv − iv, 0, . . . 0)

]

·
∫ t

0
λ(τ)

�
(
r + ∑v

k=1 ik
)

�(r)
∏v

k=1 ik !
ν
∑v

k=1 ik[
1 + ν

∑J
k=1 qk(t − τ)

]r+∑v
k=1 ik

v∏
k=1

qk(t − τ)ik dτ

]
.

Corollary 5.1.4 Suppose S ∼ Log(ρ), with PMF

P(S = n) = − 1

log(1 − ρ)

ρk

k
, k ∈ Z+.

Then for v ∈ {2, . . . , J } and nv ≥ 1

P
[
N(t) = (n1, . . . , nv, 0, . . . 0)

]

=
n1∑

i1=0

· · ·
nv−1∑

iv−1=0

nv∑
iv=1

[
iv
nv

· P[
N(t) = (n1 − i1, . . . , nv − iv, 0, . . . 0)

]

·
∫ t

0
−λ(τ)

ρ
∑v

k=1 ik

log(1 − ρ)

( v∏
k=1

qk(t − τ)ik

ik !
) ( − 1 + ∑v

v=1 ik
)![

1 − ρ
(
1 − ∑J

k=1 qk(t − τ)
)]∑v

k=1 ik
dτ

]
.

5.1.2 Constant batch sizes

Suppose S = s is constant. Then C(t − τ) is the sum of independent, but non-
identical categorical random variables, that is,C(t−τ) follows a Poisson multinomial
distribution [12]. Using the exact DFT-CT method proposed by [12], we can recover
the PMF for C(t − τ), which can then be plugged into the recurrence relation (11) to
compute the transient occupancy distribution.

5.1.3 Amodel of superinfection and hypnozoite dynamics for vivax malaria

In [16], we constructed an open network of infinite server queues with exponential
service times to model within-host superinfection and hypnozoite dynamics for Plas-
modium vivax malaria. A schematic of the queueing network, with nodes labelled
{1, . . . , k, NL, A, D,C, P, PC}, is replicated from Figure 3 of [16] below (Fig. 1).
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The batch takes the form of a single arrival into queue P with probability pprim
(representing a primary blood-stage infection) and a geometrically-distributed arrival
into queue 1 (representing the establishment of dormant hypnozoites). Each hypno-
zoite then undergoes a compartmental process, accounting for death (queue D), or
progression through successive latency compartments (queues 2, . . . , k) and subse-
quent activation giving rise to a blood-stage relapse (queue A). We further account
for the clearance of each primary infection (queue P to PC) and relapse (queue A to
C). Analysis of the queueing network allows for the characterisation of quantities of
epidemiological interest, with applications to population-level transmissionmodelling
[17].

6 Conclusion

We have extended results for single infinite-server queues with batch arrivals and
open networks of infinite-server queues with single arrivals to a general network of
infinite server queues with multivariate batch arrivals arriving according to a non-
homogeneous Poisson process. Theorem 3.1 gives an expression for the PGF of the
transient queue length distribution, Theorem 4.1 a necessary and sufficient condition
for ergodicity and Theorem 5.1 a recurrence relation for the multivariate probability
mass function.
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