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Abstract
Redundancy scheduling has emerged as a powerful strategy for improving response
times in parallel-server systems. The key feature in redundancy scheduling is repli-
cation of a job upon arrival by dispatching replicas to different servers. Redundant
copies are abandoned as soon as the first of these replicas finishes service. By creating
multiple service opportunities, redundancy scheduling increases the chance of a fast
response from a server that is quick to provide service and mitigates the risk of a
long delay incurred when a single selected server turns out to be slow. The diversity
enabled by redundant requests has been found to strongly improve the response time
performance, especially in the case of highly variable service requirements. Analyti-
cal results for redundancy scheduling are unfortunately scarce however, and even the
stability condition has largely remained elusive so far, except for exponentially dis-
tributed service requirements. In order to gain further insight in the role of the service
requirement distribution, we explore the behavior of redundancy scheduling for scaled
Bernoulli service requirements. We establish a sufficient stability condition for gener-
ally distributed service requirements, and we show that, for scaled Bernoulli service
requirements, this condition is also asymptotically nearly necessary. This stability
condition differs drastically from the exponential case, indicating that the stability
condition depends on the service requirements in a sensitive and intricate manner.
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1 Introduction

Redundancy scheduling has recently attracted strong interest as a strategy for signifi-
cantly reducing response times in parallel-server systems [1–3,5–10,13–18]. The key
feature in redundancy scheduling is replication of a job upon arrival, allowing replicas
to be assigned to, say,d different servers, chosen uniformly at random (without replace-
ment). Redundant replicas are abandoned as soon as the first of these replicas either
starts service (‘cancel-on-start’ or c.o.s.) or completes service (‘cancel-on-completion’
or c.o.c.). By creatingmultiple service opportunities, redundancy scheduling boosts the
chance of a fast response from a server that is swift to provide service and alleviates the
risk of a long delay incurred when a job is assigned to a single server that may be slow.
Note that the c.o.c. and c.o.s. policies both ensure that the first replica starts service at
the server with the smallest real workload, i.e., the amount of work a server needs to
complete to become idle in the absence of any arrivals, among the d selected servers.
The possibly concurrent service of multiple replicas under the c.o.c. policy provides a
further hedge against potentially slow execution of the first replica in the case where
replicas are independent (although it may also result in wastage of service effort).

The diversity offered by redundant requests has been shown to strongly improve the
response time performance, especially in the case of highly variable service require-
ments.Analytical results for redundancy scheduling are unfortunately scarce, however,
and have largely remained limited to exponentially distributed service requirements.
Specifically, Gardner et al. [8] extensively analyzed the c.o.c. redundancy policy with
exponentially distributed service requirements. They established the stability condi-
tion and showed that it does not depend on the number of replicas d, and thus coincides
with the nominal condition without any redundancy. This may be explained by the fact
that even with concurrent service the expected aggregate amount of time invested in
the service of a job remains equal to the mean service requirement of a single instance
due to the memoryless property of the exponential distribution. In [3], the stability
condition is analyzed for redundancy scheduling with exponentially distributed ser-
vice requirements, but non-FCFS service disciplines such as processor sharing and
random order of service, both for identical and i.i.d. replicas.

Gardner et al. [8] also derived an explicit expression for the expected latency and
proved that the latency is decreasing in the number of replicas d. Another approach
to derive these expressions, which also can be applied to other models, such as the
M/M/K queue with heterogeneous service rates or the MSCCC queue, is given in
[5]. Simulation experiments additionally demonstrated greater improvements in the
latency in the case of highly variable service requirements, particularly heavy-tailed
distributions.

We are not aware of any analytical results for the c.o.c. redundancy policywith inde-
pendent replicas and nonexponential service requirements. Hellemans & Van Houdt
[12] consider the c.o.c. policy with identical replicas and derive a differential equation
for the marginal workload distribution at each of the servers in a limiting regimewhere
the number of servers grows large. While the differential equation implicitly captures
the stability condition, it does not yield any analytical expression, and the derivations
for identical replicas rely on highly specific arguments that do not extend to indepen-
dent replicas. It is also worth observing that the c.o.s. redundancy policy is equivalent
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to a power-of-d version of the Join-the-Smallest-Workload (JSW) policy; see [6]. In
this policy polling just two servers suffices to achieve most of the performance gain.
Moreover, in [6] an exact analysis is given for c.o.s. redundancy in the case of expo-
nential service requirements. While the workload and waiting-time distributions for
these policies for general service requirements do not appear analytically tractable,
the stability condition is simple and coincides with the nominal condition without any
redundancy, since no concurrent service takes place.

