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Abstract
This paper analyzes various stochastic recursions that arise in queueing and insurance
risk models with a ‘semi-linear’ dependence structure. For example, an interarrival
time depends on the workload, or the capital, immediately after the previous arrival; or
the service time of a customer depends on her waiting time. In each case, we derive and
solve a fixed-point equation for the Laplace–Stieltjes transform of a key performance
measure of the model, like waiting time or ruin time.
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1 Introduction

One of the most fundamental relations in queueing theory is the Lindley recursion,
which is a recursive relation between the waiting times Wi and Wi+1 of the i th and
(i +1)st customers in the single-server queue. With (Bi )i a sequence of service times,
and (Ai )i a sequence of interarrival times, the sequence (Wi )i satisfies

Wi+1 = max(Wi + Bi − Ai , 0), i = 1, 2, . . . . (1)
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One alternatively says that (Wi )i is a randomwalkwith increments (Bi−Ai )i reflected
at zero. The Lindley recursion has been studied in much generality when it comes to
the specific distributional assumptions imposed on the random sequences (Bi )i and
(Ai )i . However, in the vast majority of all papers it is assumed that both sequences
consist of independent and identically distributed (i.i.d.) random variables, that both
sequences are independent, and in addition, that all Ai andBi are independent of all
Wj , for j ≤ i .

The goal of the present paper is to explore a class of stochastic recursions (1)
in which some of the above-mentioned independence assumptions are lifted and for
which, nevertheless, a detailed exact analysis canbeprovided.Belowwebrieflydiscuss
the models under consideration.

• In Sects. 2 and 3, we assume that Ai = c(Wi + Bi ) + Ai , where (Ai )i is an
independent sequence of exponentially distributed random variables (in both sec-
tions some relaxation of the exponentiality assumption is possible) and where
0 < c < 1. We thus model a positive correlation between a customer’s sojourn
time Wi + Bi and the time until the next customer arrives. A possible applica-
tion is a queueing system with a controller: If the workload becomes high after
an arrival, the controller scales down the arrival rate of jobs. Alternatively, this
scaling down could reflect the strategy of the customers; they might be reluctant
to join the queue when the workload is high. The key performance measure under
consideration in Sect. 2 is the steady-state waiting time; its LST (Laplace–Stieltjes
transform) is presented in Theorem 2.1. We also derive an asymptotic expansion
of the probability of zero waiting time, and of the waiting time moments, in the
parameter c = ε ↓ 0 that indicates how close the model is to the classical M/G/1
queue. The key performance measure in Sect. 3 is the time τ(x) until the system
becomes empty, when the initial capital is x . In this section, we also reinterpret
the model as a so-called dual risk model. The dual risk model is used to study
the possible ruin of companies, and accordingly, the time until the queue becomes
empty translates into the time a company gets ruined when its initial capital is x .
The Laplace transform (with respect to that initial capital x) of the ruin time LST
Ee−sτ(x), is derived in Theorem 3.1.

• Section 4 studies the Cramér–Lundberg (CL) insurance risk model. In this model,
generally distributed claims arrive according to a Poisson process, and in between
claims, the capital of the insurance company increases at a fixed premium rate. The
field of insurance risk has much in common with queueing theory; in particular,
the CL model is known to be dual to the M/G/1 queue (cf. Chapter III.2 of [5]).
We consider the following dependency structure in the CL model. The interarrival
time between the i th and (i + 1)st claim depends on the capital y of the insurance
company right after the i th claim, in very much the same way as the interarrival
time depends on the workload in Sects. 2 and 3 (but taking into account that now
jumps are downward and the linear slope is upward): When the capital, right after
the i th claim, equals y, then the next interclaim time Ai = max(0, Ai − cy),
where (Ai )i is an independent sequence of exp(λ) distributed random variables. In
Theorem 4.1, we determine the Laplace transform, with respect to initial capital
x , of the ruin time LST Ee−sτ(x).
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• Finally, in Sect. 5, we turn to the single-server queue in which the service time
of a customer depends, in a somewhat similar way as above, on her waiting time.
We assume thatBi = max(Bi − cWi , 0), where (Bi )i is an independent sequence
of exp(μ) distributed random variables. The negative correlation between waiting
and service time includes the feature of zero service time if the waiting time is too
large. We derive the steady-state waiting time and workload LST (Theorem 5.1).

