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Abstract
Pay-for-priority is a common practice in congestion-prone service systems. The extant
literature on this topic restricts attention to the casewhere the only epoch for customers
to purchase priority is upon arrival, and if customers choose not to upgrade when they
arrive, they cannot do so later during their wait. A natural alternative is to let customers
pay and upgrade to priority at any time during their stay in the queue, even if they
choose not to do so initially. This paper builds a queueing-game-theoretic model that
explicitly captures self-interested customers’ dynamic in-queue priority-purchasing
behavior. When all customers (who have not upgraded yet) simultaneously decide
whether to upgrade,wefind in ourmodel that pure-strategy equilibria donot exist under
some intuitive criteria, contrasting the findings in classical models where customers
can only purchase priority upon arrival. However, when customers sequentially decide
whether to upgrade, threshold-type pure-strategy equilibria may exist. In particular,
under sufficiently light traffic, if the number of ordinary customers accumulates to
a certain threshold, then it is always the second last customer who upgrades, but in
general, it could be a customer from another position, and the queue-length threshold
that triggers an upgrade can also vary with the traffic intensity. Finally, we find that
in-queue priority purchase subject to the sequential rule yields less revenue than upon-
arrival priority purchase in systems with small buffers.
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1 Introduction

Pay-for-priority is a common practice in service systems for customers to cut their
waiting time in the queue. For instance, the London Eye sells fast-track tickets to its
visitors. Similarly, the U.S. Citizenship and Immigration Services (USCIS) charge a
premium in exchange for expedited case processing.1 One key design variable for such
a system is the timing of customers’ purchase. The extant literature on priority pur-
chase [1,6,15] has restricted attention to the case where customers can only purchase
priority upon arrival—if they decide not to pay when they arrive, they will forgo the
opportunity to upgrade ever and must remain in the regular line throughout their stay,
even though, in practice, they may change their minds as the queue evolves.

A natural alternative is to give customers more flexibility and make the pay-for-
priority option always available—even after customers join the system. For instance,
the London Eye could in principle allow visitors to purchase the fast-track ticket on
theirmobile devices at any point in their waiting process. Likewise, USCIS could allow
a petitioner to file a request of expedited processing at any time after submission,
not just at the moment of submission. If in-queue priority purchase is enabled, an
immediate follow-up design question is whether to let customers in the regular line
upgrade all at once (i.e., simultaneously) or one at a time (i.e., sequentially). In light
of these considerations, this paper examines the following two questions: (1) how will
customers behave if they can upgrade to priority at any time during their wait in the
queue? (2) how will rules on the specific timing of priority upgrade (i.e., simultaneous
vs. sequential) impact customer behavior?

Modeling the behavior of dynamic in-queue priority-purchasing is no easy task.
When deciding whether to purchase priority, customers must make a delicate trade-off
between the priority premium they pay and thewaiting time they expect to save, which,
in turn, depends on how many other customers are seeking service and competing for
priority. Additionally, self-interested customers must take into account all possible
future events of the queue and decide not only whether to purchase priority (as in
the upon-arrival case in the literature) but also when to do so (assumed away by the
upon-arrival case). These actions, in turn, shape the underlying queueing dynamics.
Capturing this feedback loop necessitates (challenging) equilibrium analysis.

In this study, we formulate the problem of in-queue priority purchase as a dynamic
game played by homogeneous customers in a queueing system. We first consider a
simultaneous upgrade rule whereby customers who have not yet upgraded to priority
simultaneously decide whether to upgrade at any time while they are waiting in the
queue.

1 See https://www.londoneye.com/tickets-and-prices/; https://www.uscis.gov/i-907.
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Since the strategy space and the value-function space of our game are massive, we
take a two-step approach and demonstrate that pure-strategy equilibria do not exist
under certain intuitive criteria on the value functions (of the dynamic game). In Step
1, we establish that if a pure strategy can be sustained in equilibrium subject to the
intuitive criteria, it must be of a state-dependent threshold type. That is, customers
in the non-priority line will purchase priority if and only if their positions from the
head of the line are less than a certain threshold, which varies with the system state
characterized by both the number of priority customers and the number of non-priority
customers in the system. In Step 2, we show that any threshold strategy cannot be
sustained in equilibrium. Further, we investigate a tractable small buffer system that
can hold at most two customers (including the customer in service). We analytically
confirm, without assuming the intuitive criteria, that such a small buffer system indeed
cannot support a pure-strategy equilibrium inwhich some customers purchase priority.

Our finding of non-equilibria contrasts those in the extant literature that focuses on
the setting where customers can purchase priority only at the instant of arrival [1,6,15].
In these papers, not only is a pure-strategy equilibrium guaranteed to exist but there
often exist multiple pure-strategy equilibria (see Sect. 1.1 for more details about the
related literature.) The non-existence of pure-strategy equilibria in our setting also
implies that the simultaneous upgrade rule can be troublesome to implement, let alone
the practical difficulty that may arise for the system to update state information in
real-time without delay.

Next, we consider an alternative sequential upgrade rule whereby each time there is
a new customer arrival, the service provider sequentially asks non-priority customers
one by one whether to purchase priority, with the first customer in line being called
uponfirst, then the second one, and so on. Today’smobile Internetmakes it exceedingly
easy to manage such a system efficiently.

We first investigate the cases of sufficiently light traffic and sufficiently heavy
traffic. Under sufficiently low traffic, customers can effectively act myopically by
ignoring future arrivals. We establish the existence of a pure-strategy equilibrium
of the following structure: each time the arrival of a new customer causes the low-
priority queue length to tentatively reach a given threshold (given in closed form),
the second last customer (and no one else) upgrades; the newcomer will be the next
customer to upgrade if the low-priority queue length temporarily reaches the threshold
again (due to an arrival) before the newcomer is served. This equilibrium structure
implies the low-priority queue length can never exceed the above threshold (and can
only stay at the threshold temporarily). This property is preserved under any traffic
intensity in equilibrium even though the maximum low-priority queue length would
likely decrease with traffic. In particular, under sufficiently heavy traffic, we show that
when the priority price is not too high, the equilibrium is such that as soon as the
ordinary queue amasses two customers, the first ordinary customer upgrades to the
priority queue.

We then again turn to a small buffer system that can hold at most two customers
and analytically characterize the pure-strategy equilibrium for any traffic intensity.We
also analytically compare in-queue priority purchase subject to the sequential rule with
upon-arrival priority purchase in the small buffer system. We find that for a revenue-
maximizing service provider, the optimal priority revenue is higher under upon-arrival
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priority purchase although it presents customers with fewer upgrade opportunities.
This result potentially tells a cautionary tale against in-queue priority purchase (despite
its ability to create more selling opportunities) and implies that the service provider
may benefit from prohibiting such a practice.

Finally, we numerically solve for the pure-strategy equilibrium of sequential in-
queue priority purchase in a system that can hold at most three customers under
various traffic intensities and priority prices. We find instances in which as soon as
the number of ordinary customers reaches three, it triggers the upgrade of the very
first customer but not the second or third customer, defying the equilibrium structure
previously identified. Nevertheless, we numerically observe that in such a system,
(sequential) in-queue priority purchase still generates less revenue than upon-arrival
priority purchase, corroborating the analytical insight gleaned from the small buffer
system.

1.1 Literature review

The literature on queueing models with strategic customers dates back to the seminal
paper of Naor [20], who studies homogeneous customers’ joining and balking deci-
sions upon arrival to an observable M/M/1 queue. Interested readers are referred to
Hassin and Haviv [16] and Hassin [14] for comprehensive surveys of this literature.
Particularly related to our work are papers on priority-purchasing behavior. While a
significant proportion of the priority-purchasing literature focuses on unobservable
queues (for example, [2,11–13,19,21,24–26]), a relatively scant stream of the litera-
ture examines priority purchasing in an observable-queue setting in which customers
make queue-length-dependent decisions, which is most relevant to our work.

Balachandran [9] studies a queueing system in which customers receive a higher
priority by choosing a higher price to pay upon arrival from an infinite set of possible
payments. Adiri and Yechiali [1] and Hassin and Haviv [15] examine a more practical
scenario which serves as the basis for our model. Specifically, Adiri and Yechiali [1]
analyze an observable M/M/1 queue when customers make pay-for-priority decisions
upon arrival to the system, given a fixed cost of the priority premium. They consider
pure threshold equilibrium strategies whereby customers will purchase priority if and
only if the total number of customers in the system is above a certain threshold.
Because customers are homogeneous, it implies that under any symmetric equilibrium,
an arriving customer will also opt into priority if there are other priority customers
in the system. Hassin and Haviv [15] build on the work of Adiri and Yechiali [1]
and highlight the follow-the-crowd behavior in priority purchasing. Importantly, they
show that such follow-the-crowd behavior guarantees the existence of at least one
pure-strategy equilibrium and potentially multiple ones. By contrast, we show that this
existence result breaks once customers are allowed to defer their priority-purchasing
decision (under a simultaneous upgrade rule).

Alperstein [6] further generalizes the framework by Adiri and Yechiali [1] to multi-
ple priority classes and shows that a revenue-maximizing service provider can extract
all customer surplus by implementing priorities, effectively achieving a last-in-first-
out (LIFO) service discipline. More recently, Wang et al. [22] compare the revenue
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of an M/M/1 priority queue with balking, between the observable and unobservable
settings.

Similar to this stream of literature, we also study customers’ strategic priority-
purchasing strategies in an observable M/M/1 queue with a given priority premium
charged to customers. However, unlike the extant literature, which assumes that
customers can only purchase priority upon arrival, our model allows for priority-
purchasing at any time of the queueing process. In other words, the existing models
are essentially a one-shot game, whereas ours is a dynamic one. Indeed, customers
in our model may defer their priority purchase until the queue gets longer, or find it
optimal not to purchase priority upon arrival even if there are other priority customers
currently in the system. Such behaviors make intuitive sense but are absent from the
existing models.

While we study customers’ in-queue priority-purchasing behavior, a few other
recent papers consider customers’ in-queue reneging decisions; for example, seeAssaf
and Haviv [7], Afèche and Sarhangian [3], Maglaras et al. [18], Ata and Peng [8], and
Cui et al. [10] for various theoretical models of reneging. Also seeAkşin et al. [4,5] and
Webb et al. [23] for empirical investigations. Among these works, the most relevant
one to us is Afèche and Sarhangian [3]. They assume two exogenously fixed streams
of customers (ordinary and priority) arriving to a priority queue without any priority
premium involved, and study how being bumped by the priority customers triggers in-
queue reneging behavior of the ordinary customers (the priority customers may balk
upon arrival but do not have any incentive to renege after joining). Importantly, Afèche
and Sarhangian [3] assume exogenous priority status to focus on the reneging behavior,
whereas our model complements theirs by allowing customers to endogenously self-
select into priorities through monetary payment while assuming away balking and
reneging.

In our investigation of the simultaneous upgrade case, the focus on showing non-
equilibria of structurally simple strategies is in the spirit of Kerner et al. [17] who
prove that any threshold strategies cannot be an equilibrium in ticket queues. Rather
than restricting attention to threshold strategies, we propose certain intuitive criteria
that any equilibrium strategy should presumably follow.We then demonstrate that any
pure strategies that satisfy these criteria must be of a threshold type, yet they cannot
be supported in equilibrium.

2 Model description

Consider an M/M/1 service system. Customers arrive to the system according to a
Poisson process with rate λ. The service times are independent and exponentially
distributed with rate μ. Customers do not balk or renege. Hence, we focus on the case
λ < μ to ensure system stability. Customers are delay-sensitive and their waiting cost
per unit time isC . Consistent with the literature, the values of λ,μ, andC are common
knowledge.

By default, each customer upon arrival is an ordinary customer, i.e., a non-priority
customer, and decideswhether andwhen to purchase priority throughout her stay in the
system (from the arrival epoch to the departure epoch). The priority price is P(> 0)
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and is non-refundable. Hence, the decision of upgrading to priority is irrevocable.
Once an ordinary customer purchases priority, she becomes a priority customer and
obtains preemptive priority for service over all other ordinary customers. The queue
disciplines within the ordinary and priority lines are both FIFO. The state of the system
is described by {No, Np}, where No ∈ N0 := {0} ∪ N and Np ∈ N0 correspond to
the number of ordinary customers and the number of priority customers in the system
(including the one in service, if any), respectively. Throughout her time in the system,
each customer observes the system state and her position in the queue.

Customers are fully rational in our model in that (i) they act to maximize their own
expected utility (or equivalently, minimize the expected cost) at any given time upon
and after arriving to the system, and (ii) they take into consideration the actions of
other customers, including the current customers in the system as well as any future
arrivals. To that end, customers are able to calculate the probabilities for all different
sample paths according towhich the system evolves. Given that the priority premium is
non-refundable, once any customer has purchased priority, they have no more actions
to take.

We consider two different rules that can be imposed on the specific timing of priority
upgrade: the simultaneous upgrade rule (which we study in detail in Sect. 3) and the
sequential-upgrade rule (which we study in detail in Sect. 4).

3 Simultaneous upgrade rule

In this section, we consider a simultaneous upgrade rule specified as follows: Each
ordinary customer in the system continuously evaluates the options of purchasing and
not purchasing priority—until she either upgrades to priority or completes service.
The evaluation and priority upgrade are instantaneous. Thus, at any time point, all
(ordinary) customers simultaneously decide whether to upgrade to priority.

When multiple ordinary customers decide to upgrade, it is imperative to specify the
order in which these customers join the priority line, i.e., their service order (because
the order affects the calculation of customers’ expected utilities and hence the equilib-
rium analysis).We adopt the first-come-first-upgrade rule, i.e., customerswho upgrade
at the same time will join the priority line according to their order of arrival to the sys-
tem, which is also their order in the ordinary line. First-come-first-upgrade is arguably
the fairest and most natural rule for customers.

