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Abstract
We establish sharp tail asymptotics for componentwise extreme values of bivariate
Gaussian random vectors with arbitrary correlation between the components. We con-
sider two scaling regimes for the tail event in which we demonstrate the existence of
a restricted large deviations principle and identify the unique rate function associated
with these asymptotics. Our results identify when the maxima of both coordinates are
typically attained by two different versus the same index, and how this depends on
the correlation between the coordinates of the bivariate Gaussian random vectors. Our
results complement a growing body of work on the extremes of Gaussian processes.
The results are also relevant for steady-state performance and simulation analysis of
networks of infinite server queues.

Keywords Extreme value theory · Large deviations · Bivariate normal distributions ·
Networks of infinite server queues

1 Introduction

Motivated by applications to the analysis of queueing networks, we study the large
deviations of extreme values of multivariate Gaussians. We focus on the bivari-
ate case for simplicity, but our analysis will carry over to the more general case
with some effort. Let {X1, X2, . . .} be an ensemble of independent and identically
distributed (i.i.d.) bivariate Gaussians with covariance matrix �, and let X̄n :=
(max1≤i≤n X

(1)
i ,max1≤i≤n X

(2)
i ) be the componentwise maximum, or extreme value,

random vector. For simplicity, we assume that E[X1] = 0. In the context of a queue-
ing network, X̄n is an approximation to the maximum congestion experienced over a

B Remco van der Hofstad
rhofstad@win.tue.nl

Harsha Honnappa
honnappa@purdue.edu

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Purdue University, 315 N. Grant St., West Lafayette, IN 47906, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-019-09632-z&domain=pdf
http://orcid.org/0000-0003-1331-9697


334 Queueing Systems (2019) 93:333–349

typical interval in a network of infinite server queues, for instance. We characterize
the likelihood of the tail event {X̄n > anu}, where u ∈ (0,∞), as the number of
random vectors n tends to infinity, under the assumption that an → ∞ as n → ∞.
We consider two cases.
Case 1: The right scaleUnder the condition that an = √

log n, we prove a “restricted”
large deviations principle (RLDP) (in the sense of [15]) in Theorem 2 that shows that
if u >

√
2(σ (1), σ (2)) (where σ ( j) is the standard deviation of marginal j) then

lim
n→∞

1

a2n
logP(X̄n > anu) = J (u/σ), (1)

where

J (u) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 1
2

(
u(1)
)2 when u(2) ≤ ρu(1),

1 − 1
2

(
u(2)
)2 when u(1) ≤ ρu(2),

max
{
2 − 1

2 ‖u‖22 , 1 − (u(1))2−2ρu(1)u(2)+(u(2))2

2(1−ρ2)

}
otherwise,

(2)

u/σ := (u(1)/σ (1), u(2)/σ (2)), ‖u‖22 := ∑
i=1,2 |u(i)|2 and ρ ∈ [− 1,+ 1]. Here, the top

two cases only arise when ρ > 0, so when ρ < 0, the last line equals J (u). The proof
follows by using the Laplace principle in the key Lemma 1 and combining it with the
‘largest probability wins’ principle.

The different cases in (2) originate due to the different scenarios in which the
bivariate distribution can attain its maximum. In all the cases where a term + 1 is
present, the maximum is attained by one index of Xi which simultaneously attains
the maximum of both coordinates. In all the cases where a term + 2 is present, the
maximum is attained by two different indices of Xi , one which attains the maximum
of the first coordinate and one which attains the maximum of the second coordinate.
The latter case has the most distinct possibilities (“larger entropy”), while the first
may have a larger probability for appropriate correlation coefficients ρ. The optimal
strategy is characterized by the ‘largest probability wins’ principle.
Case 2: Larger scales On a much larger scale, where an � √

log n, we establish two
main results. First, we prove a leading order asymptote for the extreme value that
aligns with the result in case 1. Precisely, in Theorem 3, we prove the RLDP

lim
n→∞

1

a2n
logP

(
X̄n > anu) = − I (u/σ), (3)

where

I (u) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (u

(1))2 when u(2) ≤ ρu(1),
1
2

(
u(2)
)2 when u(1) ≤ ρu(2),

1
2 min

{‖u‖22, (u(1))2−2ρu(1)u(2)+(u(2))2

1−ρ2

}
otherwise.

(4)

In Theorem 4, on the other hand, we establish a sharp asymptote for the likelihood
and show that there exists a continuous function I : R

d → R and constants K , b and
c such that
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lim
n→∞ abnn

cea
2
n I (u)

P(X̄n > anu) = K . (5)

The proofs of these theorems use the inclusion–exclusion principle to bound the like-
lihood from above and below.

