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1 Introduction

Most real systems, especially the ones publicly accessible and requiring sharing
resources, inevitably generate waiting lines. Recently, we have especially tested this
kind of circumstances when the pandemic, generated by COVID-19, has worldwide
produced many chaotic situations such as shortages of Intensive Care Units or long
lines behind small shops to avoid agglomerations in closed environments.

In some cases, the citizens, here referred to as customers, had at their disposal
many alternatives, such as other options about when and where to get what they
needed. From a modeling viewpoint, this means that the incoming flow to a particular
observed service may be highly affected by the resulting efficiency of the way the
service is delivered.

Customers generally make their decisions by observing the system from outside,
such as seeing the actual queueing line in front of a pharmacy or observing how quick
an on-line booking time-window closed for sold out. However, their perception of
the system is incomplete and may often lead to unexpected results due to the partial
information they have access to. Indeed, the type of partial information may deeply
affect the way we estimate the system behavior especially in those cases where the
system is made of multiple stages. This analysis is the main subject of this short note.

Behavioral queueing has recently become an increasing subject of investigation,
where classical models have been analyzed by using game-theoretical techniques, we
refer to the book of Hassin and Haviv [2] for a general background. However, most of
the results commonly refer to single queueing systems and just very few results (e.g.,
[3]) are known about more general systems such as queueing networks.

To be pragmatic, here we focus on the simplest example of queueing network,
the two stages Jackson tandem network, and, as we show in the sequel, interesting
questions are still open and similar ones can be asked for more general scenarios.

As a preliminary study on this subject we refer to [1], where the two-node Jackson
tandem network has been analyzed under different levels of information (none, full
and partial) and equilibrium strategies have been investigated for each of them.
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Fig. 1 The two-node tandem network
2 Problem statement

The system consists of two nodes in series, each of type - /M /1, that is, they have one
server, an infinite capacity and service times exponentially distributed, see Fig. 1. The
arrival process is an independent homogeneous Poisson process with rate A.

A representation of the state at time ¢ is given by the vector (Q1(¢), Q2(¢)), where
Q;(¢) denotes the number of customers in queue [ € {1, 2}. By defining S;(n, m) as
the conditional sojourn time spent in queue / € {1, 2} by a tagged customer accepted
to enter in the system while this being in the state (n — 1, m), and by T;(n,m) =
E[S;(n,m)] the corresponding expectation, we have that T1(n,m) = n/u; and
1> (n, m) satisfies the following recursive formula, see [1], and setc;, = o/ (p1+12),

m
Tz(n,m)=c7}T2(n—1,1)+%Zc’;T2(n—1,m+2—k). (1
k=1

An arriving tagged customer decides to join or bulk the system according to a profit
function P(.#), whose value decreases with the system waiting time. The amount of
information .#, revealed to the customer, determines the different scenarios and for
each of them we may search for an optimal strategy telling when to join. In particular,
the unobservable case assumes that no information at all is revealed. The fully observ-
able case occurs when s/he knows the current state, i.e., (n, m). The intermediate case,
the partially-observable, may be subdivided in total, first-queue and second-queue
subcases, where the revealed information is given by n 4+ m, n, and m respectively.

While the unobservable, the fully and the total scenarios are completely understood,
see [1], much less is known about the first-queue and the second-queue situations, in
the following jointly referred as the one-queue scenarios. We use the subscript o to
denote the index of the observed queue and « for the unobserved one.

Assuming the one-queue scenario, we define the threshold strategy X € R™ as
the strategy to join when the number of customers in the observed queue is less than
LX]. If X is not integer (mixed-strategy), whenever in the observed queue there are
X customers the tagged customer will join with probability X — [ X |.

Problem 1 In the one-queue scenario, study with respect to the X strategy and the
system parameters, the stochastic monotonicity of the stationary r.v.’s (Q,f | Qg( =Xx).

Problem 2 In the one-queue scenario, prove the existence of an equilibrium symmetric
strategy X, for the profit function PX(x) = R - C; TIX x)—Cy TZX (x), as well as
determine the corresponding socially optimal threshold strategy.
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Table 1 First-queue case, values _ — — -
OfE[Q%(IQX:n]for n=0 n=1 n=2 n=3 n=4
%= 0049, 2/p1 =098 and X=3 00515 00511 00472  0.00226

wi/m2 = 0.05

X =4 0.0515 0.0515 0.0511  0.0472 0.00226

3 Discussion

Both scenarios, the first- and the second-queue cases, can be analyzed by using a
matrix analytical approach, or equivalently implementing recursive formulas as in
Equation (1), helped by tools developed in [4] and in [5], respectively.

Looking at the values in Table 1, it is easy to conclude that, in general, the stochastic
increasing monotonicity in terms of n (for the first-queue case) does not hold. Indeed,
the computations show that the conditional distribution can be a decreasing function
of n. Similar results are valid for the second-queue case. It would be interesting to
understand how this property depends on the parameters of the system.

The point of Problem 1 is that it is still not clear if the increment of the incoming
flow, due to an increment in the strategy threshold X, implies that one system looks
stochastically more congested than another at a given level of the observation x.

As for the Problem 2, while for the total-queue case it has been found in [1] that
a dominant threshold strategy exists, the same reasoning does not work for the one-
queue scenario. It can be expected that the first-queue case would be easier to handle
as the application of an X-strategy implies that the number of customers in the first
queue is bounded above by the same quantity. This is not the case for the second-queue
scenario, where the X -strategy does not rule out the possibility that in the second queue
more than X customers may be waiting in line.

For the region of the parameters where the increasing monotonicity holds, Problem 2
should be easier to solve. Therefore, it is interesting to characterize this region, in terms
of w1 and wo, as well as to understand what happens outside it.
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