3.1 Equilibrium definition

We set up the in-queue priority-purchasing problem under the simultaneous rule as a
dynamic game. We focus on Markovian priority-purchasing strategies that depend on
the system state {No, Np} (i.e., the numbers of ordinary and priority customers in the
system), and the position of a given customer within the ordinary line (due to the first-
come-first-upgrade rule). The information set an ordinary customer acts on can thus
be described by a three-dimensional position vector (i, j, k), where i ∈ N indicates
the position of the customer in the ordinary line including any ordinary customer at the
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Fig. 1 System dynamics as an arrival occurs, assuming customers follow strategy σ specified in each box.
Note: Os and Ps in the figure represent ordinary and priority customers, respectively. As a new arrival
occurs (middle panel), the four ordinary customers (including the arrival) act simultaneously according to
strategy σ and the first-come-first-upgrade rule. If σ were an equilibrium strategy, no ordinary customer
has an incentive to unilaterally deviate from σ(i, j, k) given her position (i, j, k) at any stable or transient
state under σ

server, j ∈ N0 the number of ordinary customers behind her in the ordinary line, and
k ∈ N0 the number of customers already in the priority queue. For example, if the only
customer in the system is an ordinary customer at the server, then her position vector
is (i, j, k) = (1, 0, 0). By definition, at any system state {No, Np} with No ≥ 1, any
ordinary customer’s position vector (i, j, k) must satisfy i + j = No and k = Np.

Given the position vector (i, j, k), each ordinary customer chooses between ‘Yes’
(for purchasing priority) and ‘No’ (for not purchasing priority).A (Markovian) strategy
σ : N×N0×N0 → {Y , N } is amapping from thepositionvector (i, j, k) to aYes orNo
priority-purchasing action. We use � to denote the strategy space. Because customers
are homogeneous,we consider symmetric (pure) strategies.When all customers follow
strategyσ ,we call systemstate {No, Np} a stable state under σ if andonly if (i) No = 0,
or (ii) No > 0 and σ(i, No − i, Np) = N for all i ∈ {1, 2, . . . , No}. That is, at a stable
state (under σ ), the strategy σ specifies that all of the ordinary customers, if any, do
not purchase priority (i.e., to stay “stable”). A system state that is not stable under σ

will be referred to as a transient state under σ . See Fig. 1 for an illustration of the
system dynamics when customers follow a specific strategy.

Define the value function V (i, j, k) : N × N0 × N0 → R as the expected utility
(or the continuation value) of an ordinary customer at position (i, j, k). We use V to
denote the value-function space. Note that V (i, j, k) is time-homogeneous because
the underlying queueing system evolves according to a time-homogeneous Markov
chain.

Definition 1 A symmetric pure-strategy equilibrium under the simultaneous upgrade
rule is characterized by any strategy and value-function pair (σ, V ) ∈ � × V that
satisfies Conditions (1), (3a)–(3b), (4) and (5):
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V (i, j, k) =

⎧
⎪⎨

⎪⎩

−P −
[

k +
i−1∑

s=1
1I{σ(s,i+ j−s,k)=Y } + 1

]
C
μ
, if σ(i, j, k) = Y ,

V (i ′, j ′, k′), otherwise,

∀(i, j, k) ∈ N × N0 × N0, (1)

where (i ′, j ′, k′) is as specified by

i ′ : = i −
i−1∑

s=1

1I{σ(s,i+ j−s,k)=Y },

j ′ : = j −
i+ j∑

s=i+1

1I{σ(s,i+ j−s,k)=Y },

k′ : = k +
i−1∑

s=1

1I{σ(s,i+ j−s,k)=Y } +
i+ j∑

s=i+1

1I{σ(s,i+ j−s,k)=Y }. (2)

In particular,∀(i, j, k) ∈ N×N0×N0, ifσ(s, i+ j−s, k) = N for all s = 1, . . . , i+ j ,
then

V (i, j, k) = − C

λ + μ
+ μ

λ + μ
V (i, j, k − 1) + λ

λ + μ
V (i, j + 1, k),

∀(i, j, k) ∈ N × N0 × N, (3a)

V (i, j, 0) = − C

λ + μ
+ μ

λ + μ
V (i − 1, j, 0) + λ

λ + μ
V (i, j + 1, 0),

∀(i, j) ∈ N × N0, (3b)

V (0, j, 0) ≡ 0, ∀ j ∈ N0, (4)

V (i, j, k) = max

{

−P −
[

k +
i−1∑

s=1

1I{σ(s,i+ j−s,k)=Y } + 1

]
C

μ
, V (i ′, j ′, k′)

}

,

∀(i, j, k) ∈ N × N0 × N0, (5)

where (i ′, j ′, k′) is as specified by (2).

In Definition 1, Conditions (1), (3a)–(3b) and (4) pin down the value function
V (through a system of linear equations) for a given strategy σ . Specifically, Con-
dition (1) gives recursive formulas for the value function when state transitions
occur due to priority upgrades without changing the total number of customers
in the system. If σ requires that an ordinary customer with position (i, j, k) pur-
chase priority at the cost of premium P , then she will join the priority line with

the
[
k + ∑i−1

s=1 1I{σ(s,i+ j−s,k)=Y } + 1
]th

position in the priority line according to the

first-come-first-upgrade rule, which means she must wait behind the orignal k priority
customers and all upgraders who are originally ahead of her. Her expected waiting cost
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until service completion is thus
[
k + ∑i−1

s=1 1I{σ(s,i+ j−s,k)=Y } + 1
]
C/μ. If instead she

chooses not to purchase priority, her position vector changes from (i, j, k) to (i ′, j ′, k′)
as specified by (2), which indicates that her updated position i ′ in the ordinary line is
her original position i less the number of upgraders who are originally ahead of her;
the updated number of customers waiting behind her j ′ is the original number j less
the number of upgraders who are originally behind her; and the updated number of
priority customers k′ is the original number k plus the total number of upgraders.

Note that Condition (1) is applicable to both transient and stable states, although
for a stable state, it would simply give a trivial identity equation, i.e., V (i, j, k) =
V (i, j, k). Hence, Conditions (3a)–(3b) add to Condition (1) by specifying the recur-
sive formulas of the value function for stable states (in which everyone in the ordinary
line chooses ‘N’ according to σ ). A stable state evolves if and only if an arrival or
departure event occurs, which [unlike transitions in Condition (1)] changes the total
number of customers in the system. Specifically, the mean time till the next (arrival or
departure) event is 1/(λ + μ), during which each ordinary customer incurs a waiting
cost ofC per unit of time. If an event occurs, it is an arrival with probability λ/(λ+μ),
in which case the number of customers waiting behind any ordinary customer is incre-
mented by one. On the other hand, with probability μ/(λ + μ), a departure occurs as
the next event, in which case either the number of priority customers is decremented
by one if originally there is at least one priority customer (see Condition (3a)), or the
position of any ordinary customer moves up by one otherwise (see Condition (3b)).
On the other hand, Condition (4) specifies boundary conditions for absorbing states
of service completion.

Note that while the value function V is determined by Conditions (1), (3a)–(3b) and
(4) for a given strategy σ , there is of guarantee on σ being an equilibrium. Hence, Con-
dition (5) acts as a consistency check that ensures the continuation value V (i, j, k) is
indeed the maximum expected utility any customer with position (i, j, k) can obtain
(even if they could choose differently than σ(i, j, k)), provided that all other cus-
tomers follow σ . That is, when all customers adopt σ , no one can strictly improve
their expected utility at any position (i, j, k) by unilaterally deviating from the action
specified by σ(i, j, k), which implies the best response to σ coincides with σ itself.
Taken together, Conditions (1), (3a)–(3b), (4) and (5) close the feedback loop to qualify
σ as an equilibrium strategy.

Further, we call a stable state under an equilibrium strategy σ an equilibrium state.
Due to the Markovian property, any equilibrium state of the system will be preserved
in equilibrium—that is, all of the ordinary customers will remain in the ordinary
line—until either an arrival or a departure event triggers a state transition.

3.2 Analysis

The strategy space and the value-function space of the game are massive. To facilitate
equilibrium analysis, we first propose three intuitive criteria on value functions. This
enables us to focus on a reasonable subspace of�×V that complies with these criteria.
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Intuitive criteria

We propose three intuitive criteria on value functions as follows:

Criterion 1 V (i + 1, j, k) ≤ V (i, j, k).

Criterion 2 V (i, j + 1, k) ≤ V (i, j, k).

Criterion 3 V (i − 1, j, k + 1) ≤ V (i, j, k).

Criterion 1 states that, all else being equal, an ordinary customer does not receive a
higher expected utilitywhen there aremore customers ahead of her in the ordinary line.
Criterion 2 specifies that, all else being equal, an ordinary customer does not receive a
higher expected utility when there are more customers behind her in the ordinary line.
Criteria 1 and 2 are consistent with the intuition that a non-priority customer cannot be
better off with a more congested system (corresponding to more potential competitors
for priority). On the other hand, Criterion 3 states that for an ordinary customer,
when the number of ordinary customers ahead of her in the ordinary line and the
number of priority customers in the priority line add up to a constant, the customer
(weakly) prefers the scenario with fewer priority customers. The intuition here is
that any customer already in the priority line will be served before the tagged ordinary
customer with certainty regardless of whether she upgrades, whereas a customer ahead
of her in the ordinary line may not be served before her if she upgrades timely and the
other person does not.

Roadmap

The rest of this section is devoted to proving that pure equilibrium strategies do not
exist under the intuitive criteria. In particular, we proceed with the following two-step
approach which is also illustrated by the corresponding Venn diagrams in Fig. 2:

Step 1 We establish that any pure-strategy equilibrium subject to the intuitive criteria
must be of a state-dependent threshold type. In particular, combining the equi-
librium conditions from Definition 1 (which characterize a subset of � × V ,
denoted by E) with the three intuitive criteria (corresponding to set I), we
show that if a pure-strategy equilibrium exists, it must be of a state-dependent
threshold type (the set of such threshold strategies is denoted by T ). That is,
Step 1 shows that if (E ∩ I) �= ∅, then (E ∩ I) ⊆ T .

Step 2 We show that any state-dependent threshold strategy cannot be an equilibrium,
i.e., (E ∩ T ) = ∅. The result implies (E ∩ I) � T , and by the contrapositive
argument of Step 1, we can conclude that (E ∩I) = ∅. That is, there does not
exist any pure-strategy equilibrium of our game that would satisfy the intuitive
criteria. In other words, a pure-strategy equilibrium, even if it ever existed,
would be peculiar and thus might be of little practical interest.

3.2.1 Step 1: equilibrium structure

In this subsection, we search for the equilibrium structure subject to Definition 1 and
Criteria 1–3. Hence, in this step, we treat the three intuitive criteria as underlying
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Fig. 2 Illustration of the analytical roadmap

assumptions for all the derivations. For brevity, we do not repeatedly state in each of
the formal results in Step 1 their reliance on the three intuitive criteria. We develop
some supporting lemmata first.

Lemma 1 In equilibrium, under Criteria 1-3, for any system state {No, Np} = {i +
j, k}, if σ(i, j, k) = N, we must have σ(i + s, j − s, k) = N for all s ∈ {1, 2, . . . , j}.
Lemma 1 implies that under any equilibrium strategy, an ordinary customer does

not purchase priority unless all other customers ahead of her in the ordinary line do.
This is consistent with the first-come-first-upgrade rule whereby an ordinary customer
with a more advanced (resp., backward) position in the ordinary line also receives a
more advanced (resp., backward) position in the priority line, when the two of them
decide to upgrade to priority at the same time.

Lemma 2 In equilibrium, V (i, j, k) − V (i, j, k + 1) ≥ C/μ.

Lemma 2 gives a lower bound for the difference between V (i, j, k) and V (i, j, k+
1). Intuitively, when there is one more priority customer in the line (all else being
equal), an ordinary customer’s expected utility is reduced by at least the waiting cost
of a service period, but could be more because waiting longer in the ordinary line (if
she does not upgrade) further increases the likelihood of being overtaken (by other
customers).
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Lemma 3 In equilibrium,

(i) if σ(1, j, k) = N, then σ(1, j ′, k′) = N for all j ′ ∈ {0, 1, . . . , j} and k′ ∈
{0, 1, . . . , k};

(ii) if σ(1, j, k) = Y , then σ(1, j ′, k′) = Y for all j ′ ∈ { j, j + 1, . . .} and k′ ∈
{k, k + 1, . . .}.
Lemma 3 suggests that the first customer in the ordinary line is more inclined to

purchase priority when the lines are longer (either due to more customers waiting
behind in the ordinary line or due to more customers waiting ahead in the priority
line). Intuitively, a greater number of other customers standing in the ordinary line
provides the first customer with a greater incentive to upgrade since their presence
spells more competition for priority. More customers being in the priority line also
motivates priority-purchasing because a longer waiting time caused by these priority
customers implies that the first customer is likely to encounter more future arrivals
who pose a threat as prospective competitors for priority.

Based on Definition 1 and Criteria 1–3 and using Lemmata 1–3 as stepping stones,
we nowestablish the structure of pure-strategy equilibrium in the followingTheorem1.
Note that it is a necessary condition for any equilibrium strategy under the three
intuitive criteria.

Theorem 1 A pure-strategy equilibrium under the three intuitive criteria must be of a
state-dependent threshold type as specified by Definition 2.

