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Abstract
Sudbury (J Appl Prob 22:443–446, 1985) showed for the Maki–Thompson model
of rumour spreading that the proportion of the population never hearing the rumour
converges in probability to a limiting constant (approximately equal to 0.203) as the
population size tends to infinity. We extend the analysis to a generalisation of the
Maki–Thompson model.
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1 Introduction

The followingmodel of rumour spreadingwas introducing byMaki andThompson [7],
as a variant of an earlier model of Daley andKendall [1]: there is a population of size n,
some of whom initially know a rumour and are referred to as infected. Time is discrete.
In each time step, an infected individual chosen uniformly at random (or arbitrarily)
contacts a member of the population chosen uniformly at random (including itself).
If this individual has not yet heard the rumour (is susceptible), then the contacted
individual becomes infected; otherwise, the contacting individual loses interest in
spreading the rumour and is termed removed (but remains in the population and can
be contacted by other infectives. In the Daley–Kendall model, if an infective contacts
another infective, both become removed, whereas, in the Maki–Thompson model,
only the initiator of the contact is removed). The process ends when there are no more
infectives. A natural question to ask is howmany individuals remain susceptible at this
terminal time and consequently never hear the rumour. It was shown by Sudbury [10]
that in the large population limit of n tending to infinity, the random proportion of the
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population never hearing the rumour converges in probability to a limiting constant,
approximately equal to 0.203.

Inmuch of the literature related to theMaki–Thompson andDaley–Kendallmodels,
the terms ignorants, spreaders and stiflers are used, respectively, for agents whom we
have termed susceptible, infected and removed.

We consider the following generalisation of the Maki–Thompson model: each
infective loses interest in spreading the rumour (and becomes removed) after k failed
attempts, i.e. after contacting infected or removed individuals k times. Here, k ≥ 1
is a specified constant, which is a parameter of the model; if k = 1, we recover the
original model. Our main result is as follows.

Theorem 1 Consider the generalisation of the Maki–Thompson model described
above, parametrised by k and starting with a single infective and n − 1 suscepti-
bles. Let S∞ denote the number of susceptibles when the process terminates, i.e. when
the number of infectives hits zero. Then,

S∞
n

p−→ y∗ as n → ∞,

where y∗ is the unique solution in (0, 1) of the equation (k + 1)(1 − y) = − log y,
and logarithms are natural unless specified otherwise.

The proof is presented in the next section. We observe that y∗ = y∗(k) is a decreas-
ing function of k and is well approximated by e−(k+1) for large k. This tells us that,
qualitatively, the proportion of the population not hearing a rumour decays exponen-
tially in the number of failed attempts before agents lose interest in spreading the
rumour.

One of ourmainmotivations for this work is that rumour spreading is used for infor-
mation dissemination in many large-scale distributed algorithms in computer science;
see, for example, the seminalwork ofDemers et al. [2]. Blockchain is a topical example
of a technology which employs such algorithms [3,8]. The algorithms require a termi-
nation condition in order to limit the communication overhead. The Maki–Thompson
model provides such a condition, but comes at the price that approximately 20% of
agents do not receive the information. This might be unacceptable in applications
which require higher reliability. Therefore, it would be desirable to have a tunable
trade-off between the communication overhead incurred and the reliability achieved
in terms of the proportion of agents who receive the information. Theorems 1 and 2
provide such a trade-off.

Additionalmotivation for thiswork comes from the spreadof information, including
fake news, on online social networks. This has motivated countermeasures, such as
limitations on forwarding, by social network platforms. While the match to our model
is not exact, insofar as communications on such networks tend to be broadcasts rather
than pairwise communications, our work nevertheless yields qualitative insights into
the effectiveness of decentralised countermeasures. Extending the analysis to other
communication models such as broadcasts is a topic for future work.