1.1 Related literature

Multivariate Gaussians emerge as stationary limits of networks of infinite server
queues. Recall that the steady-state number in system of an isolated M/G/∞ queue
is Poisson distributed and can be approximated by an appropriate Gaussian random
variable when the arrival rate is high (i.e., in heavy traffic in the sense of [9]); see [1,19]
as well. Similar invariance principles can be established for G/G/∞ queues in heavy
traffic [9]. In an open queueing network, it can be argued that the number in the net-
work is well approximated by amultivariateGaussian randomvector with independent
covariates. On the other hand, in a closed network of infinite server queues, [10] shows
that the number in the system is multinomially distributed. Once again, as the number
in the closed system scales to infinity, themultinomial central limit theorem shows that
the steady-state number in the system is well approximated by a multivariate Gaussian
random vector with dependent covariates. Similar problems arise in ‘repairman’ prob-
lemswheremultiple simultaneous repairs must be conducted in parallel by specialized
crews. In [8], a diffusion approximation model of the repairman system is again shown
to have a Gaussian steady-state distribution. Given a finite number of observations of
the network or repairman system, understanding large exceedances over these obser-
vations is of particular interest. Under an i.i.d. assumption on the observations (which
would require a justification of its own on a case-by-case basis), the large deviation
limit in this paper provides an approximation to the rare event probabilities.

Next, there is an explicit connection with extreme value theory (EVT). The loga-
rithmic asymptotics established here complement the uniform convergence results for
EVT; see [18, Chapter 4] and [2, Section I, Chapter C]. There are also clear connections
with recent work on extremes of multidimensional Gaussian processes in [3–5,14,15]
and other related works, where logarithmic asymptotics are derived for the “at least
one in the set” extremum (not the componentwise extremum considered here) for
Gaussian processes. We note, in particular, [15] where logarithmic asymptotics are
derived for the “at least one in set” extremum of a sequence of (non-i.i.d.) generally
distributed random vectors. The authors present a general theory closely aligned with
the RLDP for univariate random variables introduced in [7], whereby the Gärtner-Ellis
condition need not be satisfied. Of course, our results are more restrictive in the sense
that we only study i.i.d. Gaussian random vectors, but we also consider large-scale
asymptotics that are not under consideration there.

Our results are also closely related to the important series of papers by Hashorva
and Hüsler [11–13] generalizing the classic Mills ratio Gaussian tail bound [17]. We
observe that the quadratic program logarithmic asymptote derived in Lemma 1 is
also implied by the tail bound derived in [11,13]. In [13], the authors derive exact
asymptotics for integrals of Gaussian random vectors, and, in particular, focus on the
“at least one in the set” extremum for half-space extreme value sets. Our proof does
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not rely on the bound in [11,13], however.We also note [16], where a crude asymptotic
for Gaussian stochastic processes, closely related to Lemma 1, is proved—but not the
logarithmic asymptotics. Furthermore, in our case, the threshold scales with n (or,
equivalently, the time index t in [16]), which is a more interesting result.

It would be interesting to strengthen Theorem 2 to sharp asymptotics as performed
for large scales in Theorem 4. This is hard, since various error terms that can easily
be dealt with in the proof of Theorem 4 as they are much smaller than the leading
order will only become marginally smaller. It would also be interesting to extend our
analysis to other multivariate random vectors with nontrivial dependence.

1.2 Notation and setting

All vector relations should be understood componentwise. Thus, x > y implies
that x ( j) > y( j) for every component j . Following [15], we define a restricted
large deviation principle (RLDP) as follows: for some q ∈ R

d , a sequence of
multivariate R

d -valued random variables {Wn} satisfies a RLDP with rate function
J : R

d → [0,∞] if

lim
n→∞

1

vn
logP(Wn/an > q) = − J (q), (6)

where vn, an → ∞ as n → ∞. This asymptotic is not a full-fledged large deviations
principle (LDP) since it does not provide any insight into what happens for negative q,
i.e., it only deals with attaining large positive values. Furthermore, as noted in [7,15],
if Wn satisfies an LDP with continuous rate function, then it automatically satisfies
the RLDP. On the other hand, if the rate function is discontinuous, then it might not
satisfy the RLDP.

We can write

(X (1)
i , X (2)

i )
d= (

σ (1)Z (1)
i + μ(1), σ (2)Z (2)

i + μ(2)
)
, (7)

where (σ (1), μ(1)) and (σ (2), μ(2)) are the standard deviation and mean of X (1)
i and

X (2)
i , respectively, while (Z (1)

i , Z (2)
i ) are standard bivariate normals with correlation

coefficient ρ ∈ [− 1, 1]. Assume thatμ(i) = 0 for i ∈ {1, 2}, without loss of generality.
Throughout we assume that the covariance matrix � of the bivariate Gaussian is non-
singular.