Definition 2 For aweakly-decreasing sequence of non-negative integers {ns}s∈N0 such
that

n0 = ∞ ≥ n1 ≥ n2 ≥ . . . ≥ n(m−1) > nm = 0 = n(m+1) = n(m+2), . . . , (6)

withm ≤
⌈

μP+C
C

⌉
, we define the following strategy σ : For any No ∈ N and Np ∈ N0,

σ(i, No − i, Np) =
{
Y if i ∈ {1, 2, . . . , n{No,Np}},
N if i ∈ {n{No,Np} + 1, n{No,Np} + 2, . . . , No}, (7)

where

n{No,Np} = min{s|Np + s ≤ n(No−s) − 1, s ∈ N0}. (8)

Making sense of Theorem 1

Let us unpack Theorem 1. First, it states that given any state {No, Np}, an equilibrium
strategy is a state-dependent threshold strategy which specifies that the first and only
the first n{No,Np} ordinary customers should purchase priority; see Eq. (7). Therefore,
n{No,Np} also corresponds to the number of ordinary customers who purchase priority
at state {No, Np} under an equilibrium strategy. Note that n{No,Np} is well-defined
by Eq. (8) and n{No,Np} ≤ No because No is an element that belongs to the set
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Fig. 3 System dynamics under equilibrium strategy σ specified by n0 = ∞, n1 = ∞, n2 = 6, n3 = 3,
n4 = 1 and n5 = n6 = . . . = 0. Note: See the discussion following Corollary 1

{s|Np +s ≤ n(No−s) −1, s ∈ N0}. Because only customers at the front of the ordinary
line purchase priority, the FIFO service order is preserved.

Second, Theorem1 indicates that n{No,Np} should be derived for any given {No, Np}
from a weakly decreasing integer sequence {ns}s∈N0 that only depends on the system
parameters but not the system state; see Eq. (8). It is easier to interpret the relation-
ship between an equilibrium strategy and {ns}s∈N0 through the lens of an equivalent
condition presented in the following Corollary 1.

Corollary 1 In equilibrium, for any given system state {No, Np}, we have σ(i, No −
i, Np) = Y if and only if Np + s ≥ n(No−s) for s ∈ {0, 1, 2, . . . , i − 1}.

Corollary 1 directly follows from Eqs. (7) and (8) in Theorem 1. To see how
Corollary 1 is operationalized,we consider a specific example inFig. 3. In this example,
let us suppose σ is an equilibrium strategy specified by n0 = ∞, n1 = ∞, n2 = 6,
n3 = 3, n4 = 1 and n5 = n6 = . . . = 0 (which satisfies the descending-order
requirement by Theorem 1). At the initial given state {3, 2} (left panel of Fig. 3),
we know by Corollary 1 that σ(i, 3 − i, 2) = Y if and only if 2 + s ≥ n(3−s) for
s = {0, 1, . . . , i − 1}. This implies σ(1, 2, 2) = σ(2, 1, 2) = σ(3, 0, 2) = N which
further implies that the state {3, 2} is a stable state under strategy σ . Next, suppose an
arrival event occurs which brings the system state to {4, 2} (middle panel of Fig. 3).
By applying Corollary 1 to the new state {4, 2}, we know that σ(i, 4 − i, 2) = Y if
and only if 2 + s ≥ n(4−s) for s = {0, 1, . . . , i − 1}. It then follows that σ(1, 3, 2) =
σ(2, 2, 2) = Y and σ(3, 1, 2) = σ(4, 0, 2) = N , meaning the equilibrium strategy σ

prescribes that the first two ordinary customers purchase priority at state {4, 2}. This
results in a system transition to state in {2, 4} (right panel of Fig. 3), and the system
is back to a stable state under σ based on Corollary 1 again. In sum, the first two
customers in the ordinary line in this example originally do not purchase priority, but
later choose to do so when a new customer arrives.
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The second implication of Theorem 1 is the following Corollary 2.

Corollary 2 In equilibrium, the occurrence of a departure event in a stable state will
not trigger any customer to purchase priority.

Corollary 2 follows directly from the condition in Corollary 1 because by plugging
s = 0, we know that a system state is stable if and only if Np < nNo . When a
departure event occurs to a stable state, i.e., Np is reduced by 1 if Np ≥ 1 or No is
reduced by 1 if Np = 0, the condition Np < nNo is preserved because nNo is weakly
decreasing in No (Theorem 1). Intuitively, upon a departure, all customers expect
less cost into the future because they are one step closer to service completion. An
ordinary customer in a more backward position of the ordinary line expects a larger
cost reduction than one in a more forward position because the one in the back is more
vulnerable to being overtaken (because they would stay in the system longer, inviting
more overtaking threats from future arrivals). Hence, a departure event attenuates
the threat from future arrivals and reduces customers’ incentives to purchase priority,
particularly for a customer in the back of the ordinary line. Since those standing in
the back do not purchase priority upon a departure, those in the front are assured of
their positions and thus also have no incentive to purchase. Consequently, all ordinary
customers would stay put in the event of a departure.

3.2.2 Step 2: non-existence of pure-strategy equilibria

Thus far, Theorem1, togetherwithCorollaries 1 and 2, has presented a clear viewof the
equilibrium structure—if equilibrium strategies exist. To characterize the equilibrium
strategies under Criteria 1-3, it is sufficient to focus on the state-dependent threshold
strategies in Definition 2. In this step, we now prove that any pure strategy given by
Definition 2 cannot be sustained in equilibrium.

Theorem 2 Any pure strategy defined by Definition 2 cannot be sustained in equilib-
rium. That is, (E ∩ T ) = ∅.

Combining Theorems 1 and 2 yields the following corollary.

Corollary 3 Under the simultaneous upgrade rule, pure-strategy equilibria do not exist
if the intuitive criteria hold. That is, (E ∩ I) = ∅.

Wewill provide some intuition for why pure-strategy equilibria do not exist through
the lens of a tractable small buffer system that has a buffer size K = 2, i.e., a system
that can hold at most two customers (including the customer in service, if any). A firm
understanding of this simplified setting will shed light on our main model that does
not have a buffer limit (i.e., K = ∞).

3.3 A small buffer system

In this subsection, we analyze a small buffer system with K = 2 to sharpen intuition.
For notational convenience, we define traffic intensity ρ � λ/μ and normalized price
νP � μP/c. Since a small buffer system is always stable, we relax the assumption
λ < μ, i.e., traffic intensity ρ can be less than or greater than 1.
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Theorem 3 Consider a small buffer system with K = 2 subject to the simultaneous
upgrade rule. If νP > 1, then no customers purchasing priority is an equilibrium.
Otherwise, i.e., if νP ≤ 1, there exist no pure-strategy equilibria.

Theorem 3 shows that in a small buffer system, no customers purchasing priority
is an equilibrium strategy for the customers when the priority price is high (νP > 1).
This is intuitive because customers would never purchase priority if the priority price
is higher than the maximum expected reduction in delay cost. More importantly, when
the priority price is not too high (νP ≤ 1), a pure-strategy equilibrium does not exist
(note that this result does not rely on the intuitive criteria as an assumption). In this
case, customers have conflicting interests: a customer that is ahead in the queue only
has an incentive to upgrade if the customer behind her upgrades, whereas the customer
that is behind in the queue only gains from upgrading if the customer ahead does not
upgrade.

When buffer size K increases, “no customers purchasing priority” will be sustained
in equilibrium for any νP > K−1.On the other hand, if νP ≤ K−1,we conjecture that
no pure-strategy equilibria exist. Note that as K gets larger, the condition νP > K −1
becomes more difficult to satisfy, When K ↑ ∞, we conjecture that there will not be
any pure-strategy equilibrium for any P > 0 (we have proved this under the caveat of
three intuitive criteria in Corollary 3).

The non-existence of pure-strategy equilibria implies that the simultaneous upgrade
rulemay be troublesome to implement. In addition, the simultaneous rule requires real-
time updates of system states without delay (as all the customers move at the same
time), which may also pose implementation challenges.

4 Sequential upgrade rule

In this section, we consider an alternative, sequential upgrade rule specified as follows:
Each time a new customer arrives, the service provider sequentially asks each ordinary
customer one at a time whether they wish to purchase priority, with the first customer
in line being called upon first, then the second one, and so on, until all the ordinary
customers are asked. Unlike the simultaneous upgrade rule, customers in this case
cannot purchase priority until it is their turn. They have a single opportunity to upgrade
each time a new customer arrives and if they choose not to upgrade this time, they
must wait until the next customer arrival for a new upgrade opportunity. The sequential
upgrade rule can be implemented with the aid of today’s mobile Internet, which may
efficiently automate the inquiry and upgrade process.

4.1 Equilibrium definition

We set up the in-queue priority-purchasing problem under the sequential rule as a
dynamic game.Consider an ordinary customerwhose position vector is (i, j, k), where
i is the number of ordinary customers ahead of and including her; j , the number of
ordinary customers behind her, and k, the number of priority customers. When it is her
turn to upgrade, we define her (Markovian) strategy to be σ(i, j, k) ∈ {Y , N }, where
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“Y ” indicates “upgrade” (or purchase priority) and “N” indicates “no.” Note that in
most sequential games, it is necessary to specify a player’s strategy as a function of
the possible strategies of all the other players who move before she does (which would
be cumbersome). However, in our case, this information is subsumed by a customer’s
position vector when she is about to decide on upgrading. In other words, what matters
to a customer is not how she reaches her position vector, but what the position vector is
at the moment of decision-making. Therefore, for our purpose, it suffices to condition
customer strategies only on the position vectors, instead of tracking the history of
previous customers’ moves.

Next, we define the value function. Let Vx (i, j, k) denote the expected utility of
a customer with position vector (i, j, k) when the x th ordinary customer is about to
decide on upgrading, for x = 1, . . . , i + j +1. Specifically, Vi (i, j, k) is the expected
utility of customer (i, j, k) when it is her turn to upgrade (right before she acts);
Vi+ j+1(i, j, k) is the expected utility of customer (i, j, k) when the upgrade process
is complete (i.e., after all the ordinary customers have been asked).

Definition 3 A symmetric pure-strategy equilibrium under the sequential upgrade rule
is characterized by any strategy and value-function pair (σ, V ) that satisfies Conditions
(9) through (13):

Vx (i, j, k) =
{
Vx (i − 1, j, k + 1), if σ(x, i + j − x, k) = Y ,

Vx+1(i, j, k), otherwise,

∀x = 1, . . . , i − 1, i ≥ 2, ( j, k) ∈ N0 × N0, (9)

Vi (i, j, k) =
{

− c(k+1)
μ

− P, if σ(i, j, k) = Y ,

Vi+1(i, j, k), otherwise,

∀(i, j, k) ∈ N × N0 × N0, (10)

Vx (i, j, k) =
{
Vx (i, j − 1, k + 1), if σ(x, i + j − x, k) = Y ,

Vx+1(i, j, k), otherwise,

∀x = i + 1 . . . , i + j, (i, j, k) ∈ N × N × N0, (11)

Vi+ j+1(i, j, k) = − C

λ + μ
+ μ

λ + μ
Vi+ j+1(i, j, k − 1) + λ

λ + μ
V1(i, j + 1, k),

∀(i, j, k) ∈ N × N0 × N, (12a)

Vi+ j+1(i, j, 0) = − C

λ + μ
+ μ

λ + μ
Vi+ j (i − 1, j, 0) + λ

λ + μ
V1(i, j + 1, 0),

∀(i, j) ∈ N × N0, (12b)

Vj+1(0, j, 0) ≡ 0, ∀ j ∈ N0, (12c)

Vi (i, j, k) = max

{

−c(k + 1)

μ
− P, Vi+1(i, j, k)

}

,

∀(i, j, k) ∈ N × N0 × N0. (13)
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In Definition 3, Conditions (9) specify the state transition due to the action of the
x th ordinary customer who moves before customer (i, j, k) does. If the x th ordinary
customer upgrades, then customer (i, j, k)’s position vector becomes (i −1, j, k+1)
(because now there is one fewer ordinary customer ahead of her but onemore customer
in the priority line). Note that the next customer who gets to choose whether to upgrade
is still the x th customer in the ordinary line as the original x th customer joins the
priority line. If the x th ordinary customer does not upgrade, then customer (i, j, k)’s
position vector is unchanged before the next customer upgrades, and now the next
customer will be the (x + 1)th customer in the ordinary line. Conditions (10) specify
the state transition due to customer (i, j, k)’s action. Conditions (11) specify the
state transition due to the action of a customer who moves after customer (i, j, k)
does. Conditions (12a) through (12c) specify the state transition due to arrivals and
departures. Note that a new arrival triggers a new round of priority upgrades starting
from the first customer in the ordinary line, and therefore the subscript of the value
function is reset to 1. Conditions (13) ensure that customers indeed maximize their
expected utility by choosing strategy σ provided that other customers choose σ . While
Definition 3 applies to a systemwithout a buffer limit, we can easilymodifyConditions
(12a) through (12c) by imposing boundary conditions that accommodate any finite
buffer K.

Given the complexity of the problem, it is challenging to solve for the equilibrium in
general, but we can nevertheless analytically characterize the equilibrium both under
sufficiently light traffic and sufficiently heavy traffic, which will shed some light on
the equilibrium structure in general.

4.2 Sufficiently light or heavy traffic

We first examine a case of sufficiently light traffic in which arrival rate λ is much
smaller than service rate μ (i.e., λ � μ) such that customers do not need to concern
themselves with future arrivals that are not yet present in the system (because λ � μ

implies that any existing customers in the system will be served long before any future
customers arrive). We first define a threshold-type “X -strategy” below in Definition 4.

