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Abstract
Polling systems are systems consisting of multiple queues served by a single server. In
this paper, we analyze polling systems with a server that is self-ruling, i.e., the server
can decide to leave a queue, independent of the queue length and the number of served
customers, or stay longer at a queue even if there is no customer waiting in the queue.
The server decides during a service whether this is the last service of the visit and to
leave the queue afterward, or it is a regular service followed, possibly, by other services.
The characteristics of the last servicemaybe different from the other services. For these
polling systems,we derive a relation between the joint probability generating functions
of the number of customers at the start of a server visit and, respectively, at the end
of a server visit. We use these key relations to derive the joint probability generating
function of the number of customers and the Laplace transform of the workload in the
queues at an arbitrary time. Our analysis in this paper is a generalization of several
models including the exponential time-limited model with preemptive-repeat-random
service, the exponential time-limited model with non-preemptive service, the gated
time-limited model, the Bernoulli time-limited model, the 1-limited discipline, the
binomial gated discipline, and the binomial exhaustive discipline. Finally, we apply
our results on an example of a new polling discipline, called the 1+1 self-ruling server,
with Poisson batch arrivals. For this example, we compute numerically the expected
sojourn time of an arbitrary customer in the queues.
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1 Introduction

Polling systems are systems consisting of multiple queues served by shared servers. In
recent years, polling models were used to model many real-life systems. For instance,
traffic light systems, product-assembly systems, and wireless communication systems
were modeled as polling systems. Good surveys on a broad class of polling models
and their analysis can be found in, for example, [2,14–16].

In the analysis of polling systems, the standardmethodmodels the system at specific
time points as a Markov chain and then relates the state space at these points; see [7].
The kernel relation within this method is the joint length of the queues in the system at
the end of a server visit to queue i , denoted by Q(i), as function of the joint length of
the queues at the start of the visit to Q(i). This relation can be written in the following
general form:

β(i)(z) = Fi (α
(i))(z), (1)

where β(i)(z) is the joint probability generating function (p.g.f.) of the queue lengths at
the end of a server visit to Q(i), α(i)(z) is the joint p.g.f. of the queue lengths at the start
of a server visit to Q(i), and Fi is an operator representing the mapping between the
queue lengths at these time points which depends on the assumed service discipline.

The next step in the analysis is to relate the joint p.g.f. of the queue lengths at the
start of a server visit to Q(i) to the joint p.g.f. of the queue lengths at the end of a server
visit to Q( j), j = 1, . . . , M , where M denotes the number of queues in the system,
for example,

α(i)(z) = Gi (β(1), . . . , β(M))(z), (2)

where Gi is an operator representing the mapping between the queue lengths at the end
of a visit to a queue andat the beginningof a visit toQ(i) which incorporates the effect of
the switchover times and the routing of the server.We refer to [1,6] for the incorporation
of Eqs. (1) and (2) into a numerical iterative framework to compute the joint queue
length probabilities. However, in this paper, we do not consider the complete polling
system and focus only on the relation in Eq. (1). We assume throughout the paper that
the polling system is stable, i.e., we assume that all the processes under consideration
have a proper limiting distribution. Here, we remark that stating and proving sufficient
and/or necessary conditions for stability of the polling systems considered in this paper
is a study on its own.

In this paper, we concentrate on Fi (α
(i))(·), which relates the joint p.g.f. of the

queue lengths at the end of a server visit to Q(i), to the joint p.g.f. of the queue lengths
at the start of the visit to this queue for queues with a self-ruling server. A self-ruling
server can decide to leave a queue, independent of the queue length and the number of
served customers, and can stay longer at a queue even if there is no customer waiting
in the queue. During a service, the server decides with probability p(i) that this is the
final service of the visit and to leave the queue after this service; otherwise, it is called
a regular service which is possibly followed by other services during the same server
visit. After service, customers can join another queue or leave the system; moreover,
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new customers are added to the queues, independent of other customers. These new
customers are called replacements. Regular customers are replaced, stochastically, in
the same way. The replacement of the final customer can have a different distribution,
for example, due to being interrupted in time-limited systems. This is the reason we
assume that the server decides during the service whether it will be the final one.When
the queue empties before the server decided for the final service, extra customersmight
be added to the queues. The server decides either to leave with probability p(i)

I or to

stay and serve more customers during the same visit. We assume that p(i) + p(i)
I > 0,

which implies that a server visit to Q(i) always ends. The distribution of the extra
customers in the queues depends on the choice of the server to leave or stay after
being idle.

We find the relation Fi (α
(i))(·) for service disciplines of the branching type when

the server never decides that the ongoing service is the final one, i.e., p(i) = 0.
The so-called branching property, see [11,12], plays an important role in the analysis
of polling systems. Polling systems with server disciplines satisfying this property,
such as exhaustive, gated or Bernoulli disciplines, can be analyzed exactly and have
results in explicit form. The analysis of disciplines which do not satisfy the branching
property, such as the time-limited and K -limited disciplines, is usually restricted to
special cases, approximations, or numerical methods.

In the description of the self-ruling server,we did not focus on how the customers are
generated. In the following, we describe the various models of generating customers
in more detail. In the most general case, we assume that the server will serve the
customers who are present at the beginning of the visit unless he decides to leave
before serving them all. After the service of a customer, new customers are put in
the queues, the so-called indirect replacements. We do not specify how these indirect
replacements are generated, we only know the joint distribution of the number of
indirect replacements at the queues. These indirect replacements have to wait for a
new visit of the server before they are served. As a second model, we assume that
if the queue becomes empty before the server decided to leave, a number of new
customers are added to the queue, some of which might be served during the same
visit, the so-called direct replacements; these potential customers to be served are
treated as if they were there at the beginning of the visit. Again, we do not specify
how these new customers are generated after the queue emptied; we only assume that
we know the joint distribution of the number of new customers at every queue. In the
next model, the so-called service-based discipline, we assume that, after the service
of a customer, we do not only have indirect replacements but also direct replacements,
which are customers who are directly served after the service ends during the same
visit. Note that after the final service, there are no direct replacements. Also in this
model, we do not specify how the new customers are generated, we only assume that
the joint distribution of the number of direct and indirect replacements is known. As
a final model for the replacements, we focus on the service-based discipline, where
we now assume that customers arrive according to a batch Poisson process and that
we know the service-time distributions. In this paper, we derive the relation between
the joint p.g.f. of the number of customers in the queues at the start and the end of a
visit to a queue. Based on these relations, we also find the joint Laplace transform of
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the workload at an arbitrary time in the queues and the expected sojourn time of an
arbitrary customer in the queues.

Many polling models found in the literature can be reformulated as an SRS polling
model, for example, the 1-limited discipline (take p(i) = 1), the binomial gated
discipline (take the SRS discipline with p(i) = 0 and no direct replacements), and
the binomial exhaustive discipline (take the SRS discipline with p(i) = 0 where
the server leaves immediately without any replacements after becoming idle). The
examples also extend to exponential time-limitedmodels (where p(i) is the probability
that the service of a customer is interrupted) such as the exponential time-limited
model with preemptive-repeat-random service, the exponential time-limited model
with non-preemptive service, the gated time-limited model, and the Bernoulli time-
limited models.

The paper is structured as follows: In Sect. 2, we explain the general polling model
with a self-ruling server. In Sect. 3, we analyze this general model and describe and
analyze some more specified systems. Section 4 relates our work to the so-called
exponentially time-limited polling models which were studied in [1,5,6,8] and their
extensions in [9]. This latter is done in Sect. 5. In Sect. 6, we use the key relations
derived in the previous sections to find expressions for the joint p.g.f. of the queue
length and the joint Laplace transform of the workload at an arbitrary time in the
queues. Finally, in Sect. 7, we apply our results in a numerical example of the 1+1
self-ruling disciplinewith Poisson batch arrivals. For this example,we compute numer-
ically the expected queue length at various epochs and the expected sojourn time of
an arbitrary customer.

2 Model and notation

Let us consider a polling system with a single server and M ≥ 1 queues. The server
visits the queues according to a routing schedule whichwe do not further specify, since
our focus is on the relation in Eq. (1). During a visit to a queue, the server may decide
to interrupt or prolong this visit independent of the queue length. More specifically,
the server may decide, with probability p(i), during the service of a customer whether
this is the last customer to be served during this visit. When the queue becomes empty
before the server decides to leave, the server may serve some extra customers using
the same discipline. Furthermore, we assume that the underlying service discipline,
that is the service discipline when we assume that p(i) = 0, is of branching type (see
Sect. 2.1). We call this the self-ruling server (SRS) discipline.

We start this section with a short introduction to the branching-type service disci-
pline. In the last part of this section, we discuss the SRS discipline in more details.

2.1 Branching-type service discipline

In this subsection, we consider the branching-type discipline. The standard definition
of a branching-type service discipline is as follows (cf. [11,12]):
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If there are N (i)
si customers present at Q(i) at the start of a visit, then during

the course of the visit, each of these N (i)
si customers will be replaced in an i.i.d.

manner by a random population.

Denote the number of indirect replacements for a customer in the queues by R(i) =
(R(i)

1 , . . . , R(i)
M ), which has an M-dimensional p.g.f. H (i)(z) := E

[
zR

(i)
]
, where

z = (z1, . . . , zM ) with |z j | ≤ 1. Denote by N(i)
s = (N (i)

s1 , . . . , N (i)
sM ) the number

of customers present in the queues at the start of a visit to Q(i) and define its p.g.f.