All the above-sketched models exhibit a ‘semi-linear’ dependence structure, and in all
these models, we arrive at a fixed-point equation for the LST ω(s) of the steady-state
waiting time W , or for the Laplace transform of the ruin time LST, of the following
form:

ω(s) = G(s) ω(ζ(s)) + H(s), (2)

for known functions G(s) and H(s). In the setting of Sect. 2, we have that ζ(s) =
(1 − c)s, while we consider ζ(s) = s + λc in Sect. 4 and ζ(s) = s + μc in Sect. 5.
Such fixed-point equations (and similar ones with nonlinear f (·) functions) also arise
naturally in various branching-type models and related queueing models (like queues
with vacations and polling systems), giving rise to a solution in terms of an infinite
product of known Laplace transforms. In some of our recent work [9–11], we have also
come across similar fixed-point equations in the context of reflected autoregressive
processes and related queueing systems.
Related literature. The stochastic recursion (1) may be handled successfully when
Bi −Ai has a ‘nice’ distribution (whileBi −Ai are independent ofWj for all j ≤ i);
observe that Bi and Ai appear in (1) as a difference. Examples are the papers of
Conolly and Choo [15, 20, 21, 24]. Conolly and Choo [15] study an M/M/1 queue
in which Ai and Bi have a bivariate exponential distribution. For this last model,
Hadidi [20] shows that the waiting times are hyperexponentially distributed, while
Hadidi [21] studies the sensitivity of the waiting time distribution to the value of the
correlation coefficient and Langaris [24] considers the busy period distribution. The
case in which Bi depends on the previous Ai−1 has only been studied in a few cases;
see the queueing studies [8, 13, 14]. For a broad discussion of dependence phenomena
in queueing models of packet networks (dependence between successive interarrival
times, or between successive service times, or between interarrival and service times),
we refer to Fendick et al. [18]. A single-server queue in which the service rate of a
customer with exponential service time distribution depends on her waiting time has
been analyzed in [26]. There it is assumed that the service rate is μ(w) if the waiting
time equals w, and assumes moreover that μ(w) is a step function.

In insurance risk, more than in queueing, attention has been given to models with
various forms of dependence.We refer to Chapter XIII of Asmussen and Albrecher [5]
for an overview and to [3] (generalizing [23]) for a rather general class of Markovian
risk models, in which claim interarrival times and claim sizes have a joint distribution
that depends on the state of some underlying finite Markov chain. A similar queueing
model with a Markov dependence structure was studied by Adan and Kulkarni [2];
see also [14]. A special case of the dependence structure in [3] is an insurance risk
model in which an interarrival time depends on the previous claim size via a threshold
mechanism; the queueing dual of that model was studied in [12]. We finally remark
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that, if one is satisfied with asymptotic results, more general forms of dependence may
be allowed; see, e.g., [6, 22].

2 TheM/G/1 queue with interarrival times dependent on workload

In this section, we study the M/G/1 queue with the special feature that the time
between the arrivals of customers n and n + 1 depends on the workload found by
customer n.More specifically, if theworkload just after the arrival of customer n equals
x ≥ 0, then the next interarrival time equals cx plus an independent, exponentially
distributed time. A brief model description (Sect. 2.1) is followed by an analysis of
the LST of the steady-state workload (Sect. 2.2). Section 2.3 presents an asymptotic
analysis for the case c ↓ 0; of course, in the limiting case of c = 0 the model reduces
to the classical M/G/1 queue.

2.1 Model description

Consider the following variant of the classical M/G/1 queue. If the workload just
after the i th arrival (i.e., the sojourn time) equals x ≥ 0, then the next interarrival time
equals cx (for some c ∈ (0, 1); if c ≥ 1, then all waiting times are zero) increased by
an independent, exponentially distributed term Ai with mean 1/λ. This construction
has the interesting feature that there is a positive correlation between a customer’s
sojourn time and the time until the next customer arrives. The successive service times
constitute a sequence of i.i.d. random variables (Bi )i , which are also independent of
the sequence (Ai )i ; their LST is denoted by β(·).

2.2 Analysis

Let Wi denote the waiting time of the i th arriving customer. It is readily verified that
the sequence (Wi )i obeys the recursion

Wi+1 = [Wi + Bi − c(Wi + Bi ) − Ai ]+, i = 1, 2, . . . , (3)

x+ denoting max(0, x) (similarly, below x− denotes min(0, x)). In the following, we
assume that the steady-state waiting time distribution exists, which we claim to hold
for any c > 0 as long as EB1 < ∞ (and actually even if E log(1 + B1) < ∞; see the
account of this issue for a very similar model in [10]).