Definition 4 (X -Strategy)Whenever the number of ordinary customers reaches X+1,
the X th customer (or equivalently the second last customer) and only that customer
upgrades.

Theorem 4 below shows the X -strategy will arise in equilibrium under sufficiently
low traffic.

Theorem 4 When λ � μ, the X-strategy as defined in Definition 4 with X = �νP� is
a pure-strategy equilibrium, where νP = μP/C.

Under sufficiently light traffic (λ � μ), customers compete only with existing cus-
tomers and can act myopically without loss of optimality. In essence, the underlying
game reduces to a one-shot sequential game. To understand the equilibrium in Theo-
rem 4, consider the example of νP = 1.5. In this case, �νP� = 2, which implies that
the maximum stable ordinary-queue length is 2. As soon as a new customer arrives,
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the number of customers in the ordinary queue temporarily reaches 3, which triggers
the upgrade of the second customer (while the first and third customers stay put), and
the newcomer becomes the one to occupy the second position. In this simple case, it
is easy to verify the equilibrium. Customer 1 loses C/μ by being overtaken, which is
better than paying P = 1.5C/μ to secure her position. Given that Customer 1 does
not upgrade, Customer 2 loses 0.5C/μ by upgrading (paying 1.5C/μ and overtaking
one customer), which is better than losing C/μ by being overtaken by Customer 3
(Customer 3 would upgrade if neither Customers 1 nor 2 were to upgrade). Given that
Customer 1 stays put and Customer 2 upgrades, Customer 3 is better off not upgrading
as she would incur a net cost of 0.5C/μ if he were to upgrade (overtaking Customer
1 and paying 1.5C/μ).

Under sufficiently light traffic, the maximum stable queue length of ordinary cus-
tomers will not exceed �νP� in equilibrium (it may temporarily reach �νP� + 1, but
will immediately return to �νP� upon an upgrade). When the traffic intensity is higher,
the number of customers that can possibly accumulate in the ordinary queue before an
upgrade occurs will only (weakly) decrease as customers are under greater pressure
to defend their position. We summarize this (immediate) result below.

Corollary 4 Under any traffic intensity, in equilibrium, the maximum stable queue
length of ordinary customers cannot exceed �νP�.

Intuitively, as the system experiences more traffic, we would expect the maximum
stable queue length of ordinary customers to decline. In other words, an upgrade is
easier to trigger withmore traffic. Under sufficiently heavy traffic, themaximum stable
queue length may reduce to 1. Theorem 5 below gives precise conditions on when this
equilibrium emerges.

Theorem 5 If and only if ρ ≥ √
νP − 1, the X-strategy as defined in Definition 4 with

X = 1 is a pure-strategy equilibrium, i.e., in this equilibrium, the first and only the
first customer upgrades whenever the number of ordinary customers reaches 2.

Theorem5 shows that under sufficiently heavy traffic, an equilibriumarises inwhich
as soon as two ordinary customers are present, the first customer upgrades. Note that
if the normalized priority price is low, i.e, νP ≤ 1, the condition ρ ≥ √

νP − 1
will in fact be satisfied by any traffic intensity ρ, i.e., the aforementioned equilibrium
strategy holds for any traffic intensity. In this case, since �νP� = 1, the equilibrium
strategy is the same as the one identified in Theorem 4. Nevertheless, for νP ∈ (1, 4),
combining Theorems 4 and 5 indicates that the equilibrium strategy under sufficiently
heavy traffic (when forward-looking customers must take into account future arrivals)
disagrees with the equilibrium strategy under sufficiently light traffic (when customers
can act myopically). Although the exact equilibrium strategy differs, the equilibrium
structure is still the same, both belonging to the families of X -strategies.

This leaves us with the case of νP ≥ 4. In this case, the condition ρ ≥ √
νP − 1

cannot be satisfied by any traffic intensity ρ < 1. Thus, the X -strategy with X = 1
is no longer an equilibrium. Intuitively, a high priority price discourages the first
customer from purchasing priority when the second customer arrives.While the actual
equilibrium eludes us, we show in Theorem 6 below that under sufficiently heavy
traffic, the equilibrium structure will be different from that of X -strategies.
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Theorem 6 If νP ≥ 4 and ρ > νP/(νP + 1), any X-strategy as defined in Definition 4
is not an equilibrium.

When both the traffic intensity and the priority price are high, we have already
explained an X -strategy with X = 1 cannot be an equilibrium; any X -strategy with
X ≥ 2 cannot be an equilibrium either because before the second last customer
upgrades, the customers ahead of her would already have an incentive to purchase
priority in order to preempt competition from future arrivals. Hence, the equilibrium
structure is likely to be more complex. Note that, for any given νP , we can always
satisfy the condition ρ > νP/(νP + 1) in Theorem 6 with sufficiently high traffic
intensity ρ while still guaranteeing stability (ρ < 1).

4.3 Small buffer systems

In this subsection, we investigate customers’ equilibrium strategies in small buffer
systems to sharpen intuition. Specifically, we will first analytically study a queueing
system that can hold at most two customers (i.e, K = 2), similar to what we did for the
simultaneous upgrade rule (see Sect. 3.3). We will then numerically study a queueing
system that can hold at most three customers (i.e., K = 3).

4.3.1 K = 2

If a single ordinary customer is present in the queue, it is straightfoward that the
customer will not upgrade. Thus, since K = 2, specifying customer strategies when
there are two ordinary customers will pin down the equilibrium. Theorem 7 below
characterizes the pure-strategy equilibrium through a tuple in which the first (resp.,
second) element indicates the first (resp., second) ordinary customer’s strategy.

Theorem 7 Consider a small buffer system with K = 2 subject to the sequential
upgrade rule. The unique pure-strategy equilibrium is (Y , N ) if νP ≤ 1 and (N , N )

otherwise.

When the priority price is high (νP > 1), it is intuitive that no customers purchase
priority. However, unlike the simultaneous case (as shown in Theorem 3), when the
priority price is not too high (νP ≤ 1), a pure-strategy equilibrium exists, and in
equilibrium, the first customer upgrades while the second customer does not. Under
the sequential upgrade rule, the first customer gets to decide first. Should she upgrade,
shewould lose P; should she not upgrade, the second customerwould upgrade, causing
the first customer to lose C/μ. Since P ≤ C/μ (or equivalently νP ≤ 1), the first
customer is better off not upgrading, which, in turn, removes the incentive for the
second customer to upgrade.

Note that while the second customer chooses to pass on priority purchasing at the
moment of her arrival, she may eventually upgrade if she moves to the first spot and
a new customer arrives before she completes service. Interestingly, the equilibrium
strategy here does not vary with ρ, suggesting that customers act as if they were
myopic, ignoring future arrivals. We caution that this equivalence between myopic
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and forward-looking behaviors is driven by the assumption K = 2, and does not hold
in general (in fact, it will break when K = 3, as we will see in Sect. 4.3.2). Based on
the equilibrium strategy given in Theorem 7, we further derive the priority revenue in
Corollary 5 below.

Corollary 5 Consider a small buffer system with K = 2 subject to the sequential
upgrade rule. The priority revenue per unit time as a function of νP is given by

�
SQ
K=2(νP ) =

{
Cρ2νP
1+ρ+ρ2 , if νP ≤ 1,

0, if νP > 1.

Next, we compare the priority revenue generated from in-queue priority purchase
subject to the sequential upgrade rule with that from the classical upon-arrival priority
purchase under K = 2. To be clear, in the upon-arrival priority purchase scheme, cus-
tomers are presented with the option to purchase priority only upon arrival and if they
choose not to purchase the moment they arrive, they cannot do so later. The literature
(for example, [1,15]) has shown that customers in this case follow a threshold strategy
in equilibrium: they purchase if and only if the queue length they see upon arrival
reaches a certain threshold. Hassin and Haviv [15] have also shown the possibility of
multiple equilibria.Whenever multiple equilibria arise, we select the Pareto-dominant
equilibrium in which all customers have higher expected utility than they would in
other equilibria. Note that the Pareto-dominant equilibrium effectively corresponds to
the one with the highest threshold. Proposition 1 below characterizes the equilibrium
and the corresponding priority revenue when customers can purchase priority only
upon arrival.

Proposition 1 Consider a small buffer system with K = 2 where customers can
purchase priority only upon arrival. The unique Pareto-dominant pure-strategy equi-
librium strategy is given below.

• If νP ≤ min{ρ, 1}, then all customers purchase priority.
• If ρ < νP < 1, then a customer purchases priority if and only if she sees one
(ordinary) customer in the system upon arrival.

• If νP ≥ 1, then no customers purchase priority.

The priority revenue per unit time as a function of νP is given by

�ARR
K=2(νP ) =

⎧
⎪⎨

⎪⎩

Cρ(1+ρ)νP
1+ρ+ρ2 , if νP ≤ min{ρ, 1},
Cρ2νP
1+ρ+ρ2 , if ρ < νP < 1,

0, if νP ≥ 1.

Next, we compare the maximum revenue (by optimizing over the priority price) of
upon-arrival priority purchase, �ARR

K=2 , and that of in-queue priority purchase subject

to the sequential rule, �SQ
K=2, where

�ARR
K=2 = max

νP
�ARR

K=2(νP ), �
SQ
K=2 = max

νP
�

SQ
K=2(νP ).
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Fig. 4 Comparison of priority revenues in a small buffer system with K = 2. Note. μ = 1, C = 1 and
λ = 0.8

Theorem 8 Consider a small buffer system with K = 2. The optimal revenue of upon-
arrival priority purchase is higher than that of in-queue priority purchase subject to
the sequential rule, i.e., �ARR

K=2 > �
SQ
K=2.

Theorem 8 shows that in a small buffer systemwith K = 2, the upon-arrival priority
purchase scheme yields higher revenue than in-queue priority purchase, although the
latter presents customers with more upgrade opportunities. See Fig. 4 for an illustra-
tion. Recall that in-queue priority purchase lessens customers’ fear of being overtaken
if they do not purchase priority upon arrival by allowing them to defer their purchase
decision. As a result, customers have less of an incentive to purchase than they would
in the upon-arrival case, causing the in-queue purchase scheme to fall short of the
upon-arrival purchase scheme in terms of priority revenue.

More specifically, in the small buffer system, to maximize the priority revenue in
the upon-arrival purchase scheme, the service provider should always charge a low
enough price to induce all customers to purchase priority upon arrival. In particular,
even those who arrive at an empty system will purchase immediately in order to
secure their current position. By contrast, in the sequential in-queue purchase scheme,
customers who arrive at an empty system will never have a motivation to purchase (as
they can always wait until a new customer arrives), which explains the revenue gap
between the upon-arrival and in-queue purchase schemes. Note that in the former, the
Pareto-dominant equilibrium we select in the event of multiple equilibria represents
the most advantageous outcome to customers but the least advantageous as far as
priority revenue is concerned. It implies that the priority revenue of the upon-arrival
purchase scheme we use for comparison is the most conservative prediction of what
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Table 1 The equilibrium
strategies of sequential in-queue
priority purchase under various
prices for K = 3

Priority price P = 1.2 P = 1.5 P = 1.8 P = 2.1

σ(1, 1, 0) Y N N N

σ(2, 0, 0) Y N N N

σ(1, 2, 0) Y Y N N

σ(2, 1, 0) Y Y Y N

σ(3, 0, 0) Y Y Y N

σ(1, 1, 1) Y N N N

σ(2, 0, 1) Y N N N

Type (1) (2) (3) (4)

μ = 1,C = 1, λ = 0.8

may arise in equilibrium, but even this conservative prediction surpasses the revenue
of the in-queue purchase scheme.

While in-queue priority purchase creates more selling opportunities for the service
provider, Theorem 8 tells a cautionary tale against this practice. It implies that the ser-
vice provider may instead benefit from giving customers a buy-it-or-lose-it ultimatum
when they arrive.

4.3.2 K = 3

As a proof of concept, we numerically solve for the pure-strategy equilibrium of
sequential in-queue priority purchase in a system that can hold at most three customers
(i.e., K = 3). In each numerical instance, we enumerate all the possible strategies σ ;
for each given σ , we solve a modified version of Conditions (9) through (12c) that
accommodates the finite-buffer system of K = 3 (a system of linear equations) for the
corresponding the value function V ; we then check if V satisfies (13); if so, the (σ, V )

pair is an equilibrium. In all the numerical instances tested, we have consistently found
a unique equilibrium.

Tables 1 reports the equilibrium strategies under various priority prices for a fixed
arrival rate; Table 2 reports the equilibrium strategies under various arrival rates for
a fixed priority price. For brevity, we only report equilibrium strategies when two or
three ordinary customers are present (because, as argued earlier, if only one ordinary
customer is present, the customer will trivially not upgrade).

We observe four types of possible equilibria:

(1) Whenever the ordinary queue length reaches 2, the first customer upgrades.
(2) Whenever the ordinary queue length reaches 3, the first customer upgrades.
(3) Whenever the ordinary queue length reaches 3, the second customer upgrades.
(4) No customers upgrade.