α(i)(z) := E

[
zN

(i)
s

]
. The number of customers in the queues after a server visit to Q(i)

is given by N(i)
e = N(i)

s0 + ∑N (i)
si

k=1 R
(i)
k , where N(i)

s0 = (N (i)
s1 , . . . , N (i)

si = 0, . . . , N (i)
sM ).

Then, the joint p.g.f. of N(i)
e is of the simple form

β(i)(z) := E

[
zN

(i)
e

]
= α(i)(z∗

i ),

(see Eq. (1)), where z∗
i := (z1, . . . , zi−1, H (i)(z), zi+1, . . . , zM ). In Sect. 3, we first

concentrate on this general form of branching where H (i)(z) is not specified.

2.2 The self-ruling server

Our focus is on the behavior of queues with the self-ruling server discipline. Accord-
ing to this SRS discipline, the server decides during a service, with probability p(i),
whether this is the final customer to be served during this visit to. The customers that
are served before the final customer are called regular customers. Let N (i)

V denotes
the number of regular customers that are served during the server visit. In a queue
with the SRS discipline, at most a geometrically distributed number of customers,
with mean 1/p(i), is served. After (or during) the service of a customer, the length of
all the queues can increase by a random amount. The extra customers are called the
indirect replacement of a customer. The indirect replacements for regular customers
are stochastically equivalent; the indirect replacement of a final customer may have a
different distribution. The indirect replacements of all the customers are independent.
Furthermore, the indirect replacements at Q(i) are not served during the ongoing server
visit and have to wait for a new server visit. Let 1E denotes the indicator function of an
event E and let F denote the event that the customer being served is the final customer.
Define the p.g.f. of R on the event it is a final customer by

H (i)
− (z) := E

[
zR

(i)
1F

]
, (3)

the p.g.f. of R on the event it is a regular customer by

H (i)
+ (z) := E

[
zR

(i)
(1 − 1F )

]
,
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and the p.g.f. of R by

H (i)(z) := H (i)
− (z) + H (i)

+ (z).

Note that H (i)
− (z) and H (i)

+ (z) are not conditional p.g.f.’s and that p(i) = H (i)
− (1),

where 1 := (1, . . . , 1).
When the server becomes idle before serving the final customer, the server will

serve S(i)
X extra customers during the same visit as if they were present at the start of

the visit andR(i)
X additional customers are added to all the queues. If no extra customers

are served, i.e., S(i)
X = 0, the server leaves Q(i). The joint p.g.f. of the extra customers

is denoted by H (i)
X (z, z) := E

[
zS

(i)
X zR

(i)
X

]
. Define

H (i)
X−(z) := H (i)

X (0, z) and H (i)
X+(z, z) := H (i)

X (z, z) − H (i)
X−(z), (4)

the joint p.g.f. of R(i)
X , S(i)

X on the events, respectively, that the server leaves Q(i) and
the server starts another service.

For convenience, we introduce the exhaustive self-ruling server (E-SRS) discipline.
This E-SRS discipline is similar to the SRS discipline but the server will immediately
end a visit as soon as the server becomes idle. So, in this E-SRSdiscipline, H (i)

X (z, z) =
1, which states that there are neither extra customers to be served nor additional
customers at the queues after the server becomes idle.

In the following section, we analyze polling systems with the self-ruling server
discipline. Note that we will not specify how exactly the indirect replacement of a
customer is implemented except they are independent. A specific form of indirect
replacements is considered in Sect. 3.3.

3 Analysis of polling systems under the SRS discipline

In this section, we focus on Eq. (1), which relates the joint p.g.f. of the queue lengths
at the end of a visit to the joint p.g.f. of the queue lengths at the start of a visit. We
present results for the self-ruling server discipline with the general branching-type
discipline in Sect. 3.1. In Sect. 3.2, we specify the replacement process of a customer
by considering the so-called service-based branching-type service discipline. In this
discipline, a customer does not only have an indirect replacement population R(i)

X but
also a direct replacement by customers that may be served during the ongoing server
visit. As an example of such a system, consider a task at a certain queue. During the
service of a task, a new task may be generated, either at the same queue or at other
queues. Some of the tasks, generated at the queue where the server is, have to be done
during the same visit; others can wait for a next visit. In the previous models, we
did not focus on how replacements are generated. In Sect. 3.3, a further specification
of this generating process is given where replacements arrive during the service of a
customer according to a batch Poisson process.
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3.1 General branching-type discipline

In this part, we focus on the general form of branching where we assume that the
replacement p.g.f.’s H (i)

+ (z) and H (i)
− (z) are given.

Lemma 1 For a polling system operating under an exhaustive self-ruling single server
discipline, the relation between the joint p.g.f. of the queue length at the start and the
end of a server visit to Q(i) reads

β(i)(z) = γ
(i)
− (z)(α(i)(z) − α(i)(z(i)

� )) + α(i)(z(i)
� ), (5)

where z(i)
� := (z1, . . . , zi−1, H

(i)
+ (z), zi+1, . . . , zM ), and

γ
(i)
− (z) := H (i)

− (z)

zi − H (i)
+ (z)

. (6)

Proof Consider a server visit to Q(i). Denote the total indirect replacement at the end
of the server visit by R(i)

T ; the T is added here to indicate that it is the total indirect
replacement for all customers that are present at the start of the visit, as opposed to
the indirect replacement of a single customer in Eq. (3). It is easily seen that

R(i)
T =

N (i)
V∑

k=1

R(i)
k + 1{N (i)

V <N (i)
si }R

(i)
−

where R(i)
− denotes the indirect replacement of the final customer. Therefore

E

[
zRT |N (i)

si = n
]

=
n∑

k=0

E

[
zRT 1{N (i)

V =k}|N
(i)
si = n

]

=
n−1∑
k=0

(H (i)
+ (z))k H (i)

− (z)zn−k−1
i + (H (i)

+ (z))n

= H (i)
− (z)

zni − (H (i)
+ (z))n

zi − H (i)
+ (z)

+ (H (i)
+ (z))n,

where N (i)
si is the queue length of Q(i) at the start of a server visit to this queue. By

unconditioning on N(i)
s , we find Eq. (5). ��

In contrast with the E-SRS discipline, under the general SRS discipline the server
may still serve extra customers at Q(i) even after the server becomes idle.

Theorem 1 For a polling system operating under a self-ruling server discipline, the
relation between the joint p.g.f. of the queue lengths at the start and the end of a server
visit to Q(i) reads
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β(i)(z) = γ
(i)
− (z)(α(i)(z) − α(i)(z(i)

� )) + γ
(i)
+ (z)α(i)(z(i)

� ),

where z(i)
� := (z1, . . . , zi−1, H

(i)
+ (z), zi+1, . . . , zM ),

γ
(i)
− (z) = H (i)

− (z)

zi − H (i)
+ (z)

,

and

γ
(i)
+ (z) :=

H (i)
X−(z) + γ

(i)
− (z)

(
H (i)
X+(zi , z) − H (i)

X+(H (i)
+ (z), z)

)

1 − H (i)
X+(H (i)

+ (z), z)
. (7)

Proof Consider a visit of the server to Q(i) with initially N (i)
si customers. During this

visit, it may occur that (i) the server decides that one of the N (i)
si customers is the

final customer or (ii) the server serves all N (i)
si customers as regular customers. In case

(i), it is readily seen that the indirect replacement process, that is R(i)
T , the number

of additional customers in the queues, is identical for both the E-SRS and the SRS
discipline. However, in case (ii), the indirect replacement process is different for each
discipline. Under the E-SRS discipline, the server immediately leaves when the queue
becomes empty, say this occurs at time t0. Under the general SRS discipline, at time
t0 the server may remain at the queue and a sequence of idle and busy periods will
follow until eventually the server decides on a final customer or decides to serve no
extra customers after an idle time (S(i)

X = 0). This latter contribution (after t0) to the

indirect replacement process is represented in the term γ
(i)
+ (z).

Observe that an idle server, will leave a) without serving extra customers, b) during
the busy period serving the extra customers, or c) after this subsequent busy period.
This process is regenerative in the sense that if the server does not leave before the
end of the first busy period following the idle period, then the process starts anew at
that specific time instant. Then, we have the following relation for γ

(i)
+ (z):

γ
(i)
+ (z) = H (i)

X−(z) + γ
(i)
− (z)

(
H (i)
X+(zi , z) − H (i)

X+(H (i)
+ (z), z)

)

+ H (i)
X+(H (i)

+ (z), z)γ (i)
+ (z),

where H (i)
X−(z) is the p.g.f. of the indirect replacements on the event that the server

leaves; see Eq. (4). The other terms on the RHS are similar to Eq. (5), with the joint
p.g.f. at the start of the busy period given by H (i)

X+(z, z) instead of αi (z). This leads to
Eq. (7). ��
3.2 Service-based branching-type discipline

A special subclass of the general branching-type service discipline is the service-
based branching-type discipline, which can be described as follows: At the start of
a service period at Q(i), there are N (i)

si customers at this queue; these customers are
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called zeroth-generation customers. With probability q(i)
1 , such a customer goes to

the server, independent of the other customers, to receive service and becomes a first-
generation customer; otherwise, this customer waits for the next visit of the server. We
assume that every customer of the first generation, immediately after being served, is
replaced in a stochastically identical way and independently of the other customers.
The replacing customers are split into two parts, namely direct replacements, which
are customers that are served at Q(i) in the same visit of the server, and indirect
replacements, additional customers at all queues, including at Q(i), which are served
in the subsequent visits. The direct replacements of the first-generation customers are
called second-generation customers.After being served, a second-generation customer
is replaced, in an i.i.d. fashion, by third-generation customers that are served at Q(i)

during the same visit of the server and additional customers to all the queues, including
Q(i) to be served in subsequent visits. We can continue this construction for further
generations. All customers linked to the same first-generation customer are called a
family. Denote the number of additional customers that arrived during the service of
an nth generation customer at Q(i) and are served during the ongoing server visit
by S(i)

n and denote the additional customers that are not served during this visit by
R(i)
n = (R(i)

n1 , . . . , R(i)
nM ). Note that the order of service of customers does not influence

the distribution ofR(i) = (R(i)
1 , . . . R(i)

M ), the total indirect replacement during the visit
to Q(i). Furthermore, remark the difference between the total indirect replacementR(i)

of a family and the indirect replacement of an nth generation customer R(i)
n .