Nowwe let i → ∞ in (3) and study the limiting random variableW ; letω(s) denote
the LST corresponding to W . With A, B denoting generic random variables with the
same distribution as A1, B1, we have, using that x+ + x− = x and that A ∼ exp(λ),

ω(s) = E[e−s[(1−c)(W+B)−A]+]
= E[e−s[(1−c)(W+B)−A]] + 1 − E[e−s[(1−c)(W+B)−A]−]
= ω((1 − c)s)β((1 − c)s)

λ

λ − s
+ 1 −

{ λ

λ − s
P(W = 0) + P(W > 0)

}
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= ω((1 − c)s)β((1 − c)s)
λ

λ − s
− s

λ − s
P(W = 0). (4)

This fixed-point equation is very similar to the ones which were solved in [9, 11].
The solution procedure is to iterate (4), successively expressing ω((1 − c) j s) into
ω((1−c) j+1s), and to prove the convergence of the resulting infinite sum of products.
It should be noticed that the motivation here is different from that in [9, 11]: Here, we
wish tomodel a dependence between sojourn time and next interarrival time. However,
we can translate (3) into the equation Wi+1 = [aWi + Bi − Ai ]+ studied in [11] by
taking a := 1− c and Bi := (1− c)Bi . In this way, by adapting Theorem 2.7 of [11],
we obtain the following result. Define

� j (s) := λβ((1 − c) j+1s)

λ − (1 − c) j s
, 	m(s) := (1 − c)ms

λ − (1 − c)ms
.

Theorem 2.1 The stationary waiting time LST ω(s) = Ee−sW is given by

ω(s) =
∞∏
j=0

� j (s) − P(W = 0)
∞∑

m=0

	m(s)
m−1∏
j=0

� j (s), (5)

where

P(W = 0) = β((1 − c)λ) ω((1 − c)λ)

=
β((1 − c)λ)

∞∏
j=0

� j+1(c)

1 + β((1 − c)λ)

∞∑
m=0

	m+1(c)
m−1∏
j=0

� j+1(c)

. (6)

Remark 2.2 It should be observed that one way to obtain the identity (6) is to deduce
from (3) that P(W = 0) = P((1 − c)(W + B) < A). Then ω((1 − c)λ) follows by
substituting s = (1 − c)λ into (5) and using (6).

Remark 2.3 At first sight, it would seem that in (5) all s j = λ/(1 − c) j , for
j = 0, 1, . . . , are singularities. However, as proved in [11], these are removable
singularities.

Remark 2.4 Ageneralization of (3) is to let the i th interarrival time be given by f (Wi +
Bi ) + Ai when the i th sojourn time is Wi + Bi , with f (·) such that for h(·), with
h(x) = x − f (x) it holds that

E[e−sh(W+B)] = E[e−δ(s)(W+B)]
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for some δ(·); put differently, we are considering a Lévy process. Equation (4) is now
replaced by

ω(s) = ω(δ(s)) β(δ(s))
λ

λ − s
− s

λ − s
P(W = 0). (7)

Again, there is a relation to an earlier study, namely [9], where one has to take service
times with LST β(δ(s)) instead of β(s).

Remark 2.5 Starting from (3) and considering the transient behavior of Wn via its
transform

∑∞
n=1 r

n
E[e−sWn |W1 = w], the same recursion procedure will enable us

to derive an expression for the latter transform; cf. Section 2.1 of [11] for a similar
approach. We also refer to [11] for a generalization to the case in which the Ai have
a hypo-exponential distribution.

2.3 Asymptotic expansions

In this subsection, we are interested in the performancemeasuresP(W = 0) andEWk ,
k = 1, 2, . . . in the regime that c is small, i.e., a perturbation of the classical M/G/1
queue. For such values of c, there is a rather weak dependence between sojourn time
(workload just after an arrival) and the subsequent interarrival time, while c = 0
concerns the case without dependence. In view of the rather complicated form of the
exact expressions for the above-mentioned performance measures, we are interested
in obtaining good asymptotic expansions of them in the parameter c.

Remark 2.6 Our interest in these asymptotic expansions was strengthened by the fact
that the French hydrologist E.Mouche has indicated (personal communication; cf. also
[25]) that the model and analysis of [11] are relevant in certain hydrology models, in
particular when a is close to one—which corresponds to our c being close to zero. It
should be observed, though, that analyzing the model of [11] for a close to one is not
precisely the same as analyzing the model of the present section for c close to zero,
because the model translation also involves replacing Bi by (1 − c)Bi .