2 Right scale asymptote

We start by analyzing extreme events for bivariate Gaussian random variables:

Lemma 1 (Extreme events for single normal random variables) Let {an}n≥1 be any
unbounded increasing sequence in n ∈ N and ε ∈ R

2. Then

lim
n→∞

1

a2n
logP (X1 > anε) = − ess inf

x>ε

1

2
xT�−1x . (8)
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Proof By definition, and with C an explicit constant,

1

a2n
logP (X1 > anε) = 1

a2n
log

(

C
∫

x>anε
exp

(

− 1

2
xT�−1x

)

dx

)

= 1

a2n
log

(

anC
∫

x>ε

exp

(

− a2n
1

2
xT�−1x

)

dx

)

, (9)

where the second equality follows by substitution of variables. Laplace’s principle [6,
Chapter 4] implies the claim. 
�

Next, we consider the asymptotics of the logarithmic likelihood of the event {∃i ≤
n : Xi > anu}. Note that this is not the componentwise maximum.

Proposition 1 (A single index attains the maximum) Let an := √
log n. The bivariate

Gaussian ensemble satisfies the RLDP limit

lim
n→∞

1

a2n
logP(∃i ≤ n : Xi > anu) = 1 − ess inf

x>u

1

2
xT�−1x, (10)

for u := (u(1), u(2)) >
√
2(σ (1), σ (2)).

Remark 1 The condition (u(1), u(2)) >
√
2(σ (1), σ (2)) is very natural. Indeed, since

the marginal distributions of each of the coordinates are normal with mean zero and
standard deviation σ ( j), we have that maxni=1 X

( j)
i /

√
log n

a.s.−→ √
2σ ( j) for j = 1, 2.

Thus, when u( j) ≤ √
2σ ( j), it is natural to assume that this event does not contribute

to the asymptotics in Proposition 1. In particular, when (u(1), u(2)) ≤ √
2(σ (1), σ (2)),

the limit in (10) equals zero, whereas the right-hand side is strictly positive.

Proof Observe that

P(∃i ≤ n : Xi > anu) = P
(∪n

i=1 {Xi > an}
)

= 1 − P(∩i
j=1{Xi > anu}c)

= (1 − P({X1 > anu}c))
n−1∑

i=0

P({Xi > anu}c)i

= P(X1 > anu)

n−1∑

i=0

bin, (11)

where bn := P({X1 > anu}c).
From (11), it follows that

logP(∃i ≤ n : Xi > anu) ≤ logP(X1 > anu) + log n, (12)

using the fact that bn < 1 for all finite n. Lemma 1 implies that

lim sup
n→∞

1

a2n
logP

(
X̄n > anu

) ≤ 1 − 1

2
ess inf
x>u

xT�−1x . (13)
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Next, for the lower bound, we work with the term log
∑n−1

i=0 bin to obtain a finer
analysis. In particular, suppose we demonstrate that, since bn ∈ [0, 1], log(nbn−1

n ) ≥
log n + o(log n) as n → ∞; then, it follows that

log
n−1∑

i=0

bin > log(nbn−1
n ) ≥ log n + o(log n) as n → ∞. (14)

Consequently, Lemma 1, combined with this result, implies that

lim inf
n→∞

1

a2n
logP (∃i ≤ n : Xi > anu) ≥ 1 − ess inf

x>u

1

2
xT�−1x, (15)

thereby completing the proof of the proposition.
It remains to show (14). Observe that the inclusion–exclusion formula implies that

bn = P({X1 > anu}c) = P
({X (1)

1 ≤ anu
(1)} ∪ {X (2)

1 ≤ anu
(2)}) (16)

satisfies

bn = P(X (1)
1 ≤ anu

(1)) + P(X (2)
n ≤ anu

(2)) − P({X (1)
n ≤ anu

(1)} ∩ {X (2)
n ≤ anu

(2)})
= 2 − P(X (1)

1 > anu
(1)) − P(X (2)

n > anu
(2))

− P({X (1)
n ≤ anu

(1)} ∩ {X (2)
n ≤ anu

(2)}). (17)

Therefore
bn ≥ 1 − P(X (1)

1 > anu
(1)) − P(X (2)

n > anu
(2)). (18)

By the Taylor series expansion of log(1− x) = − x + o(x), as well as 1− bn = o(1),

log(nbn−1
n ) = log n + (n − 1) log bn = log n − (n − 1)(1 − bn) + o(log n)

≥ log n + n
(− P(X (1)

1 > anu
(1)) − P(X (2)

n > anu
(2))
)
(1 + o(1)). (19)

Next, the Gaussian upper tail bound implies that, for large n,
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Fig. 1 Fix ρ = 0.5. The blue
cone represents the region where
u(1) ≤ ρu(2) and the red cone
where u(2) ≤ ρu(1)

log(nbn−1
n ) ≥ log n − n√

2π

1√
log n

∑

j∈{1,2}

1

n1/2(u(i)/σ (i))2

1

σ ( j)u( j)
(1 + o(1))

≥ log n − 1√
2π

2√
log n

max

{
1

n(u(1)/σ (1))2/2−1

1

σ (1)u(1)
,

1

n(u(2)/σ (2))2/2−1

1

σ (2)u(2)

