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1 Introduction In general, the joint analysis of multiple “coupled” queues turns
out to be very hard; a good overview of available methods is given in [1]. In this
paper, we share some thoughts on such analysis, based on a very simple example
system, consisting of two parallel discrete-time infinite-capacity single-server queues.
In either queue, the service of a customer requires exactly one slot, and customers
arrive independently from slot to slot, but the numbers of customers entering queue
1 and queue 2 during a slot, are not necessarily mutually independent. Let A(z1, z2)
denote their joint probability generating function (pgf). As each queue has their own
dedicated server, this “arrival correlation” is the only source of coupling between both
queues. The main objective of this paper is to shed a light on the analytic derivation of
the joint steady-state pgf U (z1, z2) of the numbers of customers present (the “system
contents”) in queue 1 and in queue 2.
2 Problem statement It is readily shown thatU (z1, z2) should satisfy the following
functional equation:

[z1z2 − A(z1, z2)]U (z1, z2) = A(z1, z2)L(z1, z2) , (1)

where L(z1, z2) � (z2 − 1)U (z1, 0) + (z1 − 1)U (0, z2) + (z1 − 1)(z2 − 1)U (0, 0).
The main mathematical difficulty in the full analysis of the system is to determine the
boundary functionsU (z1, 0) andU (0, z2). Nevertheless, the marginal pgfUi (z) of the
system content in queue i can be easily deducted from (1) by choosing either {z1 =
z, z2 = 1} or {z1 = 1, z2 = z},which results in thewell-known formulas (see e.g. [2])

Ui (z) = Ai (z)
(1 − λi )(z − 1)

[z − Ai (z)] , i = 1, 2 , (2)

where A1(z) � A(z, 1), A2(z) � A(1, z), λi � A′
i (1) and λi < 1 for stability.

Aswe shall see, the precise nature of the “kernel” K (z1, z2) � z1z2−A(z1, z2), and,
hence, the pgf A(z1, z2), has a crucial impact on the difficulty level of the determination
ofU (z1, z2). Some cases turn out to be easy, whereas others are extremely hard. Basi-
cally, the questionwe dealwith in this paper is: what should A(z1, z2) look like tomake
the analysis “feasible”?More context and partial answers are given in the next section.
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3 Discussion In some cases, the joint pgfU (z1, z2) can be derived by ad hoc reason-
ings, which do not require the “solution” of the functional equation (1). We provide
three examples.

First, assume the arrival streams in both queues are mutually independent. Then,
A(z1, z2) = A1(z1) · A2(z2). Then, at any time, the system contents in both queues are
also independent, and, hence,U (z1, z2) = U1(z1)·U2(z2), whereUi (z) is given by (2).

Next, suppose that during any slot, the number of arrivals in one of the two
queues, say queue 1, is either one or zero. In this case, A(z1, z2) can be expressed as
A(z1, z2) = a0(z2)+z1a1(z2). As the server can process exactly one customer per slot,
no accumulation of customers can occur in queue 1. It is easily checked that in this case,

U (z1, z2) = [a0(z2) + z1a1(z2)] (1 − λ2)(z2 − 1)

z2 − A2(z2)
= A(z1, z2)

(1 − λ2)(z2 − 1)

z2 − A2(z2)
.

Finally, suppose that during any slot, both queues receive exactly the same number
of arrivals. Then, A(z1, z2) = A1(z1z2), and, in the steady state, the system contents
of queues 1 and 2 are always identical (possibly after some initial transient period).
Hence, U (z1, z2) = U1(z1z2), where U1(z) is the known function defined in (2).

We note that in these three “simple” cases, we were also able to find the above-
mentioned “solutions” for the pgf U (z1, z2) by purely mathematical means, i.e., by
just manipulating the functional equation (1), but this was not at all an easy task.