Our starting point for the asymptotic analysis for c = ε ↓ 0 is (4), which can be
rewritten as

(λ − s) ω(s) = λβ((1 − ε)s) ω((1 − ε)s) − sP(W = 0). (8)

Denote the steady-state waiting time when ε = 0, corresponding to the classical
M/G/1 queue, by W̃ . Assuming that the first K moments of W are well defined, we
can give a Taylor series development of P(W = 0) and of those K moments of W up
to εm terms for some m ∈ N. In other words, for ε ↓ 0 and k ∈ {1, . . . , K },

P(W = 0) = P(W̃ = 0) +
m∑

h=1

R0,hε
h + o(εm), (9)
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EWk = EW̃ k +
m∑

h=1

Rk,hε
h + o(εm). (10)

Differentiating both sides of (8) with respect to s, substituting s = 0 and multiplying
by −1, we obtain that

1 + λEW = λ(1 − ε)EB + λ(1 − ε)EW + P(W = 0), (11)

and hence, with ρ := λEB:

EW = P(W = 0) − (1 − ρ) − ρε

λε
. (12)

Substituting (9), and (10) for k = 1, into (12) gives us R0,1:

R0,1 = λEW̃ + ρ = λ2EB2

2(1 − ρ)
+ ρ; (13)

recognize in the latter expression the mean queue length in the M/G/1 queue. Fur-
thermore, by equating the εh powers in both sides of (12) for h = 2, 3, . . . , we obtain:

λR1,h−1 = R0,h, h = 2, 3, . . . (14)

Both sides of (4) are subsequently differentiated k = 2, . . . , K times with respect to s,
after which s = 0 is substituted. After some calculations, we obtain, for k = 2, . . . , K ,

[λ − λ(1 − ε)k]EWk = −k EWk−1 + λ(1 − ε)k
k−1∑
j=0

(
k − 1

j

)
EW j

EBk− j +

λ(1 − ε)k
k−1∑
j=1

(
k − 1

j − 1

)
EW j

EBk− j

= −k EWk−1 + λ(1 − ε)k
k−1∑
j=0

(
k

j

)
EW j

EBk− j . (15)

In particular, we recover the following familiar M/G/1 result [19] by inserting ε = 0:

0 = −kEW̃ k−1 + λ

k−1∑
j=0

(
k

j

)
EW̃ j

EBk− j , k = 2, . . . , K ; (16)
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observe that from this expression all moments EW̃ k can be computed recursively.
Substituting (10) into (15) and using (16) gives, for k = 2, . . . , K :

[λ − λ(1 − ε)k](EW̃ k +
m∑

h=1

Rk,hε
h) = −k

m∑
h=1

Rk−1,hε
h

+ λ(1 − ε)k
k−1∑
j=0

(
k

j

)
EBk− j

m∑
h=1

R j,hε
h

+ [λ(1 − ε)k − λ]
k−1∑
j=0

(
k

j

)
EBk− j

EW̃ j ,

(17)

and hence,

[λ − λ(1 − ε)k]
m∑

h=1

Rk,hε
h = −k

m∑
h=1

Rk−1,hε
h

+ λ(1 − ε)k
k−1∑
j=0

(
k

j

)
EBk− j

m∑
h=1

R j,hε
h

+ [λ(1 − ε)k − λ]
k∑
j=0

(
k

j

)
EBk− j

EW̃ j . (18)

We return to our objective of identifying the coefficients Rk,h .

• Equating ε factors on both sides allows us to express Rk−1,1 into Rk−2,1, . . . , R0,1
and known terms; regarding the latter, recall that all moments of W̃ can be obtained
recursively from (16). We have, for k = 2, . . . , K :

Rk−1,1 = 1

1 − λEB

[λ

k

k−2∑
j=0

(
k

j

)
EBk− j R j,1 − λ

k∑
j=0

(
k

j

)
EBk− j

EW̃ j
]
. (19)

Since R0,1 has been derived in (13), all Rk,1 can be obtained.
• By equating εh factors, h = 2, 3, . . . , on both sides of (17), we can express Rk−1,h
into Rk,h−1 and in terms R j,l with j + l ≤ k − 2 + h. We give the recursion for
ε2 terms:

Rk−1,2 = 1

1 − λEB

[
− λRk,1 + λ

k

k−2∑
j=0

(
k

j

)
EBk− j R j,2 + λ

k−1∑
j=0

(
k

j

)
EBk−J R j,1

+ λ
k − 1

2

k∑
j=0

(
k

j

)
EBk− j

EW̃ j
]
. (20)
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Considering the matrix (Rg,i )g≥0,i≥1, we thus first obtain the element R0,1 in the
upper left corner; then the first column of elements Rk,1; and then successively all
the ‘anti-diagonals’ (where an anti-diagonal corresponds to the entries of which
the sum of the indices is equal). In particular, R1,1 gives R0,2, subsequently we
use R2,1 to obtain R1,2 and R0,3; then, we use R3,1 to obtain R2,2, R1,3 and R0,4;
etc.