}

(1 + o(1)). (20)

Since (u(1), u(2)) >
√
2(σ (1), σ (2)), it follows that

log(nbn−1
n )

log n
≥ 1 + o(1) as n → ∞, (21)

thereby completing the proof. 
�
Lemma 2 (Analysis of variational problem) By a straightforward calculation,

J1(u/σ) := 1 − 1
2 ess infx>u

xT�−1x

=

⎧
⎪⎨

⎪⎩

1 − 1
2 (u

(1)/σ (1))2 when u(2)/σ (2) ≤ ρu(1)/σ (1),

1 − 1
2 (u

(2)/σ (2))2 when u(1)/σ (1) ≤ ρu(2)/σ (2),

1 − (u(1)/σ (1))2−2ρ(u(1)/σ (1))(u(2)/σ (2))+(u(2)/σ (2))2

2(1−ρ2)
otherwise.

Proof Fix ρ ∈ (0, 1] and without loss of generality assume that σ (1) = σ (2) = 1. We
can divide the positive quadrant into three regions as shown in Fig. 1, where ρ = 0.5.
Suppose that u is such that u(2) ≤ ρu(1) (see the red region in Fig. 1), then

(u(1))2 − 2ρu(1)u(2) + (u(2))2

2(1 − ρ2)
≤ 1

2 (u
(1))2 < 1

2 (x
(1))2, (22)

where the final inequality holds for any x > u. It follows that 1
2 ess infx>u xT�−1x =

1
2 (u

(1))2. A similar argument shows that 1
2 ess inf x>u xT�−1x = 1

2 (u
(2))2 when u(1) ≤

ρu(2). Finally, in the region where neither of these conditions holds (the blank region
in Fig. 1), it is straightforward to verify the Karush–Kuhn–Tucker (KKT) conditions
for u and, since �−1 is positive definite, u is the unique optimizer. 
�
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As a consequence, we obtain the main result of this section:

Theorem 2 (Extreme value asymptotics for bivariate Gaussians)Under the conditions
of Proposition 1,

lim
n→∞

1

a2n
logP

(
X̄n > anu

) = J (u/σ), (23)

where

J (u/σ)

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − 1
2

(
u(1)/σ (1)

)2
when u(2)/σ (2) ≤ ρu(1)/σ (1),

1 − 1
2

(
u(2)/σ (2)

)2
when u(1)/σ (1) ≤ ρu(2)/σ (2),

max
{
2 − 1

2 ‖u‖22 , 1 − (u(1)/σ (1))2−2ρ(u(1)/σ (1))(u(2)/σ (2))+(u(2)/σ (2))2

2(1−ρ2)

}
otherwise.

Further, with (I �, J �) the indices that maximize X̄n (i.e., X̄n = (X (1)
I � , X

(2)
J � )),

lim
n→∞ P

(
I � �= J � | X̄n > anu

) =
{
1 when 2 − 1

2‖u/σ‖22 > J1(u/σ),

0 when 2 − 1
2‖u/σ‖22 < J1(u/σ).

(24)

It is an interesting problem to extend (24) to the case where

J (u/σ) = 2− 1
2‖u/σ‖22 = 1− (u(1)/σ (1))2 − 2ρ(u(1)/σ (1))(u(2)/σ (2)) + (u(2)/σ (2))2

2(1 − ρ2)
,

(25)
but this seems quite difficult. Note that this result shows a sharp transition between the
cases where a single index causes the maximum, versus the case where two indices
‘conspire’ to cause the maximum. The proof explicitly uses the principle of the largest
term [6, Lemma 1.2.15] and a strict ordering between 2− 1

2‖u/σ‖22 and J1(u/σ). In the
case in (25), the principle of the maximum term is no longer sufficient to distinguish
between the one- and two-index cases—indeed, we anticipate that the limit of the
optimal indices in (24) will lie in the interval (0, 1). This seems to require a finer
analysis than the crude principle of the largest term and lies outside the scope of this
paper.

Proof Note that

P
(
X̄n > anu

)

= P(∃i ≤ n : Xi > anu)

+ P(∃i �= j ≤ n : X (1)
i > anu

(1), X (2)
j > anu

(1), �i ≤ n : Xi > anu). (26)

Depending on u, the first or the second term will be dominant. For the moment,
ignoring the event that {�i ≤ n : Xi > anu} (which leads to an upper bound, but this
event will be incorporated in more detail),

P(∃i �= j ≤ n : X (1)
i > anu

(1), X (2)
j > anu

(1))

123



Queueing Systems (2019) 93:333–349 341

≈ n(n − 1)P(X (1)
i > anu

(1))P(X (2)
j > anu

(2))

≈ n2 exp
{

− a2n[(u(1)/σ (1))2 + (u(2)/σ (2))2]/2
}
. (27)