Generalisations of theDaley–Kendall andMaki–Thompsonmodels have been stud-
ied previously. Lebensztayn et al. [5] consider a model in which a spreader i becomes
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a stifler after a random number, Ri , of contacts with other spreaders or stiflers. This
is more general than the model described above, where Ri ≡ k, a fixed constant. The
analysis in [5] uses the fact that a Markovian description of this model easily reduces
to a density-dependent Markov chain, to which Kurtz’s theorem can be applied; this
states that in the large population (hydrodynamic) limit, the trajectory of the Markov
chain converges to the trajectory of the solution of an ODE, uniformly on compacts.
A major disadvantage of this style of analysis is that it is only directly applicable
to initial conditions in which a positive fraction of the population are spreaders. A
separate analysis to deal with the initial phase is required if one wishes to start with
a fixed number of initial spreaders, so that the fraction who are spreaders tends to
zero in the large population limit. This difficulty is avoided by the techniques used in
this paper, which are elementary as in the original paper of Sudbury [10]. Our next
theorem extends the result of [5] to initial conditions with a single infective.

Theorem 2 Consider a generalisation of the Maki–Thompson model in which the i th
agent to learn the rumour stops spreading it after incurring Ri failures (instances
of contacting an agent which already knew the rumour). Here, (Ri , i = 0, 1, 2, . . .)
are independent and identically distributed (i.i.d.) random variables taking values in
{0, 1, 2, . . .}. Suppose that μ := E[R1] is finite, that there are initially a single infective
and n − 1 susceptibles and that R0 ≥ 1. Let S∞ denote the number of susceptibles
when the process terminates, i.e. when the number of infectives hits zero. Then,

S∞
n

p−→ y∗ as n → ∞,

where y∗ is the unique solution in (0, 1) of the equation (μ + 1)(1 − y) = − log y.

The claim of Theorem 2 coincides with that of [5][Theorem 2.3], but is made under
the weaker assumption of requiring only a single initial rumour spreader rather than a
positive fraction of the population being spreaders.We sketch the proof in Sect. 3, only
pointing out differences from the proof of Theorem 1. Comparing Theorems 1 and
2, we see that if the number of failures tolerated by a node before it stops spreading
the rumour is random, then the final proportion of nodes reached by the rumour is
insensitive to the distribution of this random variable, and depends only on its mean.
Thus, in order to ensure that the rumour reaches a high proportion of the population,
it is not necessary for each spreader to tolerate a large number of failed attempts, but
only that this be true on average.

We now briefly survey some related work. The analysis of Sudbury’s model was
generalised by Lefèvre and Picard [6] to obtain the joint distribution of the number
reached by the rumour and the time for which the rumour was spread. Sudbury’s
model was generalised by Isham et al. [4] to allow for spreaders to spontaneously
become stiflers, and to allow a nonzero probability that spreaders do not change state
on contacting a spreader or stifler (which corresponds to the Ri having a geometric
distribution in the context of Theorem2); they further studied themodel on a number of
different networks rather than just the complete graph. However, they mainly focused
on simulations and intuition and did not present a rigorous analysis of their model.
Pittel [9] showed in the Maki–Thompson model that the proportion of nodes not

123



234 Queueing Systems (2021) 99:231–241

hearing the rumour, suitably centred and rescaled, converges in distribution to a normal
random variable. An extension of this result to the above generalisedmodels is an open
problem.

2 Model and analysis

Denote by St the number of susceptibles present in time slot t . If at least one infective
is present during this time slot, then there is an infection attempt during this time slot,
which succeedswith probability St/n (or St/(n−1) if an infective never contacts itself;
the distinction is immaterial for large n). In that case, St+1 = St−1. Otherwise, St+1 =
St and the number of failed attempts associated with the infective node which initiated
the contact is incremented by 1; if its value becomes equal to k, the infective node
becomes removed. We could describe this process as a Markov chain by keeping track
of I 0t , I 1t , . . . , I k−1

t , which denote, respectively, the number of infective nodes which
have seen 0, 1, . . . , k−1 failed infection attempts.A simplerMarkovian representation
is obtained by keeping track of It , the number of infection attempts available in time
step t , which increases by k whenever a new node is infected. We initialise the process
with S0 = n −1 and I0 = k; the process terminates when It hits zero for the first time.
If It > 0, then