3 The dual risk model

The classical Cramér–Lundberg insurance risk model is often viewed as being dual
to the M/G/1 queue: The reserve level process grows linearly with the premium
rate in between downward Poisson jumps, with these jumps (to be thought of as claim
sizes) stemming from a general distribution.When there is equality between the arrival
rates of the two Poisson processes, the two jump size distributions and the slopes, we
have the remarkable property (cf. Section III.2 of [5]) that the ruin probability in the
Cramér–Lundberg model when starting with initial capital x equals the probability
that the steady-state waiting time in the M/G/1 queue exceeds x .

However, in the insurance risk literature there is also some interest in a model,
called the dual risk model, that has exactly the same sample path behavior as the
M/G/1 queue, until level zero is first reached: jumps upward and a constant slope
downward between jumps. Such a dual risk model represents the surplus of a company
with a fixed expense rate and occasional gains; examples are pharmaceutical, R & D
and petroleum companies. Various performance measures of the dual risk model have
been studied since the seminal work by Avanzi et al. [7].

In the present section, we consider a dual risk model in which we make the exact
same assumptions as in Sect. 2. It is evident that from a ruin probability point of view,
nothing interesting happens: the ruin probability is 1 (see also Remark 3.2). However,
it is interesting to determine the distribution of the time to ruin τ(x), when starting
(immediately after an upward jump) at level x . Observe that this is equivalent with
determining the distribution of the busy period of the model’s M/G/1 counterpart,
when starting at level x right after a jump (i.e., a customer arrival). Denote the LST
of this ruin time τ(x) by K (s, x). Let Ts denote an exponentially distributed random
variable with mean 1/s. Observe that K (s, x) can be interpreted as the probability that
the ruin time τ(x) occurs before Ts .

Let us first restrict ourselves to the case of exp(μ) jumps upward, i.e., the corre-
sponding distribution function is given by B(z) = 1− e−μz . By looking ahead to the
next jump, we can write

K (s, x) = e−sxe−λ(1−c)x +
∫ x

t=cx
e−st

∫ ∞

z=0
μe−μzλe−λ(t−cx)K (s, x − t + z) dt dz

= e−(s+λ(1−c))x + λμ

∫ (1−c)x

y=0

∫ ∞

z=0
e−s(x−y)e−λ[(1−c)x−y]e−μz K (s, y + z) dy dz. (21)
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Introducing k(s, α) := ∫ ∞
x=0 e

−αx K (s, x) dx , we obtain by interchanging the integra-
tions over x and y and substantial calculus that

k(s, α) = 1

s + λ(1 − c) + α

(
1 + λμ

∫ ∞

y=0

∫ ∞

z=0
e−ζ(α) ye−μz K (s, y + z)dydz

)

= G(s, α) + H(s, α) k(s, ζ(α)), (22)

with f (s, α) := s + λ(1 − c) + α,

ζ(α) ≡ ζ(s, α) := α

1 − c
+ cs

1 − c
, (23)

G(s, α) := 1

f (s, α)

(
1 − λμ

k(s, μ)

μ − ζ(α)

)
, (24)

H(s, α) := λμ

f (s, α)

1

μ − ζ(α)
. (25)

Writing ζ ( j)(α) := ζ(ζ ( j−1)(α)) with ζ (0)(α) := α, we obtain

ζ ( j)(α) = α

(1 − c) j
+

j∑
i=1

cs

(1 − c)i
, j = 1, 2, . . . . (26)

Iteration of (22), which again has the form (2), finally results in the following theorem.

Theorem 3.1 The Laplace transform of the ruin time LST K (s, x) = E[e−sTx ] is given
by

k(s, α) =
∞∑
j=0

G(s, ζ ( j)(α))

j−1∏
i=0

H(s, ζ (i)(α)), (27)

where an empty product is defined to be one and where the remaining unknown k(s, μ)

is determined by substituting α = μ in (27).

In relation to the last statement of the theorem, observe that k(s, μ) appears with a
prefactor in all G(s, ζ ( j)(α)) terms in (27). It is easily seen that the sum of products in
(27) converges, because both G(s, ·) and H(s, ·) decrease geometrically fast (with a
factor 1−c) to zero. Finally, we would like to remark thatμ k(s, μ) can be interpreted
as the LST of a busy period starting from an empty system with an exp(μ) jump
upward—or, equivalently, the LST of the ruin time in the dual risk model with exp(μ)
distributed initial capital.