Taking logs and dividing by log n = a2n gives

lim
n→∞

1

a2n
logP(∃i �= j ≤ n : X (1)

i > anu
(1), X (2)

j > anu
(1))

= 2 − 1
2 [(u(1)/σ (1))2 + (u(2)/σ (2))2] = 2 − 1

2‖u/σ‖22
:= J2(u/σ). (28)

Then, by the principle of the largest term [6, Lemma 1.2.15], it follows that

lim
n→∞

1

a2n
logP(X̄n > anu) = max

{
lim
n→∞

1

a2n
logP (∃i ≤ n : Xi > anu) ,

lim
n→∞

1

a2n
logP

(
∃i �= j ≤ n : X (1)

i > anu
(1), X (2)

j > anu
(1)
) }

= max {J1(u/σ), J2(u/σ)} . (29)

Further,

lim
n→∞

1

a2n
logP

(
I � �= J � | X̄n > anu

)

= lim
n→∞

1

a2n

[
logP

(
I � �= J �, X̄n > anu

)− logP
(
X̄n > anu

)]

≤ J2(u/σ) − J (u/σ) < 0, (30)

when J2(u/σ) < J (u/σ), showing that P
(
I � �= J � | X̄n > anu

) = o(1) when
J2(u/σ) < J (u/σ). Similarly,

lim
n→∞

1

a2n
logP

(
I � = J � | X̄n > anu

)

= lim
n→∞

1

a2n

[
logP

(
I � = J �, X̄n > anu

)− logP
(
X̄n > anu

)]

≤ J1(u/σ) − J (u/σ) < 0, (31)

when J1(u/σ) < J (u/σ), showing that P
(
I � = J � | X̄n > anu

) = o(1) when
J1(u/σ) < J (u/σ). This proves (24) subject to (23).

We are left to prove the claim in (23), for which we consider several cases:
Case (1) u(2)/σ (2) ≤ ρu(1)/σ (1). Under the assumption that u( j) >

√
2σ ( j) for j = 1, 2,

it is straightforward to see that 1 − 1
2

(
u(1)/σ (1)

)2
> 2 − 1

2‖u/σ‖22. Lemma 2 implies
that
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lim
n→∞

1

a2n
logP(X̄n > anu) = 1 − 1

2

(
u(1)/σ (1)

)2 = J1(u/σ). (32)

Case (2) u(2)/σ (2) ≤ ρu(1)/σ (1). The proof follows case (1) and is omitted.
Case (3) u(2)/σ (2) > ρu(1)/σ (1) and u(1)/σ (1) > ρu(2)/σ (2). Lemma 2 implies that (29)
is simply

max{J1(u/σ), J2(u/σ)}
= max

{

2 − 1
2 ‖u‖22 , 1 − (u(1)/σ (1))2 − 2ρ(u(1)/σ (1))(u(2)/σ (2)) + (u(2)/σ (2))2

2(1 − ρ2)

}

.

Which of the two is the maximizer depends sensitively on the relation between ρ and
u.

Returning now to (26) to justify the upper bound to the second term, use the
inclusion–exclusion principle on the event {�i ≤ n : Xi > anu} to observe that

P
(∃i �= j : X (1)

i > anu
(1), X (2)

i > anu
(2), �i ≤ n : Xi > anu

)

= P
(∃i �= j : X (1)

i > anu
(1), X (2)

i > anu
(2)
)

− P
(∃i ≤ n : Xi > anu, ∃i �= j : X (1)

i > anu
(1), X (2)

j > anu
(2)
)
. (33)

Observe that the second term in (33) can be bounded above by using a simple counting
argument by

P
(∃i ≤ n : Xi > anu, ∃i �= j : X (1)

i > anu
(1), X (2)

j > anu
(2)
)

≤ n2P
(
X1 > anu

)
P
(
X (1)
1 > anu

(1)
)+ n2P

(
X1 > anu

)
P
(
X (2)
1 > anu

(2)
)

+ n3P
(
X1 > anu

)
P
(
X (1)
1 > anu

(1)
)
P
(
X (2)
1 > anu

(2)
)
.

Now, under the conditions of Proposition 1, in particular that u = (u(1), u(2)) >√
2(σ (1), σ (2)), it follows that P

(
X (i)
1 > anu(i)

) = o(1/n) for i = 1, 2. Consequently,

P
(∃i ≤ n : Xi > anu, ∃i �= j : X (1)

i > anu
(1), X (2)

j > anu
(2)
) ≤ o(P(X1 > anu)).