(St+1, It+1) =
{

(St − 1, It + k), w.p. St/n,

(St , It − 1), w.p. 1 − (St/n),
(1)

where we use the abbreviation w.p. for “with probability”.
Let T denote the random time that the process terminates, i.e. when It hits zero for

the first time. From (1), we can see that (k + 1)St + It + t remains constant for all
t ≥ 0, and therefore,

(k + 1)ST + T = (k + 1)S0 + I0 + 0 = (k + 1)(n − 1) + k,

so that

T = inf{t : (k + 1)(n − 1 − St ) ≤ t − k} = inf{t : (k + 1)(n − St ) ≤ t + 1}.

Define S̃t , t = 0, 1, 2, . . ., to be a Markov process on the state space {0, 1, . . . , n − 1}
with transition probabilities

ps,s = 1 − s

n
, ps,s−1 = s

n
, 0 ≤ s ≤ n, (2)

and with initial condition S̃0 = n − 1. Then, S̃t and St have the same transition
probabilities while It is nonzero; hence, it is clear that we can couple the processes St

and S̃t in such a way that they are equal until the random time T . Consequently, we
can write

T = inf{t : (k + 1)(n − S̃t ) ≤ t + 1}, (3)
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which relates T to a level crossing time of a lazy random walk. As the random walk
S̃t is non-increasing, ST is explicitly determined by T ; we have

ST = S̃T = n − T + 1

k + 1
. (4)

While it is possible to study the random variable T directly by analysing the random
walk S̃t , we will follow the work of Sudbury [10] and consider a somewhat indirect
approach. The randomwalk S̃t is exactly the same as the randomwalk sk in that paper,
but the level crossing required for stopping is different.

Define the filtration F t = σ(S̃u, Iu, 0 ≤ u ≤ t), t ∈ N, and notice that the random
time T defined in (3) is a stopping time, i.e. the event {T ≤ t} is Ft -measurable.
Moreover, T is bounded by (k + 1)n. Let

M1(t) =
(

n

n − 1

)t

S̃t , M2(t) =
(

n

n − 2

)t

S̃t (S̃t − 1).

The following lemma is an exact analogue of a corresponding result in [10] and follows
easily from the transition probabilities in (2), so the proof is omitted.

Lemma 1 The processes M1(t ∧ T ) and M2(t ∧ T ) are Ft -martingales.

Applying the optional stopping theorem (OST) to M1(t ∧ T ), we get

E

[( n

n − 1

)T
S̃T

]
= S̃0. (5)

We show that for large n the above random variables concentrate around their mean
values and, after suitable rescaling, converge in probability.

Lemma 2 Let S̃T denote the final number of susceptibles and T the random time
(number of attempts to spread the rumour) after which the process terminates in a
population of size n. The dependence of T and S̃T on n has been suppressed in the
notation. Then, ( n

n − 1

)T S̃T

n

p−→1 as n → ∞.

Proof The proof is largely reproduced from [10] but is included for completeness. It
proceeds by bounding the variance of the random variables of interest and invoking
Chebyshev’s inequality. We have by (5) that

Var
{( n

n − 1

)T
S̃T

}
= E

[(n − 1

n

)−2T
S̃2

T

]
− S̃2

0 ,

whereas, applying the OST to M2(t ∧ T ), we get

E

[( n

n − 2

)T
(S̃2

T − S̃T )
]

= S̃2
0 − S̃0.
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Combining the last two equations, we can write

Var
{( n

n − 1

)T
S̃T

}
= E

[(n − 1

n

)−2T
S̃2

T

]
− E

[( n

n − 2

)T
(S̃2

T − S̃T )
]

− S̃0

= E

{[(n − 1

n

)−2T −
(n − 2

n

)−T ]
S̃2

T

}
+ E

[( n

n − 2

)T
S̃T

]
− S̃0.