Remark 3.2 Notice that K (0, x) equals the probability that ruin ever occurs, starting at
level x . It is intuitively clear that this probability should be one for all c > 0. Indeed,
substituting k(0, α) = 1/α and k(0, μ) = 1/μ in (22) gives an identity.

Remark 3.3 When c = 0, the queueing system reduces to an ordinary M/M/1 queue,
and μ k(s, μ) = ∫ ∞

0 μe−μx K (s, x) dx should equal the LST of an ordinary M/M/1
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busy period: As the initial level x now is the value of the first exp(μ) service time:

μk(s, μ) = 1

2λ
[s + λ + μ −

√
(s + λ + μ)2 − 4λμ]. (28)

It is readily verified that, for c = 0, (22) becomes

k(s, α)
[
1 − 1

s + λ + α

λμ

μ − α

]
= − λμ

s + λ + α

k(s, μ)

μ − α
+ 1

s + λ + α
. (29)

Taking α = μ gives an identity, but observing that the term between square brackets
in the left-hand side of (29) has exactly one zero in the right half α-plane, viz.

α = α1 := 1

2
[μ − λ − s +

√
(μ − λ − s)2 + 4μs],

and that α1 should also be a zero of the right-hand side of (29), quickly leads to (28).

Remark 3.4 See [16] for a numerical recipe to numerically invert two-dimensional
Laplace transforms; cf. also the practical guidelines presented in [4, 17]. Using these
techniques, one can reliably determine the density or distribution function of τ(x)
from our expression for k(s, α).

So far in this section, we have assumed that the upward jumps are exponentially
distributed. In the remainder of this section, we generalize this to the hyperexponential
and Erlang cases.

• The hyperexponential case. In this case, the cumulative distribution function reads
B(x) = ∑K

i=1 pi (1 − e−μi x ). It is quite straightforward to see that in this case

k(s, α) = 1

f (s, α)

(
1 + λ

K∑
i=1

piμi
k(s, ζ(α)) − k(s, μi )

μi − ζ(α)

)
. (30)

The iterative approach that we applied for the exponential case in this section
works in exactly the same way for the hyperexponential case. Formula (22) still
holds, with now

G(s, α) := 1

f (s, α)

(
1 − λ

K∑
i=1

piμi
k(s, μi )

μi − ζ(α)

)
, (31)

H(s, α) := λ

f (s, α)

K∑
i=1

piμi

μi − ζ(α)
. (32)

The only difference is that we now end up with K unknowns, namely k(s, μi ),
i = 1, . . . , K . These can be determined by substituting α = μi , i = 1, . . . , K in
the equivalent of (27).
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• The Erlang case. In the case of an Erlang-K distribution, the cumulative distribu-
tion function reads

B(x) = 1 −
K−1∑
n=0

(μx)n

n! e−μx .

In this Erlang-K case, too, it is straightforward to find k(s, α). Observing that

zK−1e−μz = (−1)K−1 dK−1

dμK−1 e
−μz,

we obtain

k(s, α) = 1

f (s, α)

(
1 + λμK (−1)K−1 dK−1

dμK−1

k(s, ζ(α)) − k(s, μ)

μ − ζ(α)

)
. (33)

The iterative approach that we applied for the exponential case can be applied in
the exact same way for the Erlang-K case. Again Formula (22) still holds, with
now

G(s, α) := 1

f (s, α)

(
1 − λμK (−1)K

dK−1

dμK−1

k(s, μ)

μ − ζ(α)

)
, (34)

H(s, α) := λμK

f (s, α)

dK−1

dμK−1

1

μ − ζ(α)
. (35)

The only difference is that the K unknowns we end up with are k(s, μ) and its
first K −1 derivatives. These are obtained by differentiating the equivalent of (27)
0, 1, . . . , K −1 times with respect to α, each time followed by substituting α = μ.
This results in K linear equations for these K unknowns.

Remark 3.5 It is straightforward to combine these two cases further to the case of the
distribution function B(·) corresponding to a weighted sum of Erlang-k distributions.
It is well known that distributions from this class can approximate the distribution of
any nonnegative random variable arbitrarily close.