In the case of this service-based branching-type discipline together with a self-
ruling server, we assume that regular customers and the final customers may have
different joint distributions of the number of direct replacements and the indirect
replacement population. We also make the assumption that, whether we consider a
final or regular customer, the total of new customers at the queues per service, that is
the sum of the indirect replacement and direct replacements, has the same distribution
for every generation. By this assumption, the order in which customers are handled
does not matter for the indirect replacement population when the server leaves, which
can be seen as follows: Suppose that customers are served in one specific order.
Now assume that the server leaves without serving a final customer. Then, in any
generation, for all orders, the same number of customers have been fully served, so
the indirect replacement population is the same. Next assume that the server leaves
after a final customer; in this case, in all orders, the same number of customers will
be served. The indirect replacement population added to the population in the queues
at the start of the visit consists of all customers that were present at the start, plus
new customers after the regular services and the final service, minus the number of
served customers. By assumption, the total number of new customers does not depend
on the generation number of the served customers, so also in this case, the indirect
replacement population does not depend on the order of the customers.

In the case where we have a service-based branching-type discipline, we can further
specify H (i)

− (z) and H (i)
+ (z). We can then use these specified p.g.f.’s to modify Th. 1.

As remarked before, a customer present at the start of a visit is replaced by a set of
customers at every queue in the system. Let us introduce the following joint p.g.f.’s:
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H (i)
n−(z) := E

[
zR

(i)
n 1F

]
and H (i)

n+(z, z) := E

[
zS

(i)
n zR

(i)
n (1 − 1F )

]
,

where we used that after a final customer, no other customers are served at Q(i)

during the same visit. Note that by the assumption that, per service, the total number
of new customers per queue does not depend on the generation n, both H (i)

∗− :=
H (i)
n−(z) and H (i)

∗+ := H (i)
n+(zi , z) do not depend on the generation n. Also by this

assumption, the order in which we serve the customers is not important for the indirect
replacement population and we can assume that we serve a first-generation customer
and its complete family consecutively. Within a family, we handle the customers
generation by generation.

Let G(i)
n+(z, z) denote the joint p.g.f. of the direct and indirect replacements after

serving the nth generation on the event that the visit still continues in the next gen-
eration. By the assumption that a zeroth-generation customer visits the server with
probability q(i)

1 , we have that G(i)
0+(z, z) = q(i)

1 z + (1 − q(i)
1 )zi . For n = 1, 2, . . ., we

see that

G(i)
n+(z, z) = G(i)

(n−1)+(H (i)
n+(z, z), z),

where we use that the direct replacements of the nth generation are served as the
(n + 1)th generation of a family.

Let G(i)
n−(z, z) denote the p.g.f. of the total population at the queues that will be

served in later visits on the event that the visit to Q(i) was interrupted during the
service of an nth generation customer. We then find

G(i)
n−(z) = H (i)

∗−(z)

zi − H (i)
∗+(z)

(
G(i)

(n−1)+(zi ,z)−G(i)
n−1+(H (i)

∗+(z),z)

)
. (8)

Since the system is stable, limn→∞ P(S(i)
n = 0) = 1 and we get the joint p.g.f. of

R(i) for a customer with an offspring that is fully served (cf. Eq. (3)):

H (i)
+ (z) := E

[
zR (1 − 1F )

]
= lim

n→∞G(i)
n+(z, z). (9)

Note that the limit on the RHS of Eq. (9) does not depend on z.
Because an interrupted family is interrupted in exactly one generation, and

G(i)
0+(z, z) = q(i)

1 z + (1 − q(i)
1 )zi , we find

H (i)
− (z) =

∞∑
n=1

G(i)
n−(z)

=
∞∑
n=1

H (i)
∗−(z)

zi − H (i)
∗+(z)

(
G(i)

(n−1)+(zi , z) − G(i)
n−1+(H (i)

∗+(z), z)
)
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= H (i)
∗−(z)

zi − H (i)
∗+(z)

(
zi − H (i)

+ (z)
)

, (10)

where we used Eq. (9) and the assumption that both H (i)
∗−(z) and H (i)

∗+(z) do not depend
on the generation.

Theorem 2 For a polling system operating under a service-based self-ruling server
discipline where H (i)

n−(z) and H (i)
n+(zi , z) do not depend on the generation, the relation

between the joint p.g.f. of the queue lengths at the start and the end of a server visit to
Q(i) reads

β(i)(z) = γ
(i)
− (z)(α(i)(z) − α(i)(z(i)

� )) + γ
(i)
+ (z)α(i)(z(i)

� ),

where z(i)
� = (z1, . . . , zi−1, H

(i)
+ (z), zi+1, . . . , zM ),

γ
(i)
− (z) := H (i)

∗−(z)

zi − H (i)
∗+(z)

(11)

and

γ
(i)
+ (z) :=

H (i)
X−(z) + γ

(i)
− (z)

(
H (i)
X+(zi , z) − H (i)

X+(H (i)
+ (z), z)

)

1 − H (i)
X+(H (i)

+ (z), z)
.

Proof Using Eq. (10), we can directly rewrite Eq. (6) to Eq. (11). Now apply Th. 1 to
prove this theorem. ��

In Th. 2, we have the unknown function H (i)
+ (z) as defined in Eq. (9). In the

remainder of this section, we present some examples where we actually can specify
H (i)

+ (z).

Example 1 In this example, we introduce a special branching-type discipline, the 1+1
service discipline. In this discipline, all first-generation customers are served during a
visit of the server. From all the customers which arrive during the service time of the
same first-generation customer, at most one is served during the same visit. All other
second- or third-generation customers, if any, have to wait until the next server visit.
By considering different scenarios, namely whether the first-generation customer was
a final customer or not and, in the latter case, whether there was no arrival or at least
one during its service time, we find

H (i)
+ (z) = H (i)

1+(0, z) + H (i)
∗+(z) − H (i)

1+(0, z)

zi
H (i)

∗+(z) (12)

and

H (i)
− (z) = H (i)

∗−(z) + H (i)
∗+(z) − H (i)

1+(0, z)

zi
H (i)

∗−(z).
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It is easily verified that this expression for H (i)
− (z) also can be derived from Eqs. (10)

and (12) by observing that

zi − H (i)
+ (z) = H (i)

1+(0, z)(H (i)
∗+(z) − zi )

zi
+ z2i − (H (i)

∗+(z))2

zi
.

Example 2 Assume that, for all |z| ≤ 1, the function H (i)
n+(z, z) does not depend on

the generation number n. Then, by taking a different order of serving the customers,
namely by serving its direct replacements directly after a customer, we find that a
customer of the second generation has, stochastically, the same indirect replacement
as a customer of the first generation.We then see that H (i)

+ (z), see Eq. (9), also satisfies

H (i)
+ (z) = H (i)

1+(H (i)
+ (z), z). Since we have a stable system ∂

∂z H
(i)
1+(z, z)|z=1 < 1, and

we can prove, by using Rouché’s theorem, that this equation for H (i)
+ (z) has exactly

one solution for all z with z j ≤ 1 for j = 1, . . . , M .

3.3 Poisson arrivals

Wewill go one step further in specifying the replacement p.g.f. H (i)
+ (z, z), by assuming

that customers arrive to the system according to a batch Poisson processes with rate λ,
where the batch may split over several queues, and that the service times of individual
customers follow a general distribution. In this system, a customer is replaced by cus-
tomers that arrive during its service. For a final customer, the service-time distribution
may be different for the other customers. For the final customer, the Laplace–Stieltjes
transform (LST) of the service time at Q(i) is denoted by T̃ (i)

S− (s) and for the other

customers by T̃ (i)
S+ (s).

We assume a Bernoulli discipline where a customer of the nth generation, if any,
visits the server to be served with probability q(i)

n independent of other customers. A
customer that does not visit the server can not be the final customer in the ongoing
server visit. These customers are their own indirect replacement at Q(i) and will be
served in a future server visit. Note that if q(i)

n = 0 then, effectively, there is no nth
generation. The customer that is served at Q(i) leaves the system or joins Q( j); see, for
example, [13]. For a final customer, the routing probabilities may differ from the other
customers and are denoted by r (i)

j−. For the other customers, the routing probabilities

are denoted by r (i)
j+. The p.g.f.’s of the routing probabilities are

r (i)
− (z) := r (i)

0− +
M∑
j=1

r (i)
j−z j and

r (i)
+ (z) := r (i)

0+ +
M∑
j=1

r (i)
j+z j .
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As before, we assume that the service processes, the arrival process, the batch sizes,
and the routing of customers are independent.

Denote the numbers of simultaneously arriving customers at Q( j) by A( j) for j =
1, . . . , M , and their joint p.g.f. by Â (z) := E

[
zA

]
, where A = (A(1), . . . , A(M)).