We make the following observations from Table 1. First, as the priority price
increases, customers are less prone to upgrade (in the sense that we see fewer Y s and
more Ns), which is intuitive. Second, many of the strategies are defined on position
vectors off the equilibrium path but are nevertheless critical to governing equilibrium
behavior. For instance, for P = 1.2, the equilibrium is of type (1), which implies that in
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Table 2 The equilibrium strategies of sequential in-queue priority purchase under various arrival rates for
K = 3

Arrival rate λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

σ(1, 1, 0) N N N N Y

σ(2, 0, 0) N N N N Y

σ(1, 2, 0) N Y Y Y Y

σ(2, 1, 0) Y Y Y Y Y

σ(3, 0, 0) Y Y Y Y Y

σ(1, 1, 1) N N N N Y

σ(2, 0, 1) N N N N Y

Type (3) (2) (2) (2) (1)

μ = 1,C = 1, P = 1.5

equilibrium the system will never reach a state where the first ordinary customer does
not upgrade, i.e., a customer cannot be at position (2, 0, 0) when making a decision,
but should that occur, σ(2, 0, 0) = Y implies the second customer would upgrade.
Third, for both P = 1.5 and P = 1.8, the equilibrium structure is that the arrival of
a third ordinary customer triggers a priority purchase, but the two cases differ in who
is the purchasing customer. When P = 1.5, the priority price is low enough to make
the first customer purchase in order to avoid being overtaken. When P = 1.8, the
priority price is high enough to convince the first customer that not purchasing and
being overtaken is a better choice; seeing the first customer not upgrade, the second
customer upgrades and jumps ahead of the first one.

We make the following observations from Table 2. First, as the arrival rate (and
thus traffic intensity) increases, customers are more prone to upgrade (in the sense
that we see more Y s and fewer Ns). This contrasts the case of K = 2, in which the
equilibrium strategy does not vary with traffic (see Theorem 7), but makes intuitive
sense because a higher traffic intensity implies future arrivals pose a greater threat,
which warrants more preemptive upgrades. Second, when λ = 0.5 (a case of light
traffic), the equilibriumbehavior is of type (3) and indeed agreeswith the one identified
in Theorem 4 for sufficiently light traffic. Third, when the traffic intensity is higher
(λ = 0.6, 0.7, 0.8, 0.9), the equilibrium behavior departs fromwhat occurs under light
traffic. In particular, when λ = 0.6, 0.7, 0.8, the equilibrium is of type (2) and it is not
the second (to the last) customer but the first customer who upgrades. When λ = 0.9,
the equilibrium is of type (1) and the queue length only needs to reach 2, instead of 3,
to trigger an upgrade. Fourth, the number of priority customers (0 or 1) does not affect
the equilibrium strategy, i.e., σ(1, 1, 0) = σ(1, 1, 1) and σ(2, 0, 0) = σ(2, 0, 1). In
fact, we can analytically prove this result, as shown in Theorem 9.

Theorem 9 Consider a small buffer system with K = 3 subject to the sequential
upgrade rule. In a pure-strategy equilibrium, σ(1, 1, 0) = σ(1, 1, 1) and σ(2, 0, 0) =
σ(2, 0, 1).

We caution that the result of Theorem 9 (the equilibrium strategy being independent
of the number of priority customers) is likely driven by the assumption K = 3 and is
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Fig. 5 Comparison of priority revenues for K = 3. Note: μ = 1,C = 1

not meant to be interpreted as a general result that applies to systems with any buffer
size. What is special about K = 3 is that if there is one priority customer and two
ordinary customers in the system, then the system is already full. As a result, the two
ordinary customers would not be much concerned about future arrivals (because they
know the next event can only be a departure). Hence, their strategy in equilibrium is
no different than if the priority customer did not exist. However, this reasoning would
not generalize to a system with a larger buffer and it is reasonable to conjecture that
ordinary customers would act differently should the number of priority customers in
the system differ.

We also numerically compare the priority revenue generated in sequential in-queue
priority purchase with that in the upon-arrival purchasing model. The results are
reported in Fig. 5. We observe that in the system of K = 3, sequential in-queue
priority purchase still generates less revenue than upon-arrival priority purchase (for a
given priority price and under the optimal priority price), which parallels the analytical
insight gleaned from the small buffer system with K = 2 (see Theorem 8).

5 Concluding remarks

The extant priority-purchasing literature has restricted attention to the case where
customers who would like to purchase priority must do so upon arrival to the service
system. A natural alternative is to allow customers to upgrade to priority at any time
after they have joined the (non-priority) line. Under such circumstances, little, if any,
is known about how self-interested customers would behave. Our paper seeks to fill
this gap by formulating a dynamic game that models customers’ in-queue priority-
purchasing behavior.

When the simultaneous upgrade rule is imposed, we find that pure-strategy
equilibria do not exist under certain intuitive criteria, contrasting the extant priority-
purchasing literature, which instead shows the existence and sometimes multiplicity
of pure-strategy equilibria when customers can only purchase priority upon arrival.
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However, when the sequential upgrade rule is implemented, pure-strategy equilibria
may exist. The upgrading behavior can be complex. Under sufficiently light traffic, if
the number of ordinary customers accumulates to a certain threshold, then it is always
the second last customer who upgrades, but in general, it could be a customer from
another position, and the queue-length threshold that triggers an upgrade can also vary
with the traffic intensity. Under sufficiently heavy traffic and a not-too-high priority
price, as soon as two ordinary customers gather, the first customer will upgrade. Our
analytical and numerical results on systems with relatively small buffers consistently
show that in-queue priority purchase does not yield as much revenue as upon-arrival
priority purchase.

To sum up, in priority purchasing, the fundamental conflict among customers is that
those in the front of the queue would like to upgrade only because they fear that those
in the back would upgrade, but those in the back would only gain from upgrading if
customers in the front do not upgrade. The conflict is difficult to resolve when cus-
tomers try to upgrade at the same time, which leads to the potential non-existence of
pure-strategy equilibria under the simultaneous upgrade rule. However, if customers
make upgrade decisions one at a time, then those who decide later can adjust their
decisions to what earlier customers do, which facilitates the resolution of the afore-
mentioned conflict. Thus, under the sequential upgrade rule, it is more promising for
customers to reach pure-strategy equilibria. Moreover, the tension among customers
escalates if a sufficient number of customers congregate and if the threat from future
arrivals intensifies, which explains why a threshold-type equilibrium strategy might
emerge (i.e., an upgrade is triggered only if the number of ordinary customers reaches
a certain threshold), and why this threshold can decrease with the traffic intensity.

Finally, the non-equilibria in the simultaneous case is also partially attributed to the
assumption of homogeneous customers. If customers are heterogeneous in their delay
sensitivity, then the aforementioned conflict can be somewhat alleviated as those who
are more sensitive to waiting are more eager to purchase priority. If delay sensitivity
differs vastly, then customers’ priority purchasing decisions will be mostly driven by
the differences in their delay sensitivity rather than the differences in their relative
positions in the queue.
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Appendix

For the proofs, define Vσ as the value function determined by Condition (1) of Defi-
nition 1 for a given strategy σ . To prove Lemmas 1–3, we first provide the following
two lemmas.

Lemma A. 1 −P − (i + k)C/μ ≤ V (i, j, k) ≤ −kC/μ, ∀(i, j, k) ∈ N × N0 × N0.

In the result above, the upper bound−kC/μ corresponds to the minimum expected
waiting cost of the tagged customer. On the other hand, an ordinary customer at
position (i, j, k) always has the option to upgrade to priority by paying premium P .
Therefore, −P − (i + k)C/μ serves as a lower bound for V (i, j, k) because this
customer’s expected waiting cost with the priority upgrade is at most (i + k)C/μ,
which is evident from Eq. (5).

Lemma A. 2 If strategy σ is an equilibrium strategy, and {i + j, k} is a tran-
sient state under σ , then the new state {i + j − ∑i+ j

s=1 1I{σ(s,i+ j−s,k)=Y }, k +
∑i+ j

s=1 1I{σ(s,i+ j−s,k)=Y }} to which the system transitions under σ , is stable under σ ,
which is then by definition an equilibrium state.

Proof Suppose the new system state
{i+ j−∑i+ j

s=1 1I{σ(s,i+ j−s,k)=Y }, k+∑i+ j
s=1 1I{σ(s,i+ j−s,k)=Y }} is not a stable state under

σ , then without loss of generality (WLOG) there exists some customer with position
(i ′, j ′, k′) at the new state whose equilibrium strategy specifies that σ(i ′, j ′, k′) = Y ,
where i ′ + j ′ = i + j − ∑i+ j

s=1 1I{σ(s,i+ j−s,k)=Y }. Therefore, her maximum expected
utility

Vσ (i ′, j ′, k′) = −P −
[

k′ +
∑i ′−1

s=1
1I{σ(s,i ′+ j ′−s,k)=Y } + 1

]

C/μ

≤ −P − (k′ + 1)C/μ. (A.1)

WLOG, suppose the customer’s position was (i, j, k) at the previous transient system
state {i + j, k}. It is clear that σ(i, j, k) = N because otherwise the customer will not
be in the ordinary line at the new system state. We can infer that there were i − i ′ ≥ 0
and j − j ′ ≥ 0 ordinary customers ahead of and behind her, respectively, at the old
state {i + j, k}, who have purchased priority according to the strategy σ . Because
σ(i, j, k) = N , we have Vσ (i ′, j ′, k′) = Vσ (i, j, k) > −P − [k + (i − i ′) + 1]C/μ

[from (5)] ≥ −P − [k + (i − i ′) + ( j − j ′) + 1]C/μ = −P − (k′ + 1)C/μ which
contradicts inequality (A.1). Therefore, the new system state must be stable under
σ . Furthermore, the new state is also an equilibrium state because σ is given as an
equilibrium strategy. ��

LemmaA.2 implies that when an arrival or departure event occurs to an equilibrium
state (under an equilibrium strategy σ ) and if it creates a transient state, then the
execution of strategy σ at the transient state will bring the system back to another
equilibriumstate in one “iteration” of reshuffling. That is, it cannot occur in equilibrium
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Table 3 Payoff matrix for the i th and (i + 1)th ordinary customers

σ(i + 1, j − 1, k) = Y σ(i + 1, j − 1, k) = N

σ(i, j, k) = Y (U1,U2) (U1,U3)

σ (i, j, k) = N (U3,U1) (U4,U5)

that a rational ordinary customer originally decides not to upgrade, but later changes
her mind even though there is no change in the total queue length (i.e., no arrivals or
departures). Hence, while rational ordinary customers, in principle, must continuously
evaluate the priority-purchasing option, it suffices, in actuality, that they evaluate it
and possibly upgrade only at discrete time points of arrivals or departures. Moreover,
this result also implies that in Definition 1, we can substitute Eqs. (3a)–(3b) and (4) for
V (i ′, j ′, k′) in both Conditions (1) and (5) [i.e., the “if” part of Conditions (3a)–(3b)
will be guaranteed by Condition (5)]. Hence, we are effectively left with two sets
of equilibrium conditions: Condition (1) maps strategies to value functions, whereas
Condition (5) corresponds value functions to their necessitated strategies.

Proof of Lemma 1 For part (i), it suffices to prove that σ(i, j, k) = N implies σ(i +
1, j −1, k) = N . Given system state {i + j, k}, let nb := ∑i−1

s=1 1I{σ(s,i+ j−s,k)=Y } and
na := ∑i+ j

s=i+2 1I{σ(s,i+ j−s,k)=Y }. That is, nb and na denote the number of ordinary
customers in the ordinary line, before and after both the i th and the (i + 1)th ordinary
customers, who will purchase priority according to strategy σ at state {i + j, k}. We
can generate the expected utilities for the i th and the (i+1)th ordinary customers when
their priority-purchasing decisions are Y or N . The 2 × 2 payoff matrix is presented
in Table 3, where U1 = −P − (k + 1 + nb)C/μ, U2 = −P − (k + 2 + nb)C/μ,
U3 = Vσ (i −nb, j −1−na, k +na +nb +1),U4 = Vσ (i −nb, j −na, k +na +nb)
and U5 = Vσ (i + 1 − nb, j − 1 − na, k + na + nb).

Suppose σ(i, j, k) = N and σ(i + 1, j − 1, k) = Y form an equilibrium between
the two players. Then we must have U3 > U1 and U1 ≥ U5 (recall that a customer
prefers purchasing priority if both the priority and the non-priority options generate
the same expected utility). It follows that U3 > U5 which implies Vσ (i − nb, j −
1 − na, k + na + nb + 1) > Vσ (i − nb + 1, j − na − 1, k + na + nb), but this is a
contradiction to Criterion 3. Therefore, σ(i, j, k) = N and σ(i + 1, j − 1, k) = Y
cannot be an equilibrium between the i th and the (i + 1)th ordinary customers, which
implies that if σ(i, j, k) = N , then σ(i + 1, j − 1, k) = N . By recursive induction, it
is easy to see that σ(i + s, j − s, k) = N for all s ∈ {1, 2, . . . , j}. On the other hand,
part (i) implies part (ii). ��
Proof of Lemma 2 Case (1) Suppose {i+ j, k+1} is a stable state under σ (which is an
equilibrium state becauseσ is an equilibrium strategy), then one of the two transactions
can happen: i) With probability λ

λ+μ
, a new arrival occurs (before a departure does);

and ii) with probability μ
λ+μ

, a departure occurs (first). Therefore, the expected utility
of the customer with position (i, j, k + 1) is equal to

Vσ (i, j, k + 1)
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= − C

λ + μ
+ λ

λ + μ
Vσ (i, j + 1, k + 1) + μ

λ + μ
Vσ (i, j, k)

≤ − C

λ + μ
+ λ

λ + μ
Vσ (i, j, k + 1) + μ

λ + μ
Vσ (i, j, k) by Criterion 2,

which implies Vσ (i, j, k)−Vσ (i, j, k+1) ≥ C/μ after quick algebra manipulations.
Case (2) Suppose {i + j, k + 1} is a transient state under σ . We shall consider two

subcases.
Case (2)-a: If σ(i, j, k + 1) = Y , by Lemma 1(i) we have σ(s, i + j − s, k +

1) = Y for all s ∈ {1, 2, . . . , i − 1}. By the first-come-first-upgrade rule, we have
Vσ (i, j, k+1) = −P − (i + k + 1)C/μ. It follows from Lemma 1 that Vσ (i, j, k) ≥
−P− (i + k)C/μ = Vσ (i, j, k+1)+C/μ, which implies Vσ (i, j, k)−Vσ (i, j, k+
1) ≥ C/μ.