4 The Cramér–Lundbergmodel with dependence between capital
and interclaim times

In this section, we consider the following variant of the Cramér–Lundberg risk model.
Claim sizes are i.i.d. with a non-specified cumulative distribution function B(·) and
LST β(·), independent of everything else. In between claims, the capital grows at a
constant rate, which is assumed (without losing any generality) to be one. When the
capital right after the i th claim takes some value y ≥ 0, then the next interclaim time
equals max(0, Ai − cy), where c > 0 and (Ai )i are i.i.d. exp(λ) distributed random
variables, independent of everything else.
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It is directly seen that the underlying mechanism is such that a large capital gives
rise to a relatively small interclaim time. This means that eventual ruin is certain
in this model. (When the capital is large, there is a cascade of claims, so the capi-
tal is pulled down, whereas if the capital is small, the model effectively behaves as
the conventional Cramér–Lundberg model.) Below we shall study the ruin time LST
R(s, x) := E[e−sτ(x)], where τ(x) is the ruin time when starting with capital x > 0
immediately after a claim.

Conditioning on the value of Ai , and in particular distinguishing between this
quantity being smaller than cx (leading to an immediate claim arrival) or larger than
cx , we obtain,

R(s, x) =
∫ cx

t=0
λe−λt

[ ∫ x

z=0
R(s, x − z) dB(z) + B̄(x)

]
dt

+
∫ ∞

t=cx
λe−λte−s(t−cx)

[ ∫ x+t−cx

z=0
R(s, x + t − cx − z) dB(z) + B̄(x + t − cx)

]
dt,

(36)

with B̄(x) := 1 − B(x). Introducing r(s, α) := ∫ ∞
x=0 e

−αx R(s, x) dx , we have

r(s, α) = AI + AII, (37)

where

AI :=
∫ ∞

x=0
e−αx (1 − e−λcx )

[ ∫ x

z=0
R(s, x − z)dB(z) + B̄(x)

]
dx, (38)

AII :=
∫ ∞

x=0
e−αx

∫ ∞

y=0
λe−λ(y+cx)e−sy

[ ∫ x+y

z=0
R(s, x + y − z)dB(z) + B̄(x + y)

]
dy dx . (39)

Recognizing convolutions in both AI and AII, and remembering that the Laplace
transform of B̄(x) equals (1 − β(α))/α, we obtain

AI = β(α) r(s, α) − β(λc + α) r(s, λc + α) + 1 − β(α)

α
− 1 − β(λc + α)

λc + α
, (40)

and, after some interchange of integrations, with f (s, α) = s + λ(1 − c) + α,

AII = λ

f (s,−α)

[
β(λc + α) r(s, λc + α) − β(λ + s) r(s, λ + s)

+ 1 − β(λc + α)

λc + α
− 1 − β(λ + s)

λ + s

]
. (41)

Notice that the zero α = s + λ(1 − c) of f (s,−α) is a removable singularity of AII,
as it also makes the numerator of AII zero. It is readily verified that r(0, α) = 1/α, as
it should. Combination of (38), (40) and (41) yields

r(s, α) = M(s, α) + N (s, α) r(s, λc + α), (42)
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with

M(s, α) := 1

1 − β(α)

[
1 − β(α)

α
− 1 − β(λc + α)

λc + α
+

λ

f (s,−α)

(
1 − β(λc + α)

λc + α
− 1 − β(λ + s)

λ + s

)
−

λ

f (s,−α)
β(λ + s) r(s, λ + s)

]
, (43)

N (s, α) := 1

1 − β(α)

λc + α − s

f (s,−α)
β(λc + α). (44)

Iteration of (42) finally results in the following theorem.

Theorem 4.1 The Laplace transform of the ruin time LST R(s, x) = E[e−sτ(x)] is
given by

r(s, α) =
∞∑
j=0

M(s, α + jλc)
j−1∏
i=0

N (s, α + iλc). (45)

with an empty product defined to be one. The remaining unknown r(s, λ + s) is deter-
mined by substituting α = λ + s into (45) and solving the resulting linear equation.

Note that all M(s, α + jλc) contain terms

− λβ(λ + s)

s + λ(1 − c) − (α + jλc)
r(s, λ + s).

It is easily seen that the above sum of products converges. Both N (s, α + iλc) and
M(s, α + iλc) converge to zero as i → ∞; the convergence of the sum of products
is at least geometrically fast for any α ≥ 0, as the absolute value of the product is
bounded by a constant times [β(λc + α)] j .