It follows that

P
(∃i �= j : X (1)

i > anu
(1), X (2)

i > anu
(2), �i ≤ n : Xi > anu

)

≥ P
(∃i �= j : X (1)

i > anu
(1), X (2)

i > anu
(2)
)

− o(P
(
X1 > anu

)
),

thereby justifying the statement following (26). 
�
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3 Large-scale asymptote

In this section, we consider P(X̄n > anu), where an � √
log n, so that we are

considering a large deviation event. Recall that (X (1)
i , X (2)) = (σ (1)Z (1)

i , σ (2)Z (2)
i ). By

changing u = (u(1), u(2)) if needed, it thus suffices to study the standard case, and in
what follows we will therefore focus on P(Z̄n > anu). We prove the following two
main theorems:

Theorem 3 (Leading order asymptotics extremes) For any an � √
log n, and with

0 ≤ u(2) ≤ u(1),

lim
n→∞

1

a2n
logP

(
Z̄n > anu

) = − I (u), (34)

where

I (u) =
{

1
2 (u

(1))2 when u(2) ≤ ρu(1),

1
2 min

{‖u‖22, (u(1))2−2ρu(1)u(2)+(u(2))2

1−ρ2

}
otherwise.

(35)

In the following theorem, we extend Theorem 3 to sharp asymptotics:

Theorem 4 (Sharp asymptotics extremes) For any an � √
log n, and with 0 ≤ u(2) ≤

u(1),
lim
n→∞ abnn

cea
2
n I (u)

P
(
Z̄n > anu) = K , (36)

where
b = 1 + 1l{u(2)≥ρu(1)}, c = 1 + 1l{I (u)=‖u‖2/2}, (37)

and

K =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2πu(1)u(2) when I (u) = 1

2‖u‖2, u(1) �= u(2),
1

4πu(1)u(2) when I (u) = 1
2‖u‖2, u(1) = u(2),

1
2πu(1) when I (u) < 1

2‖u‖2, u(2) < ρu(1),
1

4πu(1) when I (u) < 1
2‖u‖2, u(2) = ρu(1),

1−ρ2

2π(u(1)−ρu(2))(u(2)−ρu(1))
when I (u) < 1

2‖u‖2, u(2) > ρu(1).

(38)

Consequently, with (I �, J �) the indices that maximize Z̄n (i.e., Z̄n = (Z (1)
I � , Z

(2)
J � )),

lim
n→∞ P

(
I � �= J � | Z̄n > anu

) =
{
1 when I (u) = 1

2‖u‖22,
0 otherwise.

(39)

Proof We prove Theorems 3 and 4 in one go. We note that

P(Z̄n > anu) = P

( ⋃

(i, j)

{Z (1)
i > anu

(1), Z (2)
j > anu

(2)}
)
. (40)
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We obtain
P(Z̄n > anu) = P

( ⋃

(i, j)

A(i, j)

)
, (41)

where
A(i, j) = {Z (1)

i > anu
(1), Z (2)

j > anu
(2)}. (42)

From this formula, we see the importance of symmetry, as A(i, j) = A( j,i) for the
symmetric case where u(1) = u(2), but not when this is not the case. In the symmetric
case where u(1) = u(2), we note that A(i, j) = A( j,i), so we may write, instead,

P(Z̄n > anu) = P

⎛

⎝
⋃

(i, j) : i≤ j

{Z (1)
i > anu

(1), Z (2)
j > anu

(2)}
⎞

⎠ . (43)

Using inclusion–exclusion We use inclusion–exclusion to obtain that

∑

(i, j)

P
(
A(i, j)

)− en(u) ≤ P(Z̄n > anu) ≤
∑

(i, j)

P
(
A(i, j)

)
, (44)

where

en(u) = 1

2

∑

(i, j) �=(k,l)

P
(
A(i, j) ∩ A(k,l)

)
, (45)

while for the symmetric case we sum over ordered pairs (i, j) with i ≤ j instead.
Below, we analyze each of these terms. We separate between the case where (i)

the indices are different; (ii) they are equal but the probability simplifies; (iii) they
are different and we need to perform the integral over the joint density using the
Laplace method. We start with the asymmetric case where u(1) �= u(2), remarking on
the extension to the symmetric case at the end of the proof. Without loss of generality,
we may assume that u(1) > u(2).
Sum of probabilities: unequal indices First consider the case where i �= j . Then, since
(Z (1)

i , Z (2)
j ) are i.i.d. standard normal random variables,

∑

(i, j) : i �= j

P
(
A(i, j)

) = n(n − 1)
[
1 − 	(anu

(1))
][
1 − 	(anu

(2))
]
, (46)

where	(x) = P(Z ≤ x) is the error function or the distribution function of a standard
normal. By the asymptotics, for x large,

1 − 	(x) = 1√
2πx

e−x2/2(1 + O(x−2)), (47)

we thus obtain that

∑

(i, j) : i �= j

P
(
A(i, j)

) = n2
1

2πu(1)u(2)a2n
e−a2n‖u‖22/2(1 + o(1)). (48)
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Sum of probabilities: simple cases of equal indices We next proceed with the case
where i = j , for which we get

∑

(i,i)

P
(
A(i,i)

) = nP
(
Z (1) > anu

(1), Z (2) > anu
(2)
)
. (49)