Now, the first term in the above sum is negative, since (1− 1
n )2 > 1− 2

n . Next, since
T is bounded above by (k + 1)n, we have

Var
{( n

n − 1

)T
S̃T

}
< E

[( n

n − 1

n − 1

n − 2

)T
S̃T

]
− S̃0

≤
(n − 1

n − 2

)(k+1)n
E

[( n

n − 1

)T
S̃T

]
− S̃0

= e(k+1)n log(1+ 1
n−2 ) S̃0 − S̃0

≤ (e(k+1)n/(n−2) − 1)S̃0,

where we have used the fact that E
[
( n

n−1 )
T S̃T

] = S̃0 to obtain the equality on the
third line, and the inequality log(x) ≤ x − 1 to obtain the last inequality. Thus, we
conclude that

Var
{( n

n − 1

)T S̃T

n

}
≤ (e(k+1)n/(n−2) − 1)S̃0

n2 ,

which tends to zero as n tends to infinity, since S̃0 = n − 1. The claim of the lemma
now follows from (5) and Chebyshev’s inequality. 
�

Consider the sequence of randomvectors
( T

n , S̃T
n

)
, which take values in the compact

set K = [0, k + 1] × [0, 1]; the dependence of T and S̃T on n has not been made
explicit in the notation. Define f : K → R

2 by

f (x, y) =
( x

k + 1
+ y − 1, ex y − 1

)
. (6)

Then, we see from (4) and Lemma 2 that

f (T /n, S̃T /n)
p−→(0, 0) as n → ∞. (7)

We want to use this to prove convergence in probability of the sequences T /n and
S̃T /n.

Firstly, we observe that if f (x, y) = (0, 0), then y solves the equation (k + 1)(1−
y) + log y = 0, and x = (k + 1)(1− y). The function y �→ (k + 1)(1− y) + log y is
strictly concave and is zero at y = 1; by considering its derivative at 1 and its value
near 0, it can be seen that the function has one other zero, which lies in (0, 1). Call
this value y∗ and define x∗ = (k + 1)(1 − y∗). We now have the following.
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Lemma 3 Fix δ > 0. Then, as n tends to infinity,

P
(
(T /n, S̃T /n) /∈ Bδ(0, 1) ∪ Bδ(x∗, y∗)

) → 0,

where Bδ(x, y) denotes the open ball of radius δ centred on (x, y).

Proof Suppose this is not the case. Then, there are an α > 0 and infinitely many n
such that

P
(
(T /n, S̃T /n) /∈ Bδ(0, 0) ∪ Bδ(x∗, y∗)

)
> α.

Since f is continuous, so is its norm. Hence, its minimum on the compact set
K\{Bδ(0, 0) ∪ Bδ(x∗, y∗)} is attained and must be strictly positive as f has no zeros
other than (0, 1) and (x∗, y∗). Hence, there is an ε > 0 such that ‖ f (x, y)‖ > ε when-
ever (x, y) /∈ Bδ(0, 1)∪Bδ(x∗, y∗). Thus,we have shown that there are infinitelymany
n such that

P(‖ f (T /n, S̃T /n)‖ > ε) > α,

which contradicts (7). This proves the claim of the lemma. 
�
Next, define τ j = inf{t : S̃t = n − j}, X j = τ j+1 − τ j , and observe from (2) and

the initial condition S̃0 = n − 1 that

τ1 = 0, X j ∼ Geom
(n − j

n

)
, (8)

and that X j , j = 1, . . . , n − 1, are mutually independent; here, ∼ denotes equality in
distribution. We also have from (3) that

n − S̃T = inf{ j : X1 + · · · + X j ≥ (k + 1) j}. (9)

We now need the following elementary tail bound on the binomial distribution in order
to complete the proof of Theorem 1.

Lemma 4 Let X be binomially distributed with parameters n and p, denoted X ∼
Bin(n, p). Then, for any q > p, we have

P(X ≥ nq) ≤ exp
(
−n

[
q log

q

p
− q + p

])
.