Denote the number of customers that arrived to Q( j) during the service of a customer
at Q(i) by A(i)

Sj . Then the indirect replacement population is R(i)
nj = A(i)

Sj with j =
1, . . . , M and j 	= i and R(i)

ni = A(i)
Si − S(i)

n , where the number of direct replacements

S(i)
n has, given A(i)

Sj , a binomial distribution with parameters A(i)
Sj and q(i)

n+1 by the
assumption of the Bernoulli discipline. By conditioning on the service times, we can
calculate that (cf. Eqs. (9) and (10))

H (i)
n+(z, z) = (1 − p(i))T̃ (i)

S+
(
λ

(
1− Â(i)

n (z, z)
))

r (i)
+ (z),

and

H (i)
∗−(z) = p(i)T̃ (i)

S− (Λ(z))r (i)
− (z),

where

Â(i)
n (z, z) := Â

(
z1, . . . , zi−1, q

(i)
n+1z + (1 − q(i)

n+1)zi , zi+1, . . . , zM
)

. (13)

In the following, we use several times that Â (z) = Â(i)
n (zi , z). For convenience, we

also define Λ(z) := λ
(
1− Â (z)

)
.

Under the SRS discipline, the serverwill alwaysmove to a next queuewhen the final
customer is served. However, when the queue becomes empty and the last customer
was not the final one, the server remains idle at the queue for some random time. If,
during this idle time, no new customers arrive at Q(i), the server will move to another
queue. Otherwise, the server will immediately start serving again under the same SRS
discipline; if the server started working at the same queue and becomes idle for a
second time, the server will behave, stochastically, the same as the first time the server
became idle. Note that by these assumptions, Eq. (4) does not hold; if a batch arrives
at Q(i) and all its customers are not served, which occurs with probability Â(i)

1 (0, 1),
then the server does not leave but will stay idle at Q(i) for another period.

Now, we can also specify H (i)
X+(z, z) and H (i)

X−(z) (see Eq. (4)), and the joint gen-
erating functions for the direct and indirect replacements after a period in which the
server is idle, where the LST of the idle time is denoted by W̃ (i)

I (s). We get

H (i)
X−(z) = W̃ (i)

I

(
λ

(
1− Â(i)

1

(
0, z(i)

0

)))

and

H (i)
X+(z, z) =

(
1 − W̃ (i)

I

(
λ

(
1− Â(i)

1

(
0, z(i)

0

)))) Â(i)
1 (z, z) − Â(i)

1

(
0, z(i)

0

)

1 − Â(i)
1

(
0, z(i)

0

) ,
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where z(i)
0 := (z1, . . . , zi−1, 0, zi+1, . . . , zM ). Combining the above observations

with Th. 2 leads to the following theorem.

Theorem 3 For apolling systemwith batchPoissonarrivals operating under a service-
based self-ruling server discipline, the relation between the joint p.g.f. of the queue
lengths at the start and the end of a server visit to Q(i) reads

β(i)(z) = γ
(i)
− (z)(α(i)(z) − α(i)(z(i)

� )) + γ
(i)
+ (z)α(i)(z(i)

� ),

where z(i)
� = (z1, . . . , zi−1, H

(i)
+ (z), zi+1, . . . , zM ),

γ
(i)
− (z) = p(i)T̃ (i)

S− (Λ(z))r (i)
− (z)

zi − (1 − p(i))T̃ (i)
S+ (Λ(z))r (i)

+ (z)

and

γ
(i)
+ (z) =

W̃ (i)
I

(
λ

(
1− Â(i)

1

(
0, z(i)

0

))) (
1 − Â(i)

1

(
0, z(i)

0

))

D(z, z)

+
γ

(i)
− (z)

(
1 − W̃ (i)

I

(
λ

(
1− Â(i)

1

(
0, z(i)

0

)))) (
Â (z) − Â(i)

1

(
H (i)

+ (z), z
))

D(z, z)
,

with

D(z, z) := 1 − Â(i)
1

(
H (i)

+ (z), z
)

+ W̃ (i)
I

(
λ

(
1− Â(i)

1

(
0, z(i)

0

))) (
Â(i)
1

(
H (i)

+ (z), z
)

− Â(i)
1

(
0, z(i)

0

))
.

Remark 1 If the idle time has an exponential distribution with rate ξ (i), that is
W̃ (i)

I (s) = ξ (i)/(ξ (i) + s), we get

γ
(i)
+ (z) =

ξ (i) + λγ
(i)
− (z)

(
Â (z) − Â(i)

1

(
H (i)

+ (z), z
))

ξ (i) + λ
(
1− Â(i)

1

(
H (i)

+ (z), z)
)) .

Remark 2 If we use the definition in Eq. (4), that is, the server will either leave after
the extra time or (really) start a new service, we would have to ignore the arrivals of
the not served batches at Q(i) since they do not end the extra time. This gives

H (i)
X−(z) := W̃ (i)

I

(
λ

(
1− Â(i)

1 (0, z)
))

and

H (i)
X+(z, z) =

(
1 − W̃ (i)

I

(
λ

(
1− Â(i)

1 (0, z)
))) Â(i)

1 (z, z) − Â(i)
1 (0, z)

1 − Â(i)
1 (0, z)

.
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Remark 3 In many papers on polling systems, it is assumed that customers arrive to
the system according to M independent Poisson processes, to Q( j) with rate λ j , j =
1, . . . , M . The generating function of the batch size at Q( j) is denoted by B̂( j) (z) :=
E

[
zB

( j)
]
. In our framework, we get λ = ∑M

j=1 λ j and

Â (z) =
M∑
j=1

λ j

λ
B̂( j) (

z j
)
.

4 Exponential time-limited polling systems

In this section,we study exponential time-limited polling systemswith Poisson arrivals
where the total visit time of a server to a queue is at most an exponentially distributed
time. If the timer expires during a service, the ongoing service is interrupted. We con-
sider two types of time-limited disciplines: (a) the pure time-limited case (P-TL) in
which the server visits a queue for an exponentially distributed time and (b) the exhaus-
tive time-limited discipline (E-TL) in which the server visits a queue for at most an
exponentially distributed time, but also leaves when the queue becomes empty. In the
case of the P-TL, customers that arrive at Q(i) at the end of an idle period are served as
if they were present at the start of the visit. Wemodel these time-limited systems in the
framework of the customer-limited system. To do so, we first specify p(i) and T̃ (i)

S+ (.)

since these quantities do not depend on the effect of the interruption or on the under-
lying branching-type discipline. Then, we also focus on T̃ (i)

S− (.), γ (i)
+ (.) and H (i)

+ (.).
We apply the results from Sect. 3.3 to obtain the relation between β(i)(z) and α(i)(z).

Let T (i)
S denote the service time of a customer at Q(i) with distribution function

T̂ (i)
S (t) and LST T̃ (i)

S (s), let q(i)
n denote the probability that a customer of the nth

generation goes to the server for service, and let T (i)
V denote the (maximal) visit time

of the server to Q(i). We assume that T (i)
V is exponentially distributed with rate ξ (i).

Note that it is assumed that the service-time distribution T̂ (i)
S (.) does not depend on

the generation.
It is readily seen that the probability that the next customer is the final one is given

by

p(i) = P(T (i)
V ≤ T (i)

S ) =
∫ ∞

0
1 − e−ξ (i)t d T̂ (i)

S (t) = 1 − T̃ (i)
S

(
ξ (i)

)
, (14)

and that the LST of the service time of a regular customer is given by

T̃ (i)
S+ (s) = E

[
e−smin(T (i)

S ,T (i)
V )|T (i)

S < T (i)
V

]
=

∫ ∞

0
e−ξ (i)t e−st dT̂ (i)

S (t)

1 − p(i)

= T̃ (i)
S

(
s + ξ (i)

)

T̃ (i)
S

(
ξ (i)

) . (15)
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By combining the formulas abovewith Th. 3 andRemark 1, we obtain the following
result.

Theorem 4 For a polling system with batch Poisson arrivals operating under a
branching-type service discipline combined with the exhaustive time-limited regime
with the preemptive-repeat-random strategy, the relation between the joint p.g.f. of the
queue lengths at the start and the end of a server visit to Q(i) reads

β(i)(z) = γ
(i)
− (z)(α(i)(z) − α(i)(z(i)

� )) + γ
(i)
+ (z)α(i)(z(i)

� ),

with z(i)
� = (z1, . . . , zi−1, H

(i)
+ (z), zi+1, . . . , zM ) and

γ
(i)
− (z) =

(
1 − T̃ (i)

S

(
ξ (i)

))
T̃ (i)
S− (Λ(z))r (i)

− (z)

zi − T̃ (i)
S

(
ξ (i) + Λ(z)

)
r (i)
+ (z)

,

where, for the E-TL case,

γ
(i)
+ (z) = 1,

and for the P-TL case,

γ
(i)
+ (z) =

ξ (i) + λγ
(i)
− (z)

(
Â (z) − Â(i)

1

(
H (i)

+ (z), z)
))

ξ (i) + λ
(
1− Â(i)

1

(
H (i)

+ (z), z)
)) .

The function T̃ (i)
S− (s) depends on the interruption rule and the function H (i)

+ (z) on the
underlying branching-type discipline.

Remark 4 To apply Th. 4 to specific models, we need to find the functions T̃ (i)
S− (s)

and H (i)
+ (z). As examples, we will specify these functions for two interruption rules

and three branching-type strategies. For any of the six combinations of strategy and
interruption rule, we can then easily find γ

(i)
− (z) and γ

(i)
+ (z), with which we specify

the relation between α(i)(z) and β(i)(z).