In order to gain further insight in the role of the service requirement distribution, we
focus in the present paper on the behavior of the c.o.c. redundancy policy for scaled
Bernoulli service requirements. While this is admittedly a rather special case, it pro-
vides a typical instance of highly variable service requirements for which redundancy
scheduling is particularly relevant, and is also of intrinsic merit given the paucity of
analytical results for general service requirement distributions.

First of all, we establish a simple sufficient stability condition in terms of a lower
bound for the system capacity, i.e., themaximum aggregate load that can be supported.
The lower bound is obtained from a stochastic coupling between the maximum work-
load across all the servers and the workload in a related single-server queue with the
same arrival process and a service requirement that corresponds to the minimum ser-
vice requirement across d replicas. The lower bound for the system capacity grows
without bound with (a) the ‘scale’ of the service requirement and (b) the number of
replicas d, but remarkably enough (c) does not depend on the number of servers at all
(assuming that number to be at least equal to the number of replicas d). The ‘scale’
of the service requirement here refers to its nonzero value relative to its mean and
provides a proxy for the degree of variability. The growth in the system capacity with
(a) and (b) reflects the huge benefits provided by redundancy scheduling for highly
variable service requirements.

In view of (c), the lower bound may at first sight seem loose for a larger number
of servers, but we will use a further stochastic comparison argument to prove that it is
in fact asymptotically tight when the scale of the service requirement grows suitably
large. This implies that increasing the number of replicas significantly increases the
system capacity, while adding servers does not asymptotically. Or, stated differently,
given the number of replicas d, redundancy scheduling ensures that asymptotically
just d servers suffice to achieve the capacity achievable with any number of servers,
which further highlights the great gains provided by redundancy scheduling for highly
variable service requirements.

The remainder of the paper is organized as follows: In Sect. 2, we present a detailed
model description and state a sufficient stability condition for generally distributed
service requirements. In Sect. 3, we prove that this condition is also asymptotically
nearly necessary for scaled Bernoulli service requirements. An upper bound for the
expected waiting time is derived in Sect. 4 and in Sect. 5 we provide a conclusion.

2 Workloadmodel and sufficient stability condition

We consider a system with N parallel servers. Jobs arrive according to a Poisson
process with rate λ. Each arriving job is replicated and immediately allocated to
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d servers chosen uniformly at random (without replacement). The replicas at each
server are served in order of arrival (FCFS), and the job is completed as soon as the
first replica finishes service, whereafter the other d − 1 replicas are instantaneously
abandoned. The service requirements of the d replicas are assumed to be independent
and identically distributed (i.i.d.) copies of some random variable B. Note that this
model corresponds to the independent runtime (IR) model described in [8].

Letω = (ω1, . . . , ωN ) denote theworkload of the system,whereωi is theworkload
at server i , for i = 1, . . . , N . Here we define workload as the real amount of work,
i.e., the amount of work a server needs to complete to become idle in the absence
of any arrivals. This may be smaller than the sum of the service requirements of all
the replicas at the server since some replicas may be partly or entirely abandoned;
see Example 1. Let s j and b j denote the sampled server and the realized service
requirement of the j th replica, respectively, for j = 1, . . . , d. The first replica will
finish service on server s j∗ , where j∗ = argmin j∈{1,...,d}(ωs j + b j ). The workload of
server s j is then max{ωs j∗ + b j∗ , ωs j }, for j = 1, . . . , d.

Example 1 Consider a system with N = 4, d = 2 and workload state ω =
(4.1, 4.1, 3.5, 2.3). Then, after an arrival with service requirements (2.2, 1.5) on
servers 2 and 4, the new workload state is ωnew = (4.1, 4.1, 3.5, 3.8).

Let ω(·) denote the workloads arranged in descending order, thus ω(·) = {ω ∈ R
N+ :

ω(1) ≥ ω(2) ≥ · · · ≥ ω(N )}. Throughout this paper, we refer to synchronicity as the
situation in which all workloads are equal, i.e., ω1 = · · · = ωN . Moreover, let Strun
denote the truncated state space of the ordered workload vectors with Strun = {ω ∈
R

N+ : ω(1) = · · · = ω(d) ≥ ω(d+1) ≥ · · · ≥ ω(N )}.
The next property states that the d largest workloads will always be equal from

some point onward. We will later see that under certain conditions the system will in
fact be in full synchronicity nearly all the time.

Property 1 If ω ∈ Strun, then ωnew ∈ Strun, where ωnew is any future workload. In
other words, once the largest d workloads are equal, they will always remain equal.