5 The single-server queue with service time dependent on waiting
time

This last section considers the following variant of the classical M/M/1 queue. Cus-
tomers arrive according to a Poisson process with rate λ. If the waiting time Wi of
the i th arriving customer equals x ≥ 0, then her service time equals [Bi − cWi ]+ =
[Bi − cx]+, where c > 0 and where (Bi )i is a sequence of independent, exponentially
distributed random variables with mean 1/μ, independent of anything else. Notice
that there is a negative correlation between a customer’s waiting time and her service
requirement. In particular, when the waiting time is very large, the service requirement
is likely to be zero. The probability of the latter event is P(Bi < cWi ); if a customer
has a positive service time, then it equals an exp(μ) quantity, due to the memoryless
property of the exponential distribution.
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Observe that for any c > 0 the steady-state waiting time distribution exists; note
that the workload drifts downward when it is very high. Let φ(s) denote the LST of
this distribution. By PASTA, this also equals the steady-state workload LST. Let W
denote a random variable with LST φ(s), and let A, B denote random variables that
are, respectively, exp(λ) and exp(μ) distributed. Using the same reasoning as the one
underlying (3),

φ(s) = E[e−s(W+[B−cW ]+−A)] + 1 − E[e−s[W+[B−cW ]+−A]−]]
= λ

λ − s
E[e−s(W+[B−cW ]+)] + 1 −

(
λ

λ − s
P(W = 0) + P(W > 0)

)

= λ

λ − s
E[e−s(W+[B−cW ]+)] − s

λ − s
P(W = 0). (46)

We next rewrite the first term in the last line:

E[e−s(W+[B−cW ]+)] =
∫ ∞

x=0

∫ ∞

t=0
μe−μte−s(x+[t−cx]+)dt dP(W < x)

=
∫ ∞

x=0
(1 − e−μcx )e−sxdP(W < x)

+
∫ ∞

x=0

∫ ∞

t=cx
μe−μte−s(x+t−cx)dt dP(W < x)

= (φ(s) − φ(s + μc)) + μ

μ + s
φ(s + μc). (47)

Combining (46) and (47) we obtain, with π0 := P(W = 0):

φ(s) = λ

μ + s
φ(s + μc) + π0. (48)

Substituting s = 0 yields φ(μc) = (1 − π0)/(λ/μ) = (1 − π0)μ/λ; notice that also
φ(μc) = P(B > cW ). Iteration of (48), observing that φ(s) → 0 when s → ∞,
gives

φ(s) = π0 + λ

μ + s

[
π0 + λ

μ + μc + s
φ(s + 2μc)

]
= . . .

= π0

∞∑
j=0

j−1∏
i=0

λ

μ + iμc + s
, (49)

an empty product denoting one. Then note that π0 follows from φ(0) = 1:

π0 =
⎡
⎣

∞∑
j=0

j−1∏
i=0

λ

μ

1

1 + ic

⎤
⎦

−1

, (50)

We conclude the following.
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Theorem 5.1 The steady-state waiting time and workload LST is given by

φ(s) =
∑∞

j=0

∏ j−1

i=0

λ

μ + iμc + s
∑∞

j=0

∏ j−1

i=0

λ

μ

1

1 + ic

. (51)

Apparently the distribution of W is an infinite weighted sum of exponential distribu-
tions with rates μ(1 + ic), i = 0, 1, . . . . Differentiating (51) and substituting s = 0
give the mean waiting time:

E[W ] = 1

μ

∑∞
j=0

(λ/μ) j
∏ j−1

i=0

1

1 + ic

∑ j−1

k=0

1

1 + kc∑∞
j=0

(λ/μ) j
∏ j−1

i=0

1

1 + ic

. (52)

When c = 0, φ(s) reduces to the familiar M/M/1 result

φ(s) = π0
μ + s

μ + s − λ
,

where one has to require that λ < μ and where π0 = 1 − λ/μ.

Remark 5.2 The transient behavior corresponding to the (Wi )i sequence can be found
by following a similar procedure as in Section 2.1 of [11], cf. also Remark 2.5, yielding∑∞

n=1 r
n
E[e−sWn |W1 = w]. Notice that, after multiplication by (1 − r)/r , this also

gives the LST of WN with N being geom(r ) distributed.

Remark 5.3 When the Bi have a general distribution, the calculations in (47) become
much more involved, and so far we have not been able to arrive at any tractable recur-
sion. The hyperexponential case seems doable, though. IfP(B > x) = ∑K

i=1 pie
−μi x ,

then (47) should be replaced by

E[e−s(W+[B−cW ]+)] = φ(s) −
K∑
i=1

pi s

μi + s
φ(s + μi c), (53)

and (48) generalizes to

φ(s) = λ

K∑
i=1

pi
μi + s

φ(s + μi c) + π0. (54)

In [1], recursions of exactly this type are treated. The commutativity of ζi (s) := s+μi c
and ζ j (s) := s + μ j c, i.e., ζi (ζ j (s)) = ζ j (ζi (s)), makes the recursion (54) relatively
easy even though in each iteration step a term φ(s +∑K

i=1 biμi c) gives rise to K new
terms.
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