Interruption rulesWe consider two interruption rules, namely the preemptive-repeat-
random strategy, i.e., the server immediately leaves after the timer expires, and at
the next server visit a new service time will be drawn from the original service-time
distribution for the interrupted service; and the non-preemptive strategy where the
server finishes the ongoing service.
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For the preemptive rule, the LST of the service time of the final customer is given
by

T̃ (i)
S− (s) = E

[
e−sT (i)

V

∣∣∣T (i)
V ≤ T (i)

S

]
=

∫ ∞

0

∫ t

0
ξ (i)e−ξ (i)ve−sv dv dT̂ (i)

S (t)

p(i)

= ξ (i)

ξ (i) + s

1 − T̃ (i)
S

(
s + ξ (i)

)

1 − T̃ (i)
S

(
ξ (i)

) , (16)

and the p.g.f. of the routing probabilities by r (i)
− (z) = zi . For the non-preemptive rule,

the LST of the service time of the final customer is given by

T̃ (i)
S− (s) = E

[
e−sT (i)

S

∣∣∣T (i)
V ≤ T (i)

S

]
=

∫ ∞

0

(
1 − e−ξ (i)t

)
e−st dT̂ (i)

S (t)

p(i)

= T̃ (i)
S (s) − T̃ (i)

S

(
s + ξ (i)

)

1 − T̃ (i)
S

(
ξ (i)

) , (17)

and the p.g.f. of the routing probabilities by r (i)
− (z) = r (i)

+ (z).

Remark 5 Conjecture 5.13 in [4], page 112, is a special case of Th. 4 combined with
the preemptive-repeat-random strategy and independent Poisson arrival streams at all
queues (see Remark 3). This is readily seen, since for the preemptive-repeat-random
strategy the LST of a non-preempted service time is given by Eq. (16) and we can
write

γ
(i)
− (z) = ξ (i)

ξ (i) + Λ(z)

(
1 − T̃ (i)

S

(
ξ (i) + Λ(z)

))
zi

zi − T̃ (i)
S

(
ξ (i) + Λ(z)

)
r (i)
+ (z)

and, for the P-TL case,

γ
(i)
+ (z) = γ

(i)
− (z) + ξ (i)

(
zi − r (i)

+ (z)
)
T̃ (i)
S

(
ξ (i) + Λ(z)

)

zi − r (i)
+ (z)T̃ (i)

S

(
ξ (i) + Λ(z)

) .

Branching-type strategy We can also vary the underlying branching-type service dis-
cipline. We focus on four disciplines, two well-known ones, the Bernoulli gated
discipline and the Bernoulli exhaustive discipline, and two new ones, the 1+1 disci-
pline introduced in Ex. 1 and the so-called 2G-gated discipline, where only first- and
second-generation customers are served. Similar observations can be made for other
branching-type service disciplines. First, consider the Bernoulli gated discipline, in
which only first-generation customers are served. Second-generation customers have
to wait until the next server visit. In this case, finding the total indirect replacement
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of a customer is relatively simple; all the customers who arrive during its service are
indirect replacements, so

H (i)
+ (z) = q(i)

1 T̃ (i)
S+ (Λ(z))r (i)

+ (z) + (1 − q(i)
1 )zi .

Secondly, consider the Bernoulli exhaustive discipline, where every customer that
arrives during a visit to Q(i) is also served during the same visit with some fixed prob-
ability q(i) for all generations. For the exhaustive case, the assumption that q(i) does
not depend on the generation, means that Â(i)

n (z, z) defined in Eq. (13) is independent
of the generation too. We, therefore, omit the index for the generation. Following the
same steps as in Example 2, we find that H (i)

+ (z) = q(i)H (i)
++(z) + (1− q(i))zi , where

H (i)
++(z) satisfies

H (i)
++(z) = T̃ (i)

S+
(
λ

(
1− Â(i)

1

(
H (i)

++(z), z
)))

r (i)
+ (z).

The third example we focus on is the 1 + 1 discipline (see Ex. 1). We find, by distin-
guishing the cases where a first-generation customer has direct replacements or not,
that

H (i)
+ (z) = T̃ (i)

S+
(
λ

(
1− Â(i)

1 (0, z)
))

r (i)
+ (z)

+
T̃ (i)
S+ (Λ(z)) − T̃ (i)

S+
(
λ

(
1− Â(i)

1 (0, z)
))

zi

×T̃ (i)
S+ (Λ(z))

(
r (i)
+ (z)

)2
.

As a last example for a branching-type discipline, we focus on the so-called Bernoulli
2G-gated discipline inwhich only first- and second-generation customers are served; in
the terminology of this paper, a second-generation customer only has indirect replace-
ments. In this discipline, the joint p.g.f. of the total indirect replacement of a family is
given by

H (i)
+ (z) = T̃ (i)

S+
(
λ

(
1− Â(i)

1

(
T̃ (i)
S+ (Λ(z)), z

)))
.

5 Extension

The SRS discipline discussed in this paper can be extended to cover a variant of the
exponential time-limited queues introduced in Eliazar and Yechiali [9]. In this paper,
the authors study exponential time-limited queues with the exhaustive service disci-
pline with preemptive-repeat interruptions and with non-preemptive interruptions. In
addition, they consider the case where customers who are present in Q(i) at the time
of the interruption are served during the ongoing server visit but all customers who
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arrive after that time have to wait for a new visit. The interrupted service is normally
finished.

In the setting of the SRS, we would not only have regular customers and a final
customer but also the so-called tail customers who have indirect replacements which
may be, stochastically different from the regular and the final customers. To indicate
that a function is related to a tail customer, we use the subscript “=”. We again give
first the results for the general SRS model, then for the case of service-based indirect
replacements and, finally, the results for the exponentially time-limited systems.

For the general case, it is easily verified that Eqs. (5) and (6) transform into

β(i)(z) = γ
(i)
− (z)(α(i)(z(i)= ) − α(i)(z(i)

� )) + α(i)(z(i)
� ),

with z(i)= = (z1, . . . , zi−1, H (i)= (z), zi+1, . . . , zM ) and

γ
(i)
− (z) := H (i)

− (z)

H (i)= (z) − H (i)
+ (z)

.

Note that for the original variant we studied, the indirect replacement of a tail customer
is just itself, so H (i)= (z) = zi .

For the service-based indirect replacement discipline, it is a bit more complicated,
since a final customer might have direct replacements that are served during the same

visit, so we need to redefine H (i)
n−(z, z) := E

[
zS

(i)
n zR

(i)
n 1F

]
. With this notation, we

can rewrite Eq. (8) as follows:

G(i)
n−(z) = H (i)

n−(z)

H (i)
n=(z) − H (i)

n+(H (i)
n+1=(z), z)

×
(
G(i)

n−1+(H (i)
n=(z), z) − G(i)

n−1+(H (i)
n+(H (i)

n+1=(z), z), z)
)

.

Furthermore, we have to assume that the p.g.f.’s H (i)
n=(z) do not depend on the gen-

eration n; under this assumption, the results and proofs are similar to those of the
theorems in Sect. 3.2.

Finally, we consider the exponential time-limited systemwith the Bernoulli exhaus-
tive discipline where the probability q(i)

n that a customer will visit the server does not
depend on the generation of the customer. In this system, a timer interrupts the normal
service. After the timer expires, all customers already present at Q(i) will be served
(with probability q(i)

n ) whereas customers that arrive during the visit after the inter-
ruption have to wait for the next visit of the server. In this case, the probability that the
next, non-tail, customer is interrupted is given by Eq. (14) and the LST of the service
time of a regular customer by Eq. (15). The service-time LST of a tail customer is

given by T̃ (i)
S (s) and therefore H (i)= (z) = q(i)

n T̃ (i)
S

(
Λ(z) + (1 − q(i)

n )zi
)
. The LST of

the final customer is given by Eq. (17); however, we have to distinguish between the
time of service before (denoted by T (i)

SB ) and after (denoted by T (i)
SA) the interruption
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(timer expiration). In this case, we find that

E

[
e−(s1T

(i)
SB+s2T

(i)
SA)1{T (i)

V ≤T (i)
SB+T (i)

SA}
]

=
∫ ∞

0

∫ t

0
ξ (i)e−ξ (i)ve−s1ve−s2(t−v) dv dT̂ (i)

S (t)

=
∫ ∞

0
e−s2t

∫ t

0
ξ (i)e−(ξ (i)+s1−s2)v dv dT̂ (i)

S (t)

=
∫ ∞

0
e−s2t ξ (i)

ξ (i) + s1 − s2
(1 − e−(ξ (i)+s1−s2)t ) dT̂ (i)

S (t)

= ξ (i)

ξ (i) + s1 − s2

(
T̃ (i)
S (s2) − T̃ (i)

S

(
ξ (i) + s1

))
.

By setting s1 = λ
(
1− Â(i)

1

(
H (i)= (z), z

))
and s2 = Λ(z), we find that the joint p.g.f.

of the numbers of indirect replacements of an interrupted customer is given by

H (i)
n−(z) =

ξ (i)
(
T̃ (i)
S (Λ(z)) − T̃ (i)

S

(
ξ (i) + λ

(
1− Â(i)

1

(
H (i)= (z), z

))))

ξ (i) + λ
(
Â (z) − Â(i)

1

(
H (i)= (z), z

)) .

With these observations, we can find similar results as in Sect. 4.