Proof Consider the twooptions, either (i)min j∈{1,...,d}(ωs j +b j ) ≤ ω(1) = · · · = ω(d),
in which case we have ωnew,sl = max{min j∈{1,...,d}(ωs j + b j ), ωsl } ≤ ω(1), for
l = 1, . . . , d, therefore ω(1) = · · · = ω(d) = ωnew,(1) = · · · = ωnew,(d),
or ii) min j∈{1,...,d}(ωs j + b j ) > ω(1) = · · · = ω(d), in which case ωnew,sl =
max{min j∈{1,...,d}(ωs j + b j ), ωsl } = min j∈{1,...,d}(ωs j + b j ), for l = 1, . . . , d, there-
foreωnew,s1 = · · · = ωnew,sd = ωnew,(1) = · · · = ωnew,(d). In both casesωnew ∈ Strun,
thus by a simple induction argument it follows that there are always d servers with the
same maximum workload. ��

Before stating and proving a sufficient stability condition, we prove the following
lemma for generally distributed service requirements.

Lemma 1 The sequence of maximum workloads ω(1) at arbitrary epochs is stochas-
tically upper bounded by the sequence of workloads ωM/G/1 in a corresponding
M/G/1 queue with arrival rate λM/G/1 = λ and generic service requirement
BM/G/1 = min{B1, . . . , Bd}, provided that the initial maximum workload ω(1) is
smaller than the initial workload in the M/G/1 queue.
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Proof The proof follows by induction. Note that for the initial state the statement
is satisfied. Assume that ω(1) ≤ ωM/G/1 after the kth arrival. Then, after the (k +
1)th arrival, the new workload is ωnew,sl = max{min j∈{1,...,d}(ωs j + b j ), ωsl } ≤
max{min j∈{1,...,d}(ω(1) + b j ), ω(1)} = ω(1) +min j∈{1,...,d} b j , for l = 1, . . . , d, since
ωi ≤ ω(1) for all i = 1, . . . , N . Thus the increase in maximum workload is bounded
by min j∈{1,...,d} b j , which is exactly the increase in workload in the corresponding
M/G/1 queue. ��
Remark 1 Observe that in synchronicity, in which all servers have the maximum
workload, the bound min j∈{1,...,d} b j is tight, since here every arrival adds exactly
min j∈{1,...,d} b j work to each of the d sampled servers.

Proposition 1 A sufficient stability condition is

λE[min{B1, . . . , Bd}] < 1. (1)

Proof By Lemma 1, we know that the maximum workload in the system is bounded
by the workload in a corresponding M/G/1 queue with arrival rate λM/G/1 = λ

and generic service requirement BM/G/1 = min{B1, . . . , Bd}. The (necessary and
sufficient) stability condition for the latter M/G/1 queue is given by

ρ = λM/G/1E[BM/G/1] = λE[min{B1, . . . , Bd}] < 1.

��
Remark 2 Note that Property 1, Lemma 1 and Proposition 1 have an equivalent version
in the case of identical replicas with E[min{B1, . . . , Bd}] = E[B].

In the case N = d, the above condition is not only sufficient but in fact also
necessary, since the system behaves exactly as the corresponding M/G/1 queue, as
also becomes apparent from [15]. In the case N > d the above condition is no longer
strictly necessary; see also the stability condition for exponential service requirements
in [8]. However, we will show that, surprisingly, it is asymptotically nearly necessary
for independent scaled Bernoulli service requirements, which are defined as

B =
{
X · K , w.p. 1 − p,

0, w.p. p,

where K is a fixed positive real number, and X is a general strictly positive random
variable with E[X ] = 1. Moreover, we assume that E[B] = 1, which implies that
p = 1 − 1/K .

For notational convenience, we label jobs for which none of the d replicas have
service requirement 0 as type-A jobs. For a type-A job (X1K , . . . , XdK ) are the ser-
vice requirements of the replicas at the d sampled servers, where the random variables
X1, . . . , Xd are i.i.d. copies of X . Jobs for which at least one replica but at most d − 1
replicas have service requirement equal to 0 are called type-B jobs, and jobs for which
all d replicas have service requirement equal to 0 are called type-C jobs.
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Fig. 1 Visual representation
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FromProposition 1, it follows that for independent scaledBernoulli service require-
ments the sufficient stability condition reduces to

(1 − p)dλE[min{X1K , . . . , XdK }] = λE[min{X1, . . . , Xd}]
Kd−1 < 1, (2)

since all jobs, other than type-A jobs, which have arrival rate (1 − p)dλ and
service requirement min{X1K , . . . , XdK }, have service requirements for which
min{B1, . . . , Bd} = 0.