In this paragraph, we deal with the ‘simple’ case where ρu(1) ≥ u(2), leaving the other
cases to the next paragraph. We use that, conditionally on Z (1), the law of Z (2) equals
Z (2) = ρZ (1) +√

1 − ρ2Z , where Z is independent of Z (1). We thus get that

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
)

= P
(
Z (1) > anu

(1), ρZ (1) +
√
1 − ρ2Z > anu

(2)
)

= E

[
1l{Z (1)>anu(1)}P

(√
1 − ρ2Z > anu

(2) − ρZ (1) | Z (1)
)]

. (50)

When ρu(1) > u(2),

P
(√

1 − ρ2Z > anu
(2) − ρZ (1) | Z (1)

) = 1 + o(1), (51)

so that

∑

(i,i)

P
(
A(i,i)

) = nP
(
Z (1) > anu

(1)
)
(1 + o(1)) = nan

1

2πu(1)
e−a2n (u

(1))2/2(1 + o(1)).

(52)
When ρu(1) = u(2), instead

P
(√

1 − ρ2Z > anu
(2) − ρZ (1) | Z (1)

) = 1

2
+ o(1), (53)

since Z (1) − anu(1) = oP(1) when Z (1) > anu(1). Thus, for ρu(1) = u(2), this leads to

∑

(i,i)

P
(
A(i,i)

) = nP
(
Z (1) > anu

(1)
)
(1 + o(1)) = n

1

4πu(1)an
e−a2n (u

(1))2/2(1 + o(1)).

(54)
Sum of probabilities: Laplace integral for equal indices When the above simple cases
do not apply, we write P

(
Z (1) > anu(1), Z (2) > anu(2)

)
explicitly as a two-dimensional

integral as

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
) = 1

2π

∫ ∞

anu(1)

∫ ∞

anu(2)
e−(x21−2ρx1x2+x22 )/2(1−ρ2)dx2dx1.

(55)
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We rescale the integrands by an to obtain

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
) = a2n

2π

∫ ∞

u(1)

∫ ∞

u(2)
e−a2n (x

2
1−2ρx1x2+x22 )/2(1−ρ2)dx2dx1.

(56)

This is a classic example of a Laplace integral. Thus, the integral is dominated by the
minimum of (x21 −2ρx1x2+ x22 )/2(1−ρ2) over all (x1, x2) for which x1 ≥ u(1), x2 ≥
u(2). Since (x21 − 2ρx1x2 + x22 )/2(1− ρ2) is convex, this minimum is attained at one
of the boundaries. Since ρu(1) < u(2), this minimum is attained at x1 = u(1), x2 = u(2)

(see also the analysis in Lemma 1).
Thus,

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
) = a2n

2π
exp

{

− a2n
(u(1))2 − 2ρu(1)u(2) + (u(2))2

2(1 − ρ2)

}

×
∫ ∞
u(1)

∫ ∞
u(2)

exp
{

− a2n
(x21 − 2ρx1x2 + x22 ) − (u(1))2 + 2ρu(1)u(2) − (u(2))2

2(1 − ρ2)

}

dx2dx1.

(57)

Therefore, we obtain that

2πa−2
n exp

{

a2n
(u(1))2 − 2ρu(1)u(2) + (u(2))2

2(1 − ρ2)

}

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
)

=
∫ ∞

u(1)

∫ ∞

u(2)
exp

{

− a2n
(x1 − u(1))2 − 2ρ(x1 − u(1))(x2 − u(2)) + (x2 − u(2))2

2(1 − ρ2)

}

× exp

{

− a2n

[
2u(1)(x1 − u(1))+2u(2)(x2 − u(2)) − ρu(1)(x2 − u(2)) − ρu(2)(x1 − u(1))

]

2(1 − ρ2)

}

dx2dx1.

(58)

Since ρu(1) < u(2), we have that the quadratic function inside the exponential is mini-
mized for x1 = u(1), x2 = u(2). Shifting both integrands by u(1) and u(2), respectively,
leads to

2πa−2
n exp

{

a2n
(u(1))2 − 2ρu(1)u(2) + (u(2))2

2(1 − ρ2)

}

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
)

=
∫ ∞

0

∫ ∞

0
exp

{

− a2n
x21 − 2ρx1x2 + x22

2(1 − ρ2)

}

× exp

{

− a2n
2u(1)x1 + 2u(2)x2 − ρu(1)x2 − ρu(2)x1

2(1 − ρ2)

}

dx2dx1. (59)

Now, rescaling both integrands by a−2
n leads to

2πa2n exp

{

a2n
(u(1))2 − 2ρu(1)u(2) + (u(2))2

2(1 − ρ2)

}

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
)
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=
∫ ∞

0

∫ ∞

0
exp

{

− a−2
n

x21 − 2ρx1x2 + x22
2(1 − ρ2)

}

× exp

{

− (u(1) − ρu(2))x1 + (u(2) − ρu(1))x2
1 − ρ2

}

dx2dx1. (60)