6 Queue length at the start of a service and customer sojourn time

In this section, we focus on a practical application of the results developed in this
paper. We first focus on the p.g.f. of the joint queue length distribution at the start
of an arbitrary service for the system with general branching-type discipline (see
Sect. 3.1). We also derive this joint p.g.f. for continuous-time system with service-
based branching-type discipline (see Sect. 3.3). Once we have obtained this p.g.f., we
can use the techniques in [3] to find, for example, the expected sojourn time of a
customer at Q(i).

6.1 The queue length at the start of a service

In this section, we consider the system of Sect. 3.1. To find the p.g.f. of the joint queue
length distribution at the start of an arbitrary visit, we need to specify the routing of
the server and the switchover times of the server between queues. For convenience,
we assume a cyclic routing of the server, i.e., the server goes from Q(i) to Q(i+1),
where Q(M+1) denotes Q(1). The number of new customers during switchovers form
an independent process. The joint p.g.f. of the number of new customers during the
switchover from Q(i) to Q(i+1) is denoted by U (i,i+1)(z). We can now specify key
equation (2) to
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α(i+1)(z) = β(i)(z)U (i,i+1)(z).

Together with the relation between α(i)(z) and β(i)(z), found in Sect. 3 for several
variants of the SRS polling systems, we can compute in a numerical experiment using
an iterative algorithm α(i)(z); see, for example, [1].

Before we focus on the derivation details of the p.g.f. of the joint queue length
distribution, we first determine the expectation of both N ( j)

V , the number of served

customers during a visit to Q( j), and N ( j)
X , the number of times the server becomes

idle during that visit. To compute E

[
N ( j)
X

]
, observe that once the server becomes

idle during a visit to Q( j), the probability that it becomes idle again in the same visit
equals H ( j)

X+(H ( j)
+ (1), 1), where 1 is a vector of size M with all entries equal to one.

Moreover, the probability that the server becomes free at least once during this visit
equals α( j)(1( j)

� ), where 1( j)
� is a vector of size M with entries equal to one except for

the j th entry which equals H (i)
j+(1). Therefore, it is easy to find

E

[
N ( j)
X

]
= α( j)(1( j)

� )

1 − H ( j)
X+(H ( j)

+ (1), 1)
.

Next, sincewe have a stable system,E
[
N ( j)
V

]
equals the expected number of customers

that arrive to Q( j) between the start of two consecutive server visits to Q( j). Customers
enter the system either during a service, an extra time, or during a switchover time.
This gives us the following set of equations:

E

[
N (i)
V

]
=

M∑
j=1

{
E

[
N ( j)
V

] ∂H ( j)

∂zi
(1) + E

[
N ( j)
X

] ∂H ( j)
X

∂zi
(1) + ∂U ( j, j+1)

∂zi
(1)

}
.

(18)

Note that this system has a unique solution due to the stability assumption.
To find the p.g.f. of the joint queue length distribution at the start of an arbitrary

service in Th. 5 below, we closely follow the arguments of Eisenberg in [7] and of de
Haan in [4]. Define the following events for i = 1, . . . M :

S(i)
s : service starts at Q(i);
S(i)
e : service ends at Q(i);

V (i)
s : visit starts at Q(i);

V (i)
e : visit ends at Q(i);

X (i)
s : start of extra time at Q(i);

X (i)
e : end of extra time at Q(i).

It is readily seen that

S(i)
s = (S(i)

s ∩ V (i)
s ) ∪ (S(i)

s ∩ X (i)
e ) ∪ (S(i)

s ∩ S(i)
e );

S(i)
e = (S(i)

e ∩ V (i)
e ) ∪ (S(i)

e ∩ X (i)
s ) ∪ (S(i)

e ∩ S(i)
s );
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V (i)
s = (V (i)

s ∩ S(i)
s ) ∪ (V (i)

s ∩ X (i)
s );

V (i)
e = (V (i)

e ∩ S(i)
e ) ∪ (V (i)

e ∩ X (i)
e );

X (i)
s = (X (i)

s ∩ S(i)
e ) ∪ (X (i)

s ∩ V (i)
s );

X (i)
e = (X (i)

e ∩ S(i)
s ) ∪ (X (i)

e ∩ V (i)
e ).

Therefore, S(i)
s ∪ V (i)

e ∪ X (i)
s = S(i)

e ∪ V (i)
s ∪ X (i)

e . Next consider the average of the
generating functions of the joint queue length over the first k events that occur; by the
assumption that the joint queue length is ergodic, we can take the limit k → ∞ to find
that

Ŝ(i)
s (z) + V̂ (i)

e (z) + X̂ (i)
s (z) = Ŝ(i)

e (z) + V̂ (i)
s (z) + X̂ (i)

e (z),

where, for example, Ŝ(i)
s (z) denotes the p.g.f. of the joint queue length at an arbitrary

service start at Q(i) and a service starts at Q(i). This can be rewritten as

Ŝ(i)
s (z) − Ŝ(i)

e (z) = V̂ (i)
s (z) − V̂ (i)

e (z) −
(
X̂ (i)
s (z) − X̂ (i)

e (z)
)

. (19)

Note that Ŝ(i)
s (1) equals the fraction of events that are a service start at Q(i). So

S̃(i)
s (z) := Ŝ(i)

s (z)/Ŝ(i)
s (1) represents the joint conditional p.g.f. of the queue length

at an arbitrary service start at Q(i) given a service starts at Q(i). Analogously, define
the conditional p.g.f.’s

S̃(i)
s (z) := Ŝ(i)

e (z)/Ŝ(i)
e (1),

X̃ (i)
s (z) := X̂ (i)

s (z)/X̂ (i)
s (1), (20)

and

X̃ (i)
e (z) := X̂ (i)

e (z)/X̂ (i)
e (1),

and note that α(i)(z) = V̂ (i)
s (z)/V̂ (i)

s (1) and β(i)(z) = V̂ (i)
e (z)/V̂ (i)

e (1). Furthermore,

it is readily seen thatE
[
N (i)
V

]
= Ŝ(i)

s (1)/V̂ (i)
s (1) and thatE

[
N (i)
X

]
= X̂ (i)

s (1)/V̂ (i)
s (1).

Since the number of starts and ends of a service, resp., extra time at Q(i) during the
first k events differ at most by 1, Ŝ(i)

s (1) = Ŝ(i)
e (1) and X̂ (i)

s (1) = X̂ (i)
e (1) and we can

write, by dividing Eq. (19) by V̂ (i)
s (1),

E

[
N (i)
V

] (
S̃(i)
s (z) − S̃(i)

e (z)
)

= α(i)(z) − β(i)(z) − E

[
N (i)
X

] (
X̃ (i)
s (z) − X̃ (i)

e (z)
)

.

(21)

Theorem 5 For a polling system operating under a self-ruling server discipline, the
p.g.f. of the joint queue length distribution at a service start, given that the server
starts a service at Q(i), is given by
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S̃(i)
s (z) = 1

E

[
N (i)
V

]
(

zi

zi − H (i)
+ (z)

)(
α(i)(z) − α(i)(z(i)

� )
1 − H (i)

X+(zi , z)

1 − H (i)
X+(H (i)

+ (z), z)

)
.

Proof Consider either a service or an extra time. The number of customers at the end
of such a period is the sum of the customers that are present at the beginning of that
same period plus the indirect replacement or the new customers that joined the system
during that period, so we can write

S̃(i)
e (z) = S̃(i)

s (z)
H (i)(z)

zi
, (22)

and

X̃ (i)
e (z) = X̃ (i)

s (z)H (i)
X (zi , z).

We can interpret E

[
N (i)
X

]
X̃ (i)
s (z) as the sum of all the p.g.f.’s at the start of the extra

times during a visit to Q(i), so we can write

E

[
N (i)
X

]
X̃ (i)
s (z) = α(i)(z(i)

� )

∞∑
j=0

(H (i)
X+(H (i)

+ (z), z)) j = α(i)(z(i)
� )

1 − H (i)
X+(H (i)

+ (z), z)
.

Next note that
∑M

j=1

(
β( j)(z) − α( j+1)(z)

) = −∑M
j=1

(
α( j)(z) − β( j)(z)

)
. Together

with the above equations, Eqs. (20) and (21), and Th. 1, the theorem follows after
some algebra. ��
Remark 6 To derive this theorem, we could also have looked at the start of a service
for an arbitrary customer during a visit. For the nth served customer with n ≤ N (i)

s , the
number of customers at Q(i) to be served has decreased by n − 1, but there were also
n − 1 replacement moments. For n > N (i)

s , we should also include the replacement
during (at least) one extra time followed by extra services. Elaborating along this line
gives the same result. We chose to use the approach along the line of Eisenberg in [7]
since this also applies in the more involved settings of the service-based strategy.

6.2 The queue length and workload at an arbitrary time

For a system where the service times, the arrival process and the switchovers are spec-
ified in continuous time (see Sect. 3.3), both the joint queue length and the workload at
an arbitrary time are important performance measures. Other important performance
measures, namely the expected time spent by a customer in the system or at a specific
Q(i), are directly related to the expected queue length by Little’s law. For convenience,
we only consider the case that at least one idle time or switchover time has a nonzero
expectation. The queue length distribution at an arbitrary service start can be analyzed
in the same way as in Sect. 6.1. Let T (i,i+1)

SO denote the switchover time from Q(i) to
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Q(i+1), TC denote the cycle time of a server, N̂Q(z) the p.g.f. of the joint queue length
distribution at an arbitrary time and V̂ (z) the p.g.f. of the joint workload distribution
at an arbitrary time. Furthermore, we define the LST of T (i)

S±, the service time of an
arbitrary customer at Q(i), by

T̃ (i)
S± (s) := T̃ (i)

S− (s) + (1 − p(i))T̃ (i)
S+ (s),

and the p.g.f. of its indirect replacement by

H (i)
∗±(z) := p(i)T̃ (i)

S− (Λ(z))r (i)(z)r (i)
− (z) + (1 − p(i))T̃ (i)

S+ (Λ(z))r (i)
+ (z).