Case (2)-b: If σ(i, j, k + 1) = N , we must have σ(s, i + j − s, k + 1) = N
for s ∈ {i + 1, i + 2, . . . , i + j} from Lemma 1(ii). There must exist a largest
n ∈ {1, 2, . . . , i−1} such thatσ(n, i+ j−n, k+1) = Y because otherwise {i+ j, k+1}
would be a stable state. By Lemma 1(i), we have σ(s, i + j − s, k + 1) = Y for all
s ∈ {1, 2, . . . , n}. Therefore, n corresponds to the number of ordinary customers who
will purchase priority at state {i+ j, k+1} according to σ . By Lemma 2, {i+ j, k+1}
will evolve into an equilibrium state {i + j − n, k + n + 1} according to σ . The
position of the customer who had position (i, j, k + 1) at state {i + j, k + 1} becomes
(i−n, j, k+n+1) at {i+ j−n, k+n+1} and her expected utility is given according
to (5) by

Vσ (i, j, k + 1) = Vσ (i − n, j, k + n + 1). (A.2)

Because the new state is stable under σ , we know by Case (1) that Vσ (i − n, j, k +
n) − Vσ (i − n, j, k + n + 1) ≥ C/μ, which implies

Vσ (i − n, j, k + n) ≥ Vσ (i − n, j, k + n + 1) + C/μ, (A.3)

Finally, Vσ (i, j, k) ≥ Vσ (i −n, j, k+n) [by Criterion 3]≥ Vσ (i −n, j, k+n+1)+
C/μ [by (A.3)] = Vσ (i, j, k + 1)+C/μ [by (A.2)], which implies that Vσ (i, j, k)−
Vσ (i, j, k + 1) ≥ C/μ. ��
Proof of Lemma 3 For part (i), because σ(1, j, k) = N , we know by (5) that

Vσ (1, j, k) > −P − (k + 1)C/μ. (A.4)

It follows that Vσ (1, j −1, k) ≥ Vσ (1, j, k) [by Criterion 1] > −P − (k + 1)C/μ

[by (A.4)]. Wemust have σ(1, j−1, k) = N by (5) when σ is an equilibrium strategy.
On the other hand, we know Vσ (1, j, k − 1) ≥ Vσ (1, j, k) + C/μ [by Lemma 2]
> −P −kC/μ [by (A.4)], which implies σ(1, j, k−1) = N . By recursive induction,
we can deduce that σ(1, j ′, k′) = N for all j ′ ∈ {0, 1, . . . , j} and k′ ∈ {0, 1, . . . , k}.

For part (ii), because σ(1, j, k) = Y , we know by (5) that

Vσ (1, j, k) ≤ −P − (k + 1)C/μ. (A.5)
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It follows that Vσ (1, j + 1, k) ≤ Vσ (1, j, k) [by Criterion 1] ≤ −P − (k + 1)C/μ

[by (A.5)]. We must have σ(1, j +1, k) = Y by (5) when σ is an equilibrium strategy.
On the other hand, we know Vσ (1, j, k + 1) ≤ Vσ (1, j, k) − C/μ [by Lemma 2]
≤ −P − (k + 2)C/μ [by (A.5)], which implies that σ(1, j, k + 1) = Y . By recursive
induction, we can deduce that σ(1, j ′, k′) = Y for all j ′ ∈ { j, j + 1, . . .} and k′ ∈
{k, k + 1, . . .}. ��
Proof of Theorem 1 Suppose σ is an equilibrium strategy. We will prove Theorem 1 in
four steps.

Step (i): We should show that for any i ∈ {1, 2, . . .}, there exists a unique threshold
ni ∈ N0 such that σ(1, i −1, k) = Y if and only if k ≥ ni . By Lemma 2, we know that
the expected utility of an ordinary customerwith position (1, i−1, k) is decreasing in k
and that Vσ (1, i−1, k)−Vσ (1, i−1, k+1) ≥ C/μ.We discuss two cases. Case (1): If
Vσ (1, i−1, 0) ≤ −P−C/μ, then clearly σ(1, i−1, 0) = Y . It follows fromLemma 3
that σ(1, i − 1, k) = Y for all k ∈ {0, 1, . . .}, so ni is equal to zero in this case. Case
(2): If Vσ (1, i−1, 0) > −P−C/μ, i.e., Vσ (1, i−1, 0)−[−P−C/μ] > 0, we define
g(k) := Vσ (1, i − 1, k) − [−P − (k + 1)C/μ] > 0 for k ∈ N0 and, by construction,
g(0) > 0. Moreover, because Vσ (1, i − 1, k) is reduced by C/μ or more each time k
increases by 1 (by Lemma 2), it is clear that g(k) weakly decreases in k. Therefore,
either g(k) stays positive for all k ∈ N0 or it crosses zero at least once. Either way, there
exists a unique threshold ni ≥ 1, which can possibly be infinity, such that g(k) > 0 for
k ∈ {0, 1, 2, . . . , ni − 1} and g(k) ≤ 0 for k ∈ {ni , ni + 1, ni + 2, . . .}. Equivalently,
we have Vσ (1, i − 1, k) > −P − (k + 1)C/μ for k ∈ {0, 1, 2, . . . , ni − 1} and
Vσ (1, i − 1, k) ≤ −P − (k + 1)C/μ for k ∈ {ni , ni + 1, ni + 2, . . .}, which implies
that σ(1, i − 1, k) = Y if and only if k ≥ ni .

Step (ii): We should show that σ(2, i − 2, k) = Y if and only if k ≥ ni and
k+1 ≥ n(i−1). We discuss two cases. Case (1): If k ≤ ni −1, then σ(1, i −1, k) = N
by the definition of ni in Step (i) which implies σ(2, i − 2, k) = N by Lemma 1.
Therefore, σ(2, i − 2, k) �= Y when k ≤ ni − 1. Case (2): Consider k ≥ ni , i.e.,
σ(1, i, k) = Y . There are two subcases. Case (2)-a: Suppose σ(2, i − 2, k) = N ,
we must have σ(s, i − s, k) = N for s ∈ {2, 3, . . . , i} by Lemma 1. That is, only
the ordinary customer at the head of the ordinary line purchases priority at system
state {i, k}, according to σ . The resulting state {i − 1, k + 1} is a stable state under
σ by Lemma 2. The position of the tagged customer changes from (2, i − 2, k) (at
system state {i, k}) to (1, i − 2, k + 1) (at system state {i − 1, k + 1}). Because
σ(1, i−2, k+1) = N due to the definition of a stable state, we have k+1 ≤ n(i−1)−1
again by the definition of ni in Step (i). Therefore, when k ≥ ni , we have shown
σ(2, i − 2, k) = N ⇒ k + 1 ≤ n(i−1) − 1. By the contrapositive argument, this
means

k + 1 ≥ n(i−1) ⇒ σ(2, i − 2, k) = Y when k ≥ ni . (A.6)

Case (2)-b: Now suppose σ(2, i − 2, k) = Y . Because σ(1, i − 1, k) = Y from the
assumption of Case (2), we have Vσ (2, i − 2, k) = −P − (k + 2)C/μ. We should
prove by contradiction that k + 1 ≥ n(i−1). If not, i.e., if k + 1 ≤ n(i−1) − 1, it means
σ(1, i − 2, k + 1) = N by the definition of ni in Step (i). It follows that the expected
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utility of a customer with position (1, i − 2, k + 1) satisfies Vσ (1, i − 2, k + 1) >

−P − (k + 2)C/μ = Vσ (2, i − 2, k), which contradicts Criterion 3. Therefore, we
must have

σ(2, i − 2, k) = Y ⇒ k + 1 ≥ n(i−1) when k ≥ ni . (A.7)

Based on (A.6) and (A.7), we can conclude that σ(2, i−2, k) = Y if and only if k ≥ ni
and k+1 ≥ n(i−1). By recursive induction, we can deduce that, for any customer with
position (s, i − s, k),

σ(s, i − s, k) = Y if and only if k + t ≥ n(i−t) for t = {0, 1, . . . , s − 1}. (A.8)

Furthermore, at the system state {No, Np} = {i, k}, σ(s, i − s, k) = Y implies
σ(t, i − t, k) = Y for t ∈ {1, 2, . . . , s} by Lemma 1, which means that there exists
max{s|σ(s, i − s, k) = Y , s ∈ N0}. Therefore, n{i,k} = ∑i

s=1 1I{σ(s,i−s,k)=Y } =
max{s|σ(s, i − s, k) = Y , s ∈ N0} = min{s|σ(s, i − s, k) = N , s ∈ N0} − 1 =
{s|k + t ≥ n(i−t) for t ∈ {0, 1, . . . , s − 1} and k + s ≤ n(i−s) − 1} [by (A.8)]
= min{s|k + s ≤ n(i−s) − 1, s ∈ N0}. Thus, n{No,Np} = min{s|Np + s ≤ n(No−s) −
1, s ∈ N0}.

Step (iii):We shall nowprove by contradiction thatn(i−1) ≥ ni for all i ∈ {2, 3, . . .}.
Suppose there were some i ∈ {2, 3, . . .} such that n(i−1) < ni , then ni − n(i−1) ≥ 1.
Let ki = ni − n(i−1) − 1 ≥ 0, so by construction ni − 1 = n(i−1) + ki . It follows that
Vσ (1, i−1, ni−1) ≤ Vσ (1, i−2, ni−1) [byCriterion 1]= Vσ (1, i−2, n(i−1)+ki ) ≤
Vσ (1, i − 2, n(i−1)) − kiC/μ [by Lemma 2] = −P − (n(i−1) + ki + 1)C/μ [by Step
(i)]= −P−niC/μ. The fact that Vσ (1, i−1, ni −1) ≤ −P−niC/μ implies that the
best response for the customer with position (1, i − 1, ni − 1) is to purchase priority
under σ , which is a contradiction to the definition of ni in Step (i). Therefore, we must
have n(i−1) ≥ ni for all i ∈ {2, 3, . . .}.

Step (iv): We shall ‘ m ∈ N such that n(m) = 0. Otherwise, ni ≥ 1 for all
i ∈ {1, 2, . . .}. It follows by the definition of ni in Step (i) that σ(1, i−1, 0) = N for all
i ∈ {1, 2, . . .}. Asσ is an equilibriumstrategy, byLemma1,wehaveσ(s, i−s, 0) = N
for all s ∈ {1, 2, . . . , i}, i.e., no customer purchases priority when the priority line is
empty. It follows that −iC/μ ≥ Vσ (i, 0, 0) > −P −C/μ. However, −iC/μ cannot
be greater than −P − C

μ
for all i ∈ N because limi→∞ −iC/μ = −∞. Therefore,

by contradiction, there exists a minimum m ∈ N such that nm = 0 and, by Step (ii),
ni > 0 for i ∈ {1, 2, . . . ,m − 1} and ni = 0 for i ∈ {m + 1,m + 2, . . .}. Finally, let
m :=

⌈
μP+C

C

⌉
for which it is easy to verify that

− mC/μ ≤ −P − C/μ, (A.9)

and in what follows we will establish that m ≤ m. Suppose m > m, then nm > 0
which implies that σ(1,m − 1, 0) = N by the definition of ni in Step (i). Because
σ is an equilibrium strategy, we have σ(s,m − s, 0) = N for s ∈ {1, 2, . . . ,m} by
Lemma 1, and in particular σ(m, 0, 0) = N . It follows from (5) that

Vσ (m, 0, 0) > −P − C/μ. (A.10)
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Let�1 and�2 be sample spaces that contain sample paths for a customer with position
(m, 0, 0) to and not to purchase priority, respectively, according to σ , before she
completes her service. If ω ∈ �1, it is clear that Vσ (m, 0, 0|ω ∈ �1) ≤ −P − C/μ.
If ω ∈ �2, then the (m − 1) ordinary customers in the ordinary line before the tagged
customer with position (m, 0, 0) will always get served before her so Vσ (m, 0, 0|ω ∈
�2) ≤ −mC/μ ≤ −P − C/μ [by (A.9)]. Therefore, Vσ (m, 0, 0) = Pr(ω ∈ �1) ·
Vσ (m, 0, 0|ω ∈ �1) + Pr(ω ∈ �2) · Vσ (m, 0, 0|ω ∈ �2) ≤ −P − C/μ which

contradicts (A.10). Therefore, we must have m ≤ m =
⌈

μP+C
C

⌉
. ��

Proof of Corollary 1 By (7) and (8), we know that σ(i, No − i, Np) = Y if and only
if i ∈ {1, 2, . . . , n{No,Np}}, where n{No,Np} = min{s|Np + s ≤ n(No−s) − 1, s ∈ N0}.
By the definition of n{No,Np}, it is clear that Np + s ≥ n(No−s) for 1 ≤ s < n{No,Np}
and s ∈ N. Therefore, if σ(i, No − i, Np) = Y , we must have Np + s ≥ n(No−s) for
s ∈ {1, 2, . . . , i − 1} because i ≤ n{No,Np}. On the other hand, if Np + s ≥ n(No−s)

for s ∈ {1, 2, . . . , i −1}, it implies that i ≤ n{No,Np} so σ(i, No − i, Np) = Y . Hence,
σ(i, No − i, Np) = Y if and only if Np + s ≥ n(No−s) for s ∈ {0, 1, 2, . . . , i − 1}. ��
Corollary 6 In a candidate pure strategy, n{No,Np} is weakly increasing in No and in
Np.