Proof Recall the well-known large deviations bound,

P(X ≥ nq) ≤ exp(−nH(q; p)), where H(q; p) = q log
q

p
+ (1 − q) log

1 − q

1 − p
,

which is a consequence of Chernoff’s bound.
The claim of the lemma follows from the above inequality by noting that

(1 − q) log
1 − p

1 − q
≤ (1 − q)

(1 − p

1 − q
− 1

)
= q − p,
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which follows from the inequality log x ≤ x − 1. 
�

Proof of Theorem 1 In view of Lemma 3, it remains only to show, for some ε ∈ (0, y∗),
that P(S̃T /n > 1 − ε) tends to zero as n tends to infinity.

Fix ε > 0. For each j ∈ N, let Y ( j)
i , i ∈ N, be i.i.d. random variables with

a Geom((n − j)/n) distribution. Then, Y ( j)
i stochastically dominates Xi for every

i ≤ j , and we see from (9) that

P(S̃T /n ≥ 1 − ε) = P(∃ j ≤ εn : X1 + . . . + X j ≥ (k + 1) j)

≤
�εn�∑
j=1

P(X1 + . . . + X j ≥ (k + 1) j)

≤
�εn�∑
j=1

P
(
Y ( j)
1 + . . . + Y ( j)

j ≥ (k + 1) j
)

≤
�εn�∑
j=1

P

(
Bin

(
(k + 1) j − 1,

n − j

n

)
≤ j − 1

)
.

We can rewrite the above as

P(S̃T /n ≥ 1 − ε) ≤
�εn�∑
j=1

P

(
Bin

(
(k + 1) j − 1,

j

n

)
≥ k j

)

≤
�εn�∑
j=1

P

(
Bin

(
(k + 1) j,

j

n

)
≥ k j

)
.

Hence, it follows from Lemma 4 that, for ε < k
k+1 , we have

P(S̃T /n ≥ 1 − ε) ≤
�εn�∑
j=1

exp
(
−(k + 1) j

[ k

k + 1
log

kn

(k + 1) j
− k

k + 1
+ j

n

])

≤
�εn�∑
j=1

exp
(
−k j log

kn

(k + 1) j
+ k j

)

≤
� k

k+1

√
n

e �−1∑
j=1

n−k j/2 +
�εn�∑

j=� k
k+1

√
n

e �
e−k j .

It is easy to see that both sums above vanish as n tends to infinity. This completes the
proof of the theorem. 
�
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3 Analysis of generalisedmodel

In this section, we outline the proof of Theorem 2. As it largely follows the same lines
as the proof of Theorem 1, we only highlight the differences.

We start with a single infected agent who knows the rumour and has R0 ≥ 1
available failed infection attempts, after which it stops spreading the rumour. Let the
processes St , It and S̃t be as in Sect. 2; St denotes the number of susceptibles, and
It the number of available failed infection attempts, at the end of time step t , while
S̃t is a Markov chain with the same probability law as St and coupled to be the same
as St until the rumour-spreading process terminates. The only difference is that the
S̃t process continues to evolve after rumour spreading terminates, and so its value at
any t can be defined without reference to the process It and whether it has hit zero. In
Sect. 2, the It process increased by k at each successful infection event and decreased
by 1 for each failed attempt. Here, it increases by a random amount Ri upon each
successful infection. But the St and S̃t processes have the same transition probabilities
as in Sect. 2, and so Lemmas 1 and 2 continue to hold.

The derivation of the expression in (3) for the time at which rumour spreading stops
relied on the fact that each infected individual has exactly k available failed infection
attempts and hence that (k + 1)St + It + t is constant over time. This is no longer true
when the i th infected individual stops spreading the rumour after a random number,
Ri , of failed attempts. Instead, we obtain the following analogue of (3) for the time T
when the process terminates:

T = inf{t ≥ 0 : R0 + · · · + Rn−1−S̃t
≤ t − (n − 1 − S̃t )}. (10)

To see this, note that as each infection reduces the number of susceptibles by1,n−1−S̃t

is the number of infections that have occurred up to time t . Hence, t − (n − 1− S̃t ) is
the number of failed infection attempts up to this time, while R0 + . . . + Rn−1−S̃t

is
the total budget of failed attempts from all agents infected up to this time. If Ri ≡ k,
then (10) reduces to (3).