In continuous time, it is convenient to consider the cycle time, TC , of the server, that
is, the time between two consecutive visit starts at, say, Q(1). To find the expectation
E[TC ], we remark that the expected number of customers served at Q(i) during a cycle
of the server satisfies (cf. Eq. (18))

E

[
N (i)
V

]
=

M∑
j=1

{
E

[
N ( j)
V

] (
λE

[
T ( j)
S±

]
E

[
A(i)

]
+ r ( j)

i

)

+λE

[
N ( j)
X

]
E

[
W ( j)

I

]
E

[
A(i)

]
+ λE

[
T ( j, j+1)
SO

]
E

[
A(i)

] }
.

The expected cycle time of a server is now readily found since

E[TC ] =
M∑
j=1

{
E

[
N ( j)
V

]
E

[
T ( j)
S±

]
+ E

[
N ( j)
X

]
E

[
W ( j)

I

]
+ E

[
T ( j, j+1)
SO

] }
.

Lemma 2 For a polling system with batch Poisson arrivals operating under a service-
based SRS service discipline, the p.g.f. of the joint queue length distribution at a service
start, given that the server is at Q(i), is given by

S̃(i)
s (z) = 1

E

[
N (i)
V

]
(

zi

zi − H (i)
∗±(z)

) (
zi − H (i)(z)

zi − H (i)
+ (z)

)

×
(

α(i)(z) − α(i)(z(i)
� )

1 − H (i)
X+(zi , z)

1 − H (i)
X+(H (i)

+ (z), z)

)
.

Proof We proceed a similar way to the proof of Th. 5, where Eq. (22) replaced by
S̃(i)
e (z) = S̃(i)

s H (i)
∗±(z)/zi . This is because here we have the service-based discipline.

��
Remark 7 Th. 5 still holds when we assume that the members of a family are served

consecutively, that E

[
N ( j)
V

]
represents the number of first-generation customers that
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is served during a visit and that the end of a service corresponds to the end of the
service of the last customer in a family being served. In other words, the total time to
serve a family is then seen as one service time.

Theorem 6 For apolling systemwith batchPoissonarrivals operating under a service-
based SRS service discipline, the p.g.f. of the joint queue length distribution at an
arbitrary time in the above continuous-time system satisfies

N̂Q(z) = 1

Λ(z)E[TC ]

M∑
j=1

E

[
N ( j)
V

]
T̃ ( j)
S± (Λ(z))

(
r ( j)(z) − z j

) S̃( j)
s (z)
z j

,

where S̃( j)
s (z) is given in Lemma 5.

Proof Along the same lines as the proof of Theorem 1 in [3], we can write, by the
stochastic mean value theorem, that

N̂Q(z) = 1

E[TC ]

M∑
j=1

{
E

[
N ( j)
V

]
E

[
T ( j)
S±

]
̂
N ( j)
QS(z) + E

[
N (i)
X

]
E

[
W ( j)

I

]
̂
N ( j)
QX (z)

+ E

[
T ( j, j+1)
SO

]
̂
N ( j)
QO(z)

}
, (23)

where
̂
N ( j)
QS(z),

̂
N ( j)
QX (z), and

̂
N ( j)
QO(z) denote the p.g.f.’s of the joint queue length

distribution at an arbitrary time during a service at Q( j), during an extra time at Q( j),
and during a switchover period between Q( j) and Q( j+1). To find these p.g.f.’s, we
have to multiply the p.g.f. of the queue length at the start of an interval by the p.g.f.
of the number of arriving customers between the start and the arbitrary moment. We
then find, by using Eq. (22), that

̂
N ( j)
QS(z) = S̃( j)

s (z)
1 − T̃ ( j)

S± (Λ(z))

Λ(z)E
[
T ( j)
S±

] = S̃( j)
s (z) − S̃( j)

e z j/r ( j)(z)

Λ(z)E
[
T ( j)
S±

] ,

̂
N ( j)
QX (z) = X̃ ( j)

s (z)
1 − W̃ ( j)

I (Λ(z))

Λ(z)E
[
W ( j)

I

] = X̃ ( j)
s (z) − X̃ ( j)

e (z)

Λ(z)E
[
W ( j)

I

] , (24)

and

̂
N ( j)
QO(z) = β( j)(z)

1 − T̂ ( j, j+1)
SO (Λ(z))

Λ(z)E
[
T ( j, j+1)
SO

] = β( j)(z) − α( j+1)(z)

Λ(z)E
[
T ( j, j+1
SO

] .

When we write the numerator of the RHS of Eq. (24) as S̃( j)
s (z)− (̃z)S( j)

e z j/r ( j)(z) =
S̃( j)
s (z) − S̃( j)

e (z) + S̃( j)
e (1− z j/r ( j)(z)), the result then easily follows by combining

the above equations for the p.g.f.’s with Eqs. (20), (22), and (23). ��
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Remark 8 Consider a systemwhere customers visit only one queue.We can then write

E

[
N ( j)
V

]
= λE[TC ]E

[
A( j)

]
and

N̂Q(z) =
M∑
j=1

E
[
A( j)

]
(1 − z j )

1 − Â (z)
S̃( j)
e (z),

with S̃( j)
e (z) as given in Eq. (22). Consider the marginal distribution of the queue

length at Q(i) at an arbitrary epoch, that is,

N̂Q

(
1(i)
zi

)
= E

[
A(i)

]
(1 − zi )

1 − Â
(
1(i)
zi

) S̃( j)
e

(
1(i)
zi

)
,

where 1(i)
zi is a vector of size M with entries equal to one with the i th entry replaced

by zi . By multiplying this equation by the p.g.f. of the number of customers arriving
to Q(i) in front of an arbitrary customer for Q(i) in the same batch, which is given by(
1 − Â

(
1(i)
zi

))
/E

[
A(i)

]
(1 − zi ), we get the p.g.f. of the queue length observed by

an arbitrary customer arriving to Q(i). This is a well-known result from batch arrival
queues: the distribution at the departure of a customer equals the distribution at the
arrival of a customer where we assume that the customers enter one by one, albeit at
the same time.

Remark 9 Using Little’s law, the expectation of WT , the sojourn time of an arbitrary
customer in the system, is given by

E[WT ] =
d
dz N̂Q(z, . . . , z)

∣∣∣
z=1

λ d
dz Â (z, . . . , z)

∣∣∣
z=1

=
d
dz N̂Q(z, . . . , z)

∣∣∣
z=1

λ
∑M

j=1 E
[
A( j)

] ,

and the expectation ofW (i)
T , the sojourn time of an arbitrary customer per visit to Q(i),

by

E

[
W (i)

T

]
= E[TC ]

E

[
N ( j)
V

] ∂ N̂Q

∂zi
(1).

Before we give the LST of the workload in the system, we introduce some notation.
Let T̃(∗)

S± (s) = (T̃ (1)
S± (s1), . . . , T̃

(M)
S± (sM )). Then, the joint LST of the workload at the

start of a service at Q( j), without the service time of the freshly started service, is given
by V̂ ( j)

S (s) = S̃( j)
s (T̃(∗)

S± (s))/T̃ ( j)
S±

(
s j

)
. Furthermore, observe that the joint LST of past

(TP ) and remaining (TR) service time at an arbitrary epoch during an arbitrary service

at Q( j) is given byE
[
e−sTP−tTR

] =
(
T̃ ( j)
S± (s) − T̃ ( j)

S± (t)
)

/
(
E

[
T ( j)
S±

]
(t − s)

)
. Using
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these observations and following both the proof of Th. 6 and [3] leads to the following
theorem.

Theorem 7 For apolling systemwith batchPoissonarrivals operating under a service-
based SRS service discipline, the LST of the joint workload distribution at an arbitrary
time satisfies

V̂ (s) = 1

Λ
(
T̃(∗)
S± (s)

)
E[TC ]

M∑
j=1

E

[
N ( j)
V

] S̃( j)
s

(
T̃(∗)
S± (s)

)

T̃ ( j)
S±

(
s j

)

×
⎛
⎝ s j T̃

( j)
S±

(
s j

) − Λ
(
T̃(∗)
S± (s)

)
T̃ ( j)
S±

(
Λ

(
T̃(∗)
S± (s)

))

Λ
(
T̃(∗)
S± (s)

)
− s j

+ r ( j)
(
T̃(∗)
S± (s)

)⎞
⎠ .

7 Numerical results for a systemwith the 1+ 1 SRS discipline

In this section, we apply the results from the previous section to obtain numerical
results for an example system with two queues with Poisson batch arrivals; one of the
queues is operating under the 1+1 SRS discipline (see Example 1) with additional idle
time while the other queue is served according to the gated discipline.

In the example system, there is a single server attending two types of tasks, for
example, tasks A and B. All jobs need task B before leaving the system but some need
also taskA,where taskAhas to befinishedbefore taskB starts. It takes an exponentially
distributed timewithmean one for the server to switch from task A to B and vice versa,
so that E

[
T (AB)
SO

]
= E

[
T (BA)
SO

]
= 1. The server, therefore, decides to handle first a

(random) number of A tasks before switching to B tasks. The served task A jobs join
the task B queue. After switching, the server will handle all B tasks present at the start
time of his handling according to the gated service discipline. After handling these
tasks B, the server switches immediately to task A jobs. In line with the description
above,we assume a 1+1 SRSdiscipline for taskAwith the probability that a taskA job
is the last to be processed before the server switches to task B equal to p(A). Moreover,
a job will always go to the server, both for task A and for task B, so q(A) = q(B) = 1.
If the server does not decide to switch before the queue for task A is empty, he waits
2 time units for another task A job to arrive. The service times of task A have an
Erlang distribution with LST T̃ (A)

S (s) = 16/(s + 4)2 and the service times of task B

have a hyper exponential distribution with LST T̃ (B)
S (s) = 3/(s + 4) + 1/(4 + 5s).