Proof of Corollary 6 Consider two system states {No, Np} and {No + 1, Np}. Suppose
0 ≤ n{No+1,Np} < n{No,Np}. Then n{No,Np} ≥ 1which implies thatσ(1, No−1, Np) =
Y . Then by the definition of n{No+1,Np} from (8), we have Np + n{No+1,Np} ≤
n(No+1−n{No+1,Np })−1, or equivalently, Np+[n{No+1,Np}−1] ≤ n(No−[n{No+1,Np }−1])−
2. If n{No+1,Np} ≥ 1, then [n{No+1,Np} − 1] ∈ {Np + s ≤ n(No−s) − 1, s ∈ N0} which
implies n{No,Np} ≤ n{No+1,Np} and it brings about a contradiction to n{No+1,Np} <

n{No,Np}. Otherwise, if n{No+1,Np} = 0, then σ(1, No, Np) = N , which implies
σ(1, No−1, Np) = N by Lemma 3 and it is a contradiction to σ(1, No−1, Np) = Y .
Therefore, we must have n{No+1,Np} ≥ n{No,Np}.

On the other hand, we can consider two system states {No, Np} and {No, Np +
1}. Suppose 0 ≤ n{No,Np+1} < n{No,Np}. Then n{No,Np} > 1, which implies that
σ(1, No − 1, Np) = Y . Then, by the definition of n{No,Np+1} from (8), we have
Np + 1 + n{No,Np+1} ≤ n(No−n{No,Np+1}) − 1, or equivalently, Np + n{No,Np+1} ≤
n(No−n{No,Np+1}) − 2. It follows that n{No,Np+1} ∈ {Np + s ≤ n(No−s) − 1, s ∈ N0},
which implies n{No,Np} ≤ n{No,Np+1} and is a contradiction to n{No,Np+1} < n{No,Np}.
Therefore, we must have n{No,Np+1} ≥ n{No,Np}.

By recursive induction, we can conclude that n{No,Np} weakly increases in No and
in Np. ��
Proof of Corollary 2 Given an equilibrium strategy σ , it is sufficient to show that the
occurrence of a departure event to a stable state always leads to another stable state.
Let (No, Np) be an arbitrary stable state. Then we must have σ(i, No − i, Np) = N
for i ∈ {1, 2, . . . , No}, i.e., n{No,Np} = min{s|Np + s ≤ n(No−s) − 1, s ∈ N0} = 0.
We shall show that the occurrence of a departure event will transform (No, Np) into
another stable state.

Case (i): Suppose Np ≥ 1. Then a departure event transforms the state (No, Np)

into (No, Np − 1). By Corollary 6 (whose proof does not require Corollary 2), we
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know that n{No,Np−1} ≤ n{No,Np} = 0, which implies that σ(i, No − i, Np − 1) = N
for i ∈ {1, 2, . . . , No}, so (No, Np − 1) is a stable state.

Case (ii): Suppose Np = 0. Then a departure event transforms the state (No, 0) into
(No − 1, 0). By Corollary 6, we know that n{No−1,0} ≤ n{No,0} = 0, which implies
that σ(i, No − 1 − i, 0) = N for i ∈ {1, 2, . . . , No − 1}, so (No − 1, 0) is a stable
state. ��
Proof of Theorem 2 Consider a strategy σ that is defined according to Definition 2.
If all customers follow σ , the system is FIFO. If σ is an equilibrium, we must have
σ(1, 0, k) = N for all k ∈ N0, because for a customer with position (1, 0, k), her
expected utility for purchasing priority is strictly dominated by not purchasing. For
example, the customer can consider strategy σ ′ which specifies that she should pur-
chase priority as long as a new arrival occurs before her service completion. Then we
have

Vσ,σ ′ (1, 0, k) =
(

μ

λ + μ

)k+1 (

− (k + 1)C

μ

)

+
(

1 −
(

μ

λ + μ

)k+1
)(

−P − (k + 1)C

μ

)

> −P − (k + 1)C

μ
, (A.11)

where (
μ

λ+μ
)k+1 is the probability that there are no new arrivals before she completes

her service. Therefore, n{No,Np} = 0 when No = 1 for all Np ∈ N0. It follows from the
definition of n{No,Np} (see Definition 2) that Np ≤ n1 − 1 for all Np ∈ N0, implying
that n1 = ∞.

Then we must have m ≥ 2. Consider a customer with position (2, 0, k) for any
k. Under strategy σ , this tagged customer will purchase priority only if the customer
before her in the regular queue also purchases. That is, if σ(1, 1, k) = N , we must
have σ(2, 0, k) = N . If σ(1, 1, k) = Y , this tagged customer is still better off by not
upgrading to priority because Vσ (2, 0, k) = Vσ (1, 0, k + 1) > −P − (k+2)C

μ
(A.11).

Therefore, under equilibrium, we have σ(2, 0, k) = N for all k ∈ N0. Therefore, if σ

is an equilibrium, the customer with position (1, 1, k)will not be overtaken by the one
after her. Then it is not necessary for the customer with position (1, 1, k) to purchase
priority. In other words, we have σ(1, 1, k) = N which implies that n2 = ∞.

Now let us assume that ni = ∞ for i = 1, 2, . . . ,m−1, wherem−1 ≥ 2. Consider
the customer with position (m, 0, k) for any k. Denote by nb the number of customers
before her who choose to purchase priority under σ . If σ is an equilibrium, we must
have

(1) If nb < m − 1, then σ(m, 0, k) = N by the definition of σ .
(2) If nb = m − 1, then all customers before the tagged customer would purchase

priority, we consider two cases: (i) if σ(m, 0, k) = Y , then it gives the customer a
utility of Vσ (m, 0, k) = −P− (m+k)C

μ
. (ii) if σ(m, 0, k) = N , then Vσ (m, 0, k) =

Vσ (1, 0, k + m − 1) > −P − (m+k)C
μ

because n1 = ∞. That is, σ(m, 0, k) = N
is the best response for the tagged customer.

Therefore, if σ is an equilibrium, we have σ(m, 0, k) = N for any k ∈ N0. Then
we must have σ(m − 1, 1, k) = N , too. Otherwise, if σ(m − 1, 1, k) = Y , by the
definition of σ we must have σ(i,m − i − 1, k) = Y . In this case, consider strategy
σ ′ where the tagged customer with position (m − 1, 1, k) purchases priority if and
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only if there is a new arrival before she completes service. Then Vσ (m − 1, 1, k) =
−P − (m+k−1)C

μ
≥ Vσ (1, 1,m+ k−2) > Vσ,σ ′(1, 1,m+ k−2) > −P − (m+k−1)C

μ
,

which brings up a contradiction to σ(m − 1, 1, k) = N . Therefore, we can derive that
σ(1,m − 1, k) = N for all k ∈ N0, which implies that nm > k for all k ∈ N0, i.e.,
nm = ∞.

This contradicts our result in Theorem 1 that nm = 0. That is, we can conclude that
any strategy defined by Definition 2 cannot be an equilibrium, i.e., (E ∩ T ) = ∅. ��
Proof of Corollary 3 By Theorem 2, we have (E∩T ) = ∅which implies (E∩I) � T .
Recall we have established in Step 1 that if (E ∩ I) �= ∅ then (E ∩ I) ⊆ T . By the
contrapositive argument, we have (E ∩ I) = ∅. ��
Proof of Theorem 3 Let σ̂ denote a customer’s best response to strategy σ adopted by
all other customers, and σ ′ the strategy that the customer will purchase priority as
long as there is a new arrival to the system. In the best response σ̂ , a customer with
position (1, 0, 0) or (1, 0, 1) chooses to stay in the regular line because

Vσ̂ ,σ (1, 0, 0) ≥ Vσ ′,σ (1, 0, 0)

= − C

λ + μ
+ λ

λ + μ
·
(

−P − C

μ

)

+ μ

λ + μ
· 0

> −P − C

μ
,

Vσ̂ ,σ (1, 0, 1) ≥ Vσ ′,σ (1, 0, 1) = −C

μ
+ Vσ ′,σ (1, 0, 0) > −P − 2C

μ
.

Therefore, an equilibrium strategy σ must have σ(1, 0, 0) = σ(1, 0, 1) = N .
Next, we examine the system state with two regular customers in the queue, the first

customer holding the position (1, 1, 0) and the second customer holding the position
(2, 0, 0). We investigate the strategies of customers at positions (1, 1, 0) and (2, 0, 0)
by specifying the payoffs under different strategy combinations:

(1) If σ(1, 1, 0) = N and σ(2, 0, 0) = N , we have Vσ (1, 1, 0) = −C
μ

and

Vσ (2, 0, 0) = − 2C
μ
.

(2) If σ(1, 1, 0) = N and σ(2, 0, 0) = Y , then Vσ (2, 0, 0) = −P − C
μ
. And

we have Vσ (1, 1, 0) = Vσ (1, 0, 1) = −C
μ

+ Vσ (1, 0, 0). Notice that under a

strategy σ , Vσ (1, 0, 0) = − C
λ+μ

+ λ
λ+μ

Vσ (1, 1, 0)+ μ
λ+μ

Vσ · 0. Combining the

two equations above, we can obtain that Vσ (1, 1, 0) = − (2+ρ)C
μ

.

(3) If σ(1, 1, 0) = Y and σ(2, 0, 0) = N , then Vσ (1, 1, 0) = −P− C
μ
. And we have

Vσ (2, 0, 0) = −C
μ

+ Vσ (1, 0, 0). Notice that under a strategy σ , Vσ (1, 0, 0) =
− C

λ+μ
+ λ

λ+μ
(−P − C

μ
) + μ

λ+μ
Vσ · 0. Combining the two equations above, we

can obtain that Vσ (1, 1, 0) = − 2C
μ

− ρ
1+ρ

P .

(4) If σ(1, 1, 0) = Y , σ(2, 0, 0) = Y , we have Vσ (1, 1, 0) = −P − C
μ

and

Vσ (2, 0, 0) = −P − 2C
μ
.
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Table 4 Payoff matrix for customers with positions (1, 1, 0) and (2, 0, 0)

σ (2, 0, 0) = Y σ(2, 0, 0) = N

σ(1, 1, 0) = Y (−P − C
μ ,−P − 2C

μ ) (−P − C
μ , − ρ

1+ρ
P − 2C

μ )

σ(1, 1, 0) = N (− (2+ρ)C
μ , −P − C

μ ) (−C
μ ,− 2C

μ )

Combing cases (1)–(4) above yields a 2 × 2 payoff matrix between the customers
with positions (1, 1, 0) and (2, 0, 0), as shown in Table 4.

From Table 4, given σ(1, 1, 0) = Y , then the best response of the customer with
position (2, 0, 0) must be N because −P − 2C

μ
< − ρ

1+ρ
· P − 2C

μ
. Therefore, (Y ,Y )

cannot be an equilibrium. However, (Y , N ) cannot be an equilibrium, either; this is
because given σ(2, 0, 0) = N , the best response of the customerwith position (1, 1, 0)
must be N because −P − C

μ
< −C

μ
. Furthermore, when P > C

μ
, we have −P − C

μ
<

− 2C
μ

and−P − C
μ

< −C
μ
; thus (N , N ) is an equilibrium. When 0 < P ≤ C

μ
, we have

−P − C
μ

≥ − 2C
μ

> − (2+ρ)C
μ

, so neither (N , N ) nor (N ,Y ) is an equilibrium. This
completes the proof. ��
Proof of Proposition 1 We define the probability to purchase priority to be pr(i, j) ∈
[0, 1] for an arriving customer when there are i ordinary and j priority customers
in the system, where (i, j) ∈ �s = {(0, 0), (0, 1), (1, 0)}. For any given pr(i, j),
(i, j) ∈ �s , similarly to the proof of Theorem 3, we can obtain the expected utilities
of the tagged customer below:

(1) Upon seeing state (1, 0), if the tagged customer chooses to purchase, i.e.,
pr ′(1, 0) = 1, her expected utility is Vσ (0, 0) = −C

μ
− P . Otherwise, if

pr ′(1, 0) = 0, we have Vσ (0, 0) = −C
μ

· 2(1+ρ)−pr(1,0)ρ
1+ρ−pr(1,0)ρ . Therefore, (i)

pr(1, 0) = 1 is an equilibrium if and only if −C
μ

− P ≥ −C
μ

· 2(1+ρ)−ρ
1+ρ−ρ

⇔
νP ≤ 1 + ρ; (ii) pr(1, 0) = 0 is an equilibrium if and only if −C

μ
− P ≤

−C
μ

· 2(1+ρ)
1+ρ

⇔ νP ≥ 1; (iii) Any pr(1, 0) ∈ (0, 1) is an equilibrium if and only

if−C
μ

− P = −C
μ

· 1+ρ
1+ρ−pr(0,0)ρ , i.e., pr(1, 0) = νP−1

νP
· 1+ρ

ρ
∈ [0, 1]. Notice that

pr(1, 0) = 0 is the unique Pareto-dominant equilibrium strategy in the presence
of multiple equilibria. Thus, the unique Pareto-dominant equilibrium strategy is

pre(1, 0) =
{
1, if νP < 1,
0, if νP ≥ 1.

