CORRECTION

Correction to: Multi-server queueing systems with multiple priority classes

Mor Harchol-Balter $^1\cdot$ Takayuki Osogami $^2 \boxdot \cdot$ Alan Scheller-Wolf $^3\cdot$ Adam Wierman 4

Received: 15 July 2021 / Revised: 15 July 2021 / Accepted: 15 July 2021 / Published online: 27 September 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021

Correction to: Queueing Syst https://doi.org/10.1007/s11134-005-2898-7

We correct the expressions of the matrix $\mathbf{B}^{(\ell)}$ on page 340 and the matrix $\mathbf{L}^{(\ell)}$ on page 341 in [1]. Specifically, the following are the corrected expressions of these matrices:

$$\mathbf{B}^{(\ell)} = \mu_L \begin{pmatrix} \min(2, \ell) & & \\ & 1 & \\ & & 1 \\ & & \mathbf{0} \end{pmatrix}$$
(1)

⊠ Takayuki Osogami osogami@jp.ibm.com

> Mor Harchol-Balter harchol@cs.cmu.edu

Alan Scheller-Wolf awolf@andrew.cmu.edu

Adam Wierman adamw@caltech.edu

- ¹ Department of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
- ² Research, IBM, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, Japan
- ³ Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
- ⁴ Computing and Mathematical Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA

The original article can be found online at https://doi.org/10.1007/s11134-005-2898-7.

	$\begin{pmatrix} -\sigma_1 \\ \mu_M \\ \mu_H \end{pmatrix}$	$\lambda_M - \sigma_2$	λ_H $-\sigma_3$	$\lambda_M \mathbf{p}^{(2M,M)}$	$\lambda_M \mathbf{p}^{(2M,H)}$	$\lambda_H \mathbf{p}^{(MH,M)} \\ \lambda_M \mathbf{p}^{(MH,M)}$	$\lambda_H \mathbf{p}^{(MH,H)} \\ \lambda_M \mathbf{p}^{(MH,H)}$	$\lambda_H \mathbf{p}^{(2H,M)}$	$\lambda_H \mathbf{p}^{(2H,H)}$	
$\mathbf{L}^{(\ell)} =$		t ⁽¹⁾	* (2)	T ⁽¹⁾	T ⁽²⁾					
		t ⁽³⁾	τ		1	T ⁽³⁾				
		. (5)	t ⁽⁴⁾				T ⁽⁴⁾	m (5)		
	(—	t ⁽³⁾	t ⁽⁶⁾					T ⁽³⁾	T ⁽⁶⁾	.)
				I	I	I	I	I	I ·	(2)

for all $\ell \ge 0$, where the definitions of the notation in the matrices are unchanged from [1] except the zero matrix **0** in (1), whose size needs to be corrected to 12×12 .

These matrices represent the transitions shown in the left panel of Figure 3 in [1]. The transition from state (1H, 0M, *uL*) to (1H, 0M, (*u* – 1)L), namely the third diagonal element of $\mathbf{B}^{(\ell)}$, was missing in the original expression. The transition rates from (0H, 1M, *uL*) to two states labeled with (1H, 1M, *uL*), namely the (2, *k*) element of $\mathbf{L}^{(\ell)}$ for $8 \le k \le 11$, are $\lambda_H \mathbf{p}^{(MH,M)}$ and $\lambda_H \mathbf{p}^{(MH,H)}$, but erroneously were $\lambda_M \mathbf{p}^{(MH,M)}$ and $\lambda_M \mathbf{p}^{(MH,H)}$ in the original expression. Likewise, the transition rates from (1H, 0M, *uL*) to (1H, 1M, *uL*), namely the (3, *k*) element of $\mathbf{L}^{(\ell)}$ for $8 \le k \le 11$, are $\lambda_M \mathbf{p}^{(MH,H)}$ in the original expression. Likewise, the transition rates from (1H, 0M, *uL*) to (1H, 1M, *uL*), namely the (3, *k*) element of $\mathbf{L}^{(\ell)}$ for $8 \le k \le 11$, are $\lambda_M \mathbf{p}^{(MH,M)}$ and $\lambda_M \mathbf{p}^{(MH,H)}$, but were $\lambda_H \mathbf{p}^{(MH,M)}$ and $\lambda_H \mathbf{p}^{(MH,H)}$ in the original expression.

Acknowledgements We thank Dr. Yee Lam Elim Thompson for pointing out the errors.

Reference

 Harchol-Balter, M., Osogami, T., Scheller-Wolf, A., Wierman, A.: Multi-server queueing systems with multiple priority classes. Queueing Syst. 51, 331–360 (2005). https://doi.org/10.1007/s11134-005-2898-7

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.