Customers arrive in batches of size NBS = 2 according to a Poisson process with
rate λ = 1/3. A fraction of pTB = 1/3 of the arriving customers go directly to the
queue of task B, independent of other customers. This makes the joint p.g.f. of the
number of jobs in an arriving batch starting with task A and, respectively, task B,
Â (zA, zB) = (4z2A + 4zAzB + z2B)/9. In the following, we shall determine for which
p(A) the expected sojourn time of an arbitrary customer is minimal.
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Before we find the best value of p(A), we first determine its possible range. Let p(A)
S

be the supremum of all p(A) for which the system is stable and suppose p(A) < p(A)
S .

Then

E[TC ] = λNBSE[TC ]
(
(1 − pTB)E

[
T (A)
S±

]
+ E

[
T (B)
S±

])
+ E

[
T (AB)
SO + T (BA)

SO

]

+P(N (A)
X > 0)E

[
N (A)
X |N (A)

X > 0
]

E

[
W (A)

I

]
.

This gives

E[TC ] =
P(N (A)

X > 0)E
[
N (A)
X |N (A)

X > 0
]

E

[
W (A)

I

]

1 − ρ∗

with

ρ∗ = λNBS

⎛
⎝(1 − pTB)E

[
T (A)
S±

]
+

E

[
T (AB)
SO + T (BA)

SO

]

λNBSE[TC ] + E

[
T (B)
S±

]⎞⎠ . (25)

Obviously, for the system to be stable, ρ∗ < 1. Since the server switches after at most
a geometrically distributed number of task A jobs, the average number of served task
A jobs during a cycle is at most 1/p(A) so we need 1/p(A) > λNBS(1− pTB)E[TC ].
Combine this with Eq. (25) to find that

p(A) < p(A)
U :=

1 − λNBS

(
(1 − pTB)E

[
T (A)
S±

]
+ E

[
T (B)
S±

])

λNBS(1 − pTB)
(
E

[
T (AB)
SO T (BA)

SO

]) (26)

is a necessary condition for stability. To investigate whether this condition is also
sufficient, we can argue as follows: Intuitively, when p(A) is getting closer to p(A)

S , the
expected number of task A jobs at the beginning of a cycle will become large, which
implies that P(N (A)

X > 0) tends to zero and so

E[TC ] ≈ λNBSE[TC ]
(
(1 − pTB)E

[
T (A)
S±

]
+ E

[
T (B)
S±

])
+ E

[
T (AB)
SO + T (BA)

SO

]
,

which gives that

E[TC ] ≈
E

[
T (AB)
SO + T (BA)

SO

]

1 − λNBS

(
(1 − pTB)E

[
T (A)
S±

]
+ E

[
T (B)
S±

]) .

The expected number of taskA jobs that can be handled during a cycle equals 1/p(A) >

1/p(A)
U ≈ λNBSE[TC ] (1− pTB), the expected number of taskA jobs that arrive during
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Table 1 The expected queue length at the beginning and end of a server visit to a queue

p(A) Server visit to Task A Server visit to Task B

Beginning End Beginning End

E[NA] E[NB ] E[NA] E[NB ] E[NA] E[NB ] E[NA] E[NB ]

0.05 3.194 0.916 0.918 6.020 1.363 6.242 2.750 0.694

0.10 3.503 0.841 1.376 5.351 1.820 5.573 3.059 0.619

0.15 3.918 0.781 1.910 4.811 2.355 5.033 3.473 0.559

p(A)∗ 3.974 0.775 1.979 4.756 2.423 4.978 3.530 0.553

0.20 4.493 0.732 2.584 4.367 3.027 4.589 4.047 0.510

0.25 5.319 0.691 3.493 3.995 3.938 4.217 4.875 0.469

0.30 6.590 0.656 4.835 3.678 5.279 3.900 6.146 0.433

0.35 8.745 0.625 7.050 3.406 7.494 3.628 8.300 0.403

0.40 13.069 0.599 11.426 3.169 11.871 3.391 12.624 0.377

0.45 26.184 0.576 24.587 2.961 25.032 3.184 25.739 0.354

Table 2 The expected queue length at the beginning of a service and at an arbitrary time and the expected
sojourn time of an arbitrary customer

p(A) Service beg. A Service beg. B Arbitrary time Arbitrary customer

E[NA] E[NB ] E[NA] E[NB ] E[NA] E[NB ] E[WA] E[WB ] E[WT ]

0.05 3.604 5.162 2.828 6.274 2.493 5.442 5.609 8.163 11.902

0.10 3.886 4.489 3.108 5.600 2.775 4.766 6.244 7.149 11.311

0.15 4.282 3.938 3.505 5.049 3.170 4.218 7.133 6.326 11.082

p(A)∗ 4.336 3.88 3.56 4.9930 3.225 4.161 7.256 6.242 11.080

0.20 4.842 3.473 4.073 4.589 3.731 3.764 8.394 5.647 11.243

0.25 5.661 3.073 4.907 4.196 4.550 3.385 10.235 5.078 11.901

0.30 6.927 2.724 6.192 3.856 5.816 3.065 10.238 5.078 11.903

0.35 9.080 2.415 8.369 3.559 7.969 2.793 13.087 4.597 13.322

0.40 13.407 2.146 12.726 3.304 12.296 2.565 27.662 3.849 22.290

0.45 26.525 1.901 25.878 3.075 25.414 2.370 57.181 3.5550 41.676

a cycle for p(A) close to p(A)
S . Hence, Eq. (26) also seems to be sufficient. For the

parameters in the example system, this implies that p(A)
S = 0.5.

In Table 1, we present the expected queue length for task A (NA) and task B (NB)
at the beginning and end of a visit. Table 2 contains the queue length both at the
beginning of a service and at an arbitrary time. Furthermore, we present the sojourn
time at an arbitrary time, where we consider the sojourn time of an arbitrary customer
visiting task A (WA), visiting task B (WB), and in the whole system (WT ). Using a
numerical search, we find that the optimal value of p(A) that minimizes the expected
sojourn time is p(A)∗ = 0.15573.
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8 Conclusion

Weconsider stable polling systemswith a self-ruling server and find for these a relation
between the joint p.g.f. of the queue lengths at the end of a server visit and Q(i), and the
joint p.g.f. of the queue lengths at the start of the visit to this queue for a class of polling
systems with the branching-type discipline. In [1, Sec. 6], the method implementation
and the test of its performance from a computational point of view is analyzed. Along
the lines of [7], once we have found the p.g.f.’s at the start and end of a visit, we derive
the joint p.g.f. of queue lengths at the start of a customer service. For the general pure
time-limited systems with Poisson arrivals, the departures of a server can be seen as a
Poisson process, which implies that the p.g.f. at the end of a visit also represents the
p.g.f. of the queue lengths of an arbitrary arrival. In this case, we can derive the joint
LST of the workload at arbitrary time in the queues and the expected sojourn of an
arbitrary customer in the queues.

A key assumption in this paper is the customer limit, which is geometrically dis-
tributed (p(i) is fixed per queue). As future work, it would be interesting to relax this
assumption to cover customer limits with a discrete phase-type distribution. Another
research direction is the determination of the stability condition of the SRS disciplines.
To give an indication of why it is a study on its own, consider the following counter
intuitive example, where extra arrivals make a system stable: Consider a system with
two queues with the following characteristics:

— independent single Poisson arrival streams at the queues with rates λ1 (specified
later) and λ2 = 2;

— at Q(1) the service time is 0, p(1) = 1, that is, the server always decides that the
first customer is the final one and the time the server waits idle for a customer
to arrive, if any, has an exponential time length with rate ξ = 1;

— the service times at Q(2) have an exponential distribution with rate μ2 = 4,
p(2) = 1, and the server leaves immediately after becoming idle, so during a
visit to Q(2), the expected number of arrivals to Q(1) is λ1/4 and to Q(2) 1/2.

When λ1 = 0, Q(1) will be empty and the expected number of extra customers to Q(2)

after an idle period at Q(1) is λ2/ξ = 2, so Q(2) is not stable since the server serves
only one customer per visit to Q(2). On the other hand, when λ1 = 3, both queues
are stable. We can see this as follows: Q(2) will always become empty when Q(1) is
full since the expected number of new arrivals to Q(2) between two visit starts at this
queue is λ2/μ2 = 1/2; once Q(2) is empty, Q(1) will become empty. Note that, in
this case, the expected number of extra customers in Q(2) after an idle period at Q(1)

will be λ2/(λ1 + ξ) = 1/2. Since not every visit to Q(1) ends with an idle time, the
expected number of new customers arriving at Q(2) in between to visit starts at Q(2)

is less than one, which makes Q(2) stable.
For some special cases of the exponentially time-limited systems, stability proofs

can be found in [4, Sec. 3.3 and 3.4], which are strongly related to the stability proof
of Fricker and Jaibi [10] for a class of polling systems with non-preemptive and
work-conserving service disciplines. This approach is also promising for time-limited
systems with general underlying branching-type service disciplines.
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