(2) Upon seeing state (0, 0), if the tagged customer chooses to purchase, i.e.,
pr ′(0, 0) = 1, her expected utility is Vσ (0, 0) = −C

μ
− P . Otherwise, if

pr ′(0, 0) = 0, we have Vσ (0, 0) = − C
μ+λ

+ λ
μ+λ

[pr(1, 0)Vσ (0, 0) − C/μ],
which gives Vσ (0, 0) = −C

μ
· 1+ρ
1+ρ−pr(1,0)ρ . Thus (i) pr(0, 0) = 1 is an equilib-

rium if and only if −C
μ

− P ≥ −C
μ

· 1+ρ
1+ρ−pr(1,0)ρ ⇔ νP (1+ρ)

(1+νP )ρ
≤ pr(1, 0) ≤ 1;

(ii) pr(0, 0) = 0 is an equilibrium if and only if−C
μ

−P ≤ −C
μ

· 1+ρ
1+ρ−pr(1,0)ρ ⇔

123



Queueing Systems (2021) 97:343–381 377

pr(1, 0) ≤ min
{
1, νP (1+ρ)

(1+νP )ρ

}
; (iii) Any pr(0, 0) ∈ (0, 1) is an equilibrium if and

only if −C
μ

− P = −C
μ

· 1+ρ
1+ρ−pr(0,0)ρ , i.e., pr(1, 0) = νP (1+ρ)

(1+νP )ρ
≤ 1.

(3) Upon seeing state (0, 1), if the tagged customer chooses to purchase, i.e.,
pr ′(0, 1) = 1, her expected utility is Vσ (0, 1) = − 2C

μ
− P . Otherwise,

if pr ′(0, 1) = 0, we have Vσ (0, 1) = −C
μ

− C
μ

· 1+ρ
1+ρ−pr(1,0)ρ = −C

μ
·

2(1+ρ)−pr(1,0)ρ
1+ρ−pr(1,0)ρ . Thus, (i) pr(0, 1) = 1 is an equilibrium if and only if− 2C

μ
−P ≥

−C
μ

· 2(1+ρ)−pr(1,0)ρ
1+ρ−pr(1,0)ρ ⇔ νP (1+ρ)

(1+νP )ρ
≤ pr(1, 0) ≤ 1; (ii) pr(0, 0) = 0 is an

equilibrium if and only if − 2C
μ

− P ≤ −C
μ

· 2(1+ρ)−pr(1,0)ρ
1+ρ−pr(1,0)ρ ⇔ pr(1, 0) ≤

min
{
1, νP (1+ρ)

(1+νP )ρ

}
; (iii) Any pr(0, 1) ∈ (0, 1) is an equilibrium if and only if

pr(1, 0) = νP (1+ρ)
(1+νP )ρ

≤ 1.

Combing cases (1)–(3) above gives

• If νP < 1, (i) when νP ≤ ρ, we have pre(0, 0) = pre(0, 1) = 1; (ii) when
ρ < νP < 1, pre(0, 0) = pre(0, 1) = 0.

• If νP ≥ 1, then pre(0, 0) = pre(0, 1) = pre(1, 0) = 0.

Combining the results above completes the proof of the equilibrium strategies. Next,
we characterize the priority revenue. We consider three cases below:

• If νP ≤ ρ, notice that in equilibrium, the arriving customers will always purchase
priority (if admissible), thenπ1,0 = 0, andwecanget that�ARR

K=2(νP ) = λP(π0,0+
π0,1) = λP(1+ρ)

1+ρ+ρ2 .
• If ρ < νP < 1, the arriving customers will purchase priority when the system
state is found to be (1, 0), then we have �ARR

K=2(νP ) = λPπ1,0 = λPρ

1+ρ+ρ2 .

• If νP ≥ 1, we have �ARR
K=2(νP ) = 0.

��
Proof of Theorem 4 Since λ � μ, future arrivals and the number of existing priority
customers do not affect customer strategies. Thus, without loss of generality, we let the
number of existing priority customers be zero for simplicity. We proceed by backward
induction:

(i) The very last customer with position �νP� + 1: Given the strategies of all the
previous customers, if she upgrades, then her expected utility is −P − 2C

μ
; if

she does not, then her expected utility is − (�νP�+1)C
μ

. Note that −P − 2C
μ

<

− (�νP�+1)C
μ

because �νP� = �μP/C�. Therefore, the very last customer indeed
will not upgrade given the strategies of all the previous customers.

(ii) The second last customer with position �νP�: Given the strategies of all the
previous customers, if she upgrades, then her expected utility is −P − C

μ
. If

she were not to upgrade, then the last customer would upgrade because, for
the last customer, −P − C

μ
≥ − (�νP�+1)C

μ
. Thus, for the second last customer,

the expected utility if she does not upgrade is − (�νP�+1)C
μ

. Since −P − C
μ

≥
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− (�νP�+1)C
μ

, the second last customer will indeed upgrade given the strategies
of all the previous customers.

(iii) Customer with position �νP� − 1: Given the strategies of all the previous cus-
tomers, if she upgrades, her expected utility is−P−C/μ; if she does not upgrade,
then the second last customer and only that customer will upgrade, which implies
that the expected utility of the customer with position �νP� − 1 is −�νP�C/μ.
Since −P − C/μ < −�νP�C/μ, the customer will indeed not upgrade.

(iv) We complete the proof by induction. Suppose customer i does not upgrade
given that all the previous customers do not, i ≤ �νP� − 1. We show that
customer i − 1 also does not upgrade. If customer i − 1 upgrades, her expected
utility is −P − C/μ; if she does not, then her expected utility is −iC/μ. Since
i ≤ �νP�−1,−P−C/μ < −iC/μ, and customer i−1will indeed not upgrade.

��
Proof of Theorem 5 First, we show that under the proposed strategy, if the ordinary
queue has only one customer, the customer will indeed not upgrade. The expected
utility of not upgrading for the customer is V2(1, 0, k):

V2(1, 0, k)

= − C

λ + μ
+ λ

λ + μ

[

−P − (k + 1)C

μ

]

+ μ

λ + μ
V2(1, 0, k − 1), ∀k ≥ 1;

V2(1, 0, 0)

= − C

λ + μ
+ λ

λ + μ

[

−P − C

μ

]

.

Thus,

V2(1, 0, k) = − (k + 1)C

μ
−

[

1 −
(

μ

λ + μ

)k+1
]

P. (A.12)

Therefore, V2(1, 0, k) > − (k+1)C
μ

− P , which implies that the customer will indeed
not upgrade, i.e., σ(1, 0, k) = N ,∀k.

Next, we verify that if ρ ≥ √
νP − 1, under the proposed strategy, customers will

indeed choose σ(i, j, k) = Y for i + j ≥ 2.
For customer (i, j, k) who is about to decide, the expected utility of upgrading is

− (k+1)C
μ

− P . The expected utility of not upgrading under the proposed strategy is
Vi+1(i, j, k) = Vi+1(i, 0, k + j) (because all the customers behind would upgrade):

Vi+1(i, 0, k + j)

= − C

λ + μ
+ λ

λ + μ

[

−P − (k + i + j)C

μ

]

+ μ

λ + μ
Vi+1(i, 0, k + j − 1),

if k + j ≥ 1; (A.13)

Vi+1(i, 0, k + j)
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= − C

λ + μ
+ λ

λ + μ

[

−P − (k + i + j)C

μ

]

+ μ

λ + μ
Vi (i − 1, 0, 0),

if k = j = 0. (A.14)

Thus, upgrading is incentive compatible if and only if

− (k + 1)C

μ
− P ≥ Vi+1(i, 0, k + j), ∀(i, j, k) : i + j ≥ 2. (A.15)

Under the proposed strategy, we can verify that Vi+1(i, 0, k+ j) = Vi+1(i, 0, 0)−(k+
j)C/μ, ∀k ≥ 0, which is decreasing in i and j by (A.13)–(A.13). Thus, Conditions
(A.15) are satisfied if and only if

− (k + 1)C

μ
− P ≥ V2(1, 0, k + 1), ∀k ≥ 0 and (A.16)

− (k + 1)C

μ
− P ≥ V3(2, 0, k), ∀k ≥ 0. (A.17)

Plugging (A.12) into Conditions (A.16) and collecting terms yields

C

μ
≥

(
μ

λ + μ

)k+2

P, ∀k ≥ 0 ⇔ C

μ
≥

(
μ

λ + μ

)2

P ⇔ ρ ≥ √
νP − 1.

Since V3(2, 0, k) − V3(2, 0, k + 1) = C/μ,∀k, (A.17) is equivalent to −C
μ

− P ≥
V3(2, 0, 0). Plugging (A.14) into the inequality gives

−C

μ
− P ≥ − C

λ + μ
+ λ

λ + μ

[

−P − 2C

μ

]

+ μ

λ + μ
V2(1, 0, 0) ⇔

−C

μ
− P ≥ − C

λ + μ
+ λ

λ + μ

[

−P − 2C

μ

]

+ μ

λ + μ

[

−C

μ
− λ

λ + μ
P

]

.

Collecting terms also gives ρ ≥ √
νP − 1.

Therefore, if ρ ≥ √
νP − 1, the proposed strategy σ meets all the equilibrium

conditions, which implies that σ is an equilibrium strategy. This completes this proof.
��

Proof of Theorem 6 Suppose all customers adopt a threshold strategy n ≥ 2, i.e., the
arrival of the (n + 1)th ordinary customer triggers the purchase of the nth ordinary
customer only. For customer at position (1, n − 1, 0), her expected waiting time is
one busy period 1/(μ − λ). Thus, the expected utility by following threshold strategy
n is −C/(μ − λ). If she upgrades, her expected utility is −P − C/μ. Therefore, if
− C

μ−λ
< −P − C/μ ⇔ λ >

μνP
νP+1 , it is optimal for her to deviate and purchase

priority. That is to say, the threshold strategy n ≥ 2 is not an equilibrium. ��
Proof of Theorem 7 LetU∗(1, 0) denote the maximum expected utility of customer in
the system when the system state is (1, 0). Obviously, we have U∗(1, 0) ≤ −C/μ.
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On the other hand, if the customer in the position (1, 0, 0) purchases the priority as
long as an arrival happens before her service completion, her expected utility is given

by − C
λ+μ

+ Cλ(−νP−1)
μ(λ+μ)

. Then we have U∗(1, 0) ≥ C
μ

(
−1 − ρνP

1+ρ

)
.

When the system has two ordinary customers and the strategy of the two cus-

tomers is (Y ,Y ), their expected utility is given by
(
−C

μ
(1 + νP ),−C

μ
(2 + νP )

)
,

accordingly. If their strategy is (Y , N ), the corresponding expected utility is(
−C

μ
(1 + νP ),−C

μ
[1 −U∗(1, 0)]

)
. If their strategy is (N ,Y ), the corresponding

expected utility is
(
−C

μ
[1 −U∗(1, 0)],−C

μ
(1 + νP )

)
. If their strategy is (Y , N ), the

corresponding expected utility is
(
−1,−C

μ
[1 −U∗(1, 0)]

)
. We consider the follow-

ing two cases:

(1) When νP > 1, and all customers adopt strategy N no matter where they are, then
it is not difficult to verify that the best response for each customer is N . Thus
(N , N ) is an equilibrium.

(2) When νP ≤ 1, as U∗(1, 0) ≤ −C
μ
, the best response of customer (2, 0, 0) to

σ(1, 1, 0) = N is Y . Then the expected utility of customer (1, 1, 0) is −C
μ
[1 −

U∗(1, 0)] if she chooses N . Since −C
μ
(1 + νP ) ≥ −C

μ
[1 − U∗(1, 0)], the best

response of customer (1, 1, 0) is Y . Thus (Y , N ) is the unique equilibrium by
noticing that −C

μ
[1 −U∗(1, 0)] > −C

μ
(2 + νP ).

��
Proof of Theorem 8 (1) In upon-arrival priority purchase, it is not difficult to ver-

ify that the optimal priority price is PARR = C min{ρ, 1}/μ. Then �ARR
K=2 =

Cρ min{ρ,1}(1+ρ)

1+ρ+ρ2 .
(2) In sequential in-queue priority purchase, the optimal price is PSQ = C/μ, and

the optimal revenue is �
SQ
K=2 = Cρ2

1+ρ+ρ2 . And it is not difficult to verify that

�ARR
K=2 > �

SQ
K=2, which completes the proof.

��
Proof of Theorem 9 Notice that σ(2, 0, 1) = Y ⇔ −2C/μ − P ≥ −C/μ +
V3(2, 0, 0) ⇔ −C/μ − P ≥ V3(2, 0, 0) and σ(2, 0, 0) = Y ⇔ −C/μ − P ≥
V3(2, 0, 0). It follows that σ(2, 0, 1) = Y ⇔ σ(2, 0, 0) = Y . On the other hand,
we have σ(1, 1, 1) = Y ⇔ −2C/μ − P ≥ V2(1, 1, 1) and σ(1, 1, 0) = Y ⇔
−C/μ − P ≥ V2(1, 1, 0). We consider two cases below:

(i) If σ(2, 0, 1) = σ(2, 0, 0) = Y , it implies that V2(1, 1, 1) = V2(1, 0, 2) =
−C/μ + V2(1, 0, 1) and V2(1, 1, 0) = V2(1, 0, 1). Thus, σ(1, 1, 1) = Y ⇔
−C/μ − P ≥ V2(1, 0, 1) ⇔ σ(1, 1, 0) = Y .

(ii) If σ(2, 0, 1) = σ(2, 0, 0) = N , it implies that V2(1, 1, 1) = V3(1, 1, 1) =
−C/μ + V3(1, 1, 0) and V2(1, 1, 0) = V3(1, 1, 0). Thus, we can still have
σ(1, 1, 1) = Y ⇔ V2(1, 0, 1) ⇔ σ(1, 1, 0) = Y .

Combining the two cases completes the proof. ��
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