Again we see the significance of the assumption that ρu(1) < u(2), which implies that
both linear terms have a negative coefficient, and, thus, the exponential functions are
integrable. As a result, the first exponential in the integral only leads to an error term,
so that

2πa2n exp

{

a2n
(u(1))2 − 2ρu(1)u(2) + (u(2))2

2(1 − ρ2)

}

P
(
Z (1) > anu

(1), Z (2) > anu
(2)
)

= (1 + o(1))
∫ ∞

0

∫ ∞

0
exp

{

− (u(1) − ρu(2))x1 + (u(2) − ρu(1))x2
1 − ρ2

}

dx2dx1

= (1 + o(1))(1 − ρ2)(u(1) − ρu(2))−1(u(2) − ρu(1))−1. (61)

Combining (52)–(54) with (61) yields the asymptotics of the sum of probabilities.
Note that the final outcome yields (36) in the asymmetric case, so what is left is to
show that the error term en(u) is of smaller order.
The symmetric case: sum of probabilities We now look at the sum of probabilities for
the symmetric case and analyze P(A(i, j)) there. The analysis for the case where i �= j
is identical to the one above, except for the fact that the prefactor (due to the number
of pairs (i, j)) is changed from n(n − 1) to n(n − 1)/2. The contribution for the case
where i = j is also the same as above. In fact, it is easy to see that for u(1) = u(2) = u,
we have I ((u, u)) = u2 when ρ ≤ 0, while I ((u, u)) = u2/(1 + ρ) for ρ > 0, since

(u(1))2 − 2ρu(1)u(2) + (u(2))2

1 − ρ2 = u2
2(1 − ρ)

1 − ρ2 = u2
2

1 + ρ
< 2u2, (62)

precisely when ρ > 0.
The error term en(u): asymmetric case In dealing with error terms, we will make
essential use of the fact that an � √

log n. This condition implies that if a certain
event A satisfies P(A) ≤ e−a2n J for some J > I (u), then P(A) will constitute an error
term in evaluating P(Z̄n > anu), irrespective of the precise powers of an and n. Recall
(45). We investigate the different ways that (i, j) �= (k, l) can occur, depending on
the cardinality of {i, j, k, l} which ranges from 2 to 4. Below, we assume throughout
the analysis that the indices i, j, k, l used are distinct.

Case (2a) (i, j), ( j, i) This corresponds to P(Z̄n > anū), where ū = (u(1) ∨
u(2), u(1) ∨ u(2)) and x ∨ y = max{x, y} for x, y ∈ R. This case was investigated
in the previous step, and we see that the rate at speed a2n equals I ((ū, ū)) > I (u),
since u(1) �= u(2).
Case (2b) (i, i), (i, j) or (i, i), ( j, i) By independence, these probabilities equal
P
(
Z (1) > anu(1), Z (2) > anu(2)

)
P(Z > anu(2)) and P

(
Z (1) > anu(1), Z (2) >
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anu(2)
)
P(Z > anu(1)), respectively. Obviously, the rate at speed a2n is strictly

larger than I (u).
Case (3a) (i, i), ( j, k)By independence, this probability equalsP(A(i,i))P(A( j,k)),
the rate at speed a2n again being strictly larger than I (u).
Case (3b) (i, j), ( j, k) By independence, this probability equals P(A( j, j))P(Z >

anu(1))P(Z > anu(2)), the rate at speed a2n again being strictly larger than I (u).
Case (3c) (i, j), (k, j) This case is similar.
Case (4) (i, j), (k, l) By independence, this probability equals P(A(i, j))P(A(k,l)),
the rate at speed a2n being at least 2I (u), which is again strictly larger than I (u).

Together, these cases show that en(u) is of smaller order than the sum of probabilities
in the asymmetric case.
The error term en(u): symmetric case This analysis is similar to the asymmetric case,
except that some cases do not arise. We again go through the distinct possibilities,
writing u = u(1) = u(2):

Case (2) (i, i), (i, j) or (i, i), ( j, i) By independence, this probability equals
P
(
Z (1) > anu, Z (2) > anu

)
P(Z > anu). Obviously, the rate at speed a2n is strictly

larger than I ((u, u)).
Case (3a) (i, i), ( j, k)By independence, this probability equalsP(A(i,i))P(A( j,k)),
the rate at speed a2n again being strictly larger than I ((u, u)).
Case (3b) (i, j), ( j, k) By independence, this probability equals P(A( j, j))P(Z >

anu)P(Z > anu), the rate at speed a2n again being strictly larger than I ((u, u)).
Case (4) (i, j), (k, l) By independence, this probability equals P(A(i, j))P(A(k,l)),
the rate at speed a2n being at least 2I ((u, u)), which is again strictly larger than
I ((u, u)).

Together, these cases show that en(u) is also of smaller order than the sum of proba-
bilities in the symmetric case. 
�
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