Next, recalling the definitions τ j = inf{t : S̃t = n − j} and X j = τ j+1 − τ j , we
see that Eq. (8) continues to hold; however, (9) needs to be modified, in light of (10),
as follows:

T = τ j∗ , S̃T = n − j∗, where j∗ = inf
{

j :
j−1∑
k=0

Rk ≤ τ j − ( j − 1)
}
. (11)

For n ∈ N, define φn : [0, 1] → R
2+ by

φn(x) = (φ1
n(x), φ2

n(x)) = 1

n

(
τ�xn�,

�xn�−1∑
k=0

Rk

)
. (12)

Now, by the functional law of large numbers, φ2
n converges in probability, in the space

L∞([0, 1]), to φ2, given by φ2(x) = xμ, where μ = E[R1]. We also observe that, for
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x ∈ [0, 1),

E[τ�xn�]
n

=
�xn�−1∑

k=1

E[X j ]
n

=
�xn�−1∑

k=1

1

n − j
→ − log(1 − x), as n → ∞.

Using this, it can be shown that φ1
n converges in probability, in the space L∞([0, β])

for any β < 1, to φ1, where φ1(x) = − log(1− x). Thus, φn converges in probability
to φ = (φ1, φ2).

Now, consider the sequence (T , S̃T )/n, where the dependence of T and S̃T on n
has not been made explicit in the notation. This sequence takes values in the compact
set [0, 1]× [0, 1] and hence contains convergent subsequences. Let (x, y) be the limit
of such a subsequence. Observe from (11) that, along this subsequence,

1

n

j∗−1∑
k=0

Rk = 1

n

n−1−S̃T∑
k=0

Rk → μ(1 − y),

while
τ j∗ − j∗ + 1

n
= T − (n − S̃t − 1)

n
→ x + y − 1.

Hence, it can be shown from (11) that (x, y) satisfies the equationμ(1−y) = x+y−1,
i.e. x = (μ + 1)(1 − y). Moreover, we see from Lemma 2 that ex y = 1. Comparing
these two equations with (6), we see that (7) continues to hold, with k replaced byμ in
the definition of f . Following this, it can be verified that Lemma 3 continues to hold,
with (x∗, y∗) denoting the unique nonzero solution of the equation f (x, y) = (0, 0),
where k has been replaced by μ in the definition of f given in (6). Thus, all the
lemmas used in the proof of Theorem 1 continue to hold, with the modification that
k has been replaced by μ. Thus, the proof of Theorem 2 will follow along the same
lines as that of Theorem 1, provided we can rule out the solution (0, 0) of the equation
f (x, y) = (0, 0) as a subsequential limit point for the sequence (T , n − S̃T )/n. In
other words, we need to show that the proportion of susceptibles in the limit cannot
be equal to 1.

We nowprovide an intuitive explanation forwhy this is so, i.e. why the proportion of
nodes hearing the rumour cannot converge to zero with positive probability, provided
R0 ≥ 1, as assumed in the statement of Theorem 2. The initial node knowing the
rumour continues spreading it until it encounters a node which already knows the
rumour. As the target for rumour spreading is chosen uniformly at random at each
step, it follows from the birthday paradox that the initial source spreads the rumour
to some strictly positive random multiple of

√
n nodes before losing interest. Next,

for a fixed ε > 0, the spread of the rumour until at least εn nodes learn it dominates
a branching process in which the mean number of offspring is P(R1 ≥ 1)/ε; this is
the mean number of nodes contacted by an infective (spreader) until it contacts an
informed node (of which there are fewer than εn), but only counting those for which
Ri ≥ 1, as nodes with Ri = 0 will not spread the rumour. If ε > 0 is chosen small
enough, then this branching process is supercritical. As its initial population size is
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a multiple of
√

n, its extinction probability is vanishing in n. But non-extinction of
the branching process implies that at least εn agents learn the rumour in the rumour-
spreading process. This shows that a strictly positive fraction of the population learns
the rumour, with high probability.

This completes the sketch of the proof of Theorem 2.
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