For ease of notation, we now confine ourselves to “symmetric” systems, where
A(z1, z2) = A(z2, z1), and, consequently, also U (z1, z2) = U (z2, z1) and U (z, 0) =
U (0, z) � P(z). A verywell-known special case of thismodel, often referred to as “the
symmetric clocked buffered switch”, has been treatedwith great care in, among others,
[3]. In this case, A(z1, z2) = [

1 − λ + (λ/2)(z1 + z2)
]2. In spite of this very simple

quadratic expression of A(z1, z2), the determination of P(z) (and, from this,U (z1, z2))
is extremely complicated and requires all the fine tools of complex analysis. In the
end, P(z) turns out to be a meromorphic function with an infinite number of poles.

The above examples illustrate the crucial importance of the exact form of A(z1, z2)
for the solution of the functional equation (1).Ageneral principlemethod (for a slightly
different problem setting), suited for all possible choices of A(z1, z2), was discussed
in chapter II of [4], but this method, “the boundary value approach” involves singular
integrals, conformalmappings and additional numericalwork. This raises the question:
can we find (sufficient) conditions that A(z1, z2) should meet in order to allow for an
easier analysis? In the rest of this paper, we present some first ideas in this respect.

Suppose the pgf A(z1, z2) is such that for all u on some contour� in the complex u-
plane, and for a given real number r , there exists at least one value z2 = z2(u) such that
(ru, z2(u)) and (ru−1, z2(u)) are zero-tuples of the kernel K , i.e., K (ru, z2(u)) = 0
and K (ru−1, z2(u)) = 0, and are in the area of convergence of the joint pgfU (z1, z2).
Then, from (1), it follows that L(ru, z2(u)) = 0 and L(ru−1, z2(u)) = 0, and, from
this, that (ru−1 − 1)P(ru) = (ru − 1)P(ru−1) for all u ∈ �. Introducing the series
expansion P(z) �

∑∞
i=0 p(i) z

i , and identifying equal (positive or negative) powers
of the variable u on both sides of the equation, then leads to r2 p(2) = p(0)+ p(1) and
r2 p(k + 1) = p(k), for all k ≥ 2, from which the P-function can be readily derived:

P(z) = {p(0)[r2 + z(z − 1)] + p(1)r2z}/[r2 − z] ,
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i.e., ameromorphic functionwith one single pole. It is important tomention that (many)
arrival pgfs A(z1, z2) exist that meet the above requirement. A “quadratic example” is

A(z1, z2) = α(1 + σ z21)(1 + σ z22) + β(z1 + z2)(1 + σ z1z2)

+[1 − α(1 + σ)2 − 2β(1 + σ)]z1z2
with, in this case, r = 1/

√
σ andU (z1, z2)= [(1− σ)2A(z1, z2)]/[(1− σ z1)(1− σ z2)].

Next, suppose that A(z1, z2) is an arrival pgf for which an analytic solution is
“feasible”, such as all the ones we discussed above. Then, it can be shown that this is
also true for the arrival pgf Â(z1, z2), defined as Â(z1, z2) � [1 − D(z1, z2)]z1z2 +
D(z1, z2)A(z1, z2). Here the function D(z1, z2) must be such that the new function
Â(z1, z2) is a genuine joint pgf. For instance, if D(z1, z2) is a real positive constant not
larger than 1, this requirement is certainly fulfilled, but we have found other examples
as well. Moreover, if U (z1, z2) is the joint system-contents pgf corresponding to
A(z1, z2) and P(z) = U (z, 0) = U (0, z), then the corresponding results for arrival
pgf Â(z1, z2) can be shown to be

Û (z1, z2) = U (z1, z2)
Â(z1, z2)

A(z1, z2)

D(1, 1)

D(z1, z2)
, P̂(z) = D(1, 1)P(z) . (3)

The main reason why this remarkable result is true is that the zero-tuples of the
kernel K (z1, z2) = z1z2 − A(z1, z2) are also zero-tuples of the kernel K̂ (z1, z2) =
z1z2 − Â(z1, z2), because K̂ (z1, z2) = D(z1, z2)K (z1, z2).

We are convinced that it must be possible to construct classes of arrival pgfs
A(z1, z2) for which the analysis is “feasible”, not only for the specificmodel dealt with
in this paper, but also for similar (possibly asymmetric or even transient) problems
that give rise to other kernels. We hope that the paper will incite more research in this
direction.
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