3 Asymptotically necessary stability condition

In this section, we shall prove that the sufficient stability condition (2) is in fact also
asymptotically nearly necessary. The proof relies on the property that the system is
most of the time in synchronicity as K grows large.

In preparation for the proof let us first define a measure for synchronicity. Let
the surplus workload, denoted by ω+, be the sum of the (element-wise) differences
between the maximum workload and the workload at server i for i = 1, . . . , N , i.e.,
ω+ = ∑N

i=1

(
ω(1) − ωi

)
; see Fig. 1 for a visual representation. Note that ω+ = 0 if

and only if the system is in synchronicity.
In order to prove that the system is in synchronicity nearly all the time, we introduce

an auxiliary system which is the same as our system except for three differences. In
the auxiliary system (i) the workload at each server only decreases over time when
in synchronicity, (ii) all type-A jobs are allocated to the first d ordered servers and
(iii) only specific type-B jobs, so-called type-B1 jobs, are considered and the other
type-B jobs are omitted. We define type-B1 jobs as ones for which d−1 replicas, with
at least one replica with service requirement equal to 0, are allocated to the first d − 1
ordered servers and one replica with service requirement XdK to the N th ordered
server, i.e., the server with the lowest current workload.

Below we comment on the properties of the surplus workload ω̃+ in the auxiliary
system.
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Property 2 The surplus workload in the auxiliary system, ω̃+, experiences downward
jumps at the instants of a Poisson process of rate (N−d)!

N ! (1 − p)pd−1λ, which is
exactly the arrival rate of type-B1 jobs. The sizes of the downward jumps are equal to
min{ω̃(1) − ω̃(N ), XdK }.
Note that the surplus workload in the original system, ω+, experiences downward
jumps at a higher rate than ω̃+, since not only type-B1 jobs decrease the surplus
workload. Moreover, the sizes of the downward jumps in the surplus workload and
in the surplus workload in the auxiliary system can differ, since these depend on the
workloads in both systems (which are not necessarily equal).

Property 3 The surplus workload in the auxiliary system, ω̃+, experiences upward
jumps of size exactly (N − d)min{X1, . . . , Xd}K as a Poisson process of rate (1 −
p)dλ, which is the arrival rate of type-A jobs.

Note that the surplus workload in the original system, ω+, experiences upward jumps
of smaller or equal size, since type-A jobs add at most min{X1, . . . , Xd}K work to
the current maximum workload; see Remark 1.

The number of jumps, denoted by Z , to reach synchronicity in the auxiliary system
when only considering downward jumps is equal to the total number of type-B1 jobs
that are needed at each server to bridge the difference between themaximumworkload
and the workload at this server. Thus, the expectation of the number of jumps to reach
synchronicity, when only considering type-B1 jobs and starting in the initial workload
state ω̃, where ω̃ ∈ Strun, is

E[Z ] =
N∑

i=d+1

E[min{n : X1K + · · · + XnK ≥ ω̃1 − ω̃i }]

≤
N∑

i=d+1

E[min{n : X1K + · · · + XnK ≥ ω̃+}]

≤ (N − d)

(
E

[
max

{
n : Sn ≤ ω̃+

K

}]
+ 1

)

= (N − d)

(
m

(
ω̃+

K

)
+ 1

)
, (3)

where Sn = ∑n
j=1 X j and the renewal functionm (cf. [11, Definition 10.1.6]) is given

by m(t) = E[N (t)], with N (t) = max{n : Sn ≤ t}. Note that the third line holds with
equality if ω̃+

K /∈ N.
For proving an asymptotically necessary stability condition, we first need to prove

the following two lemmas. Lemma 2 states that the surplus workload in the auxiliary
system stochastically dominates the surplus workload in the original system, and
Lemma 3 states that the surplus workload in the auxiliary system is, a high fraction
of the time, equal to 0 in the long term as K grows large. Together Lemmas 2 and
3 imply that the original system will also be in synchronicity a high fraction of the
time in the long term as K grows large. This in turn implies that almost every arriving
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job will add BM/G/1 = min{B1, . . . , Bd} to the maximum workload. Observe that
this is exactly the upper bound, see Lemma 1, which resulted in the sufficient stability
condition.

Let {ω(t), ω+(t)}t≥0 denote the stochastic process that describes the evolution of
the workload vector ω = (ω1, . . . , ωN ) and the surplus workload ω+ over time. We
further introduce a stochastic process {ω̃(t), ω̃+(t)}t≥0 that describes the evolution of
the workload vector ω̃ = (ω̃1, . . . , ω̃N ) and the surplus workload ω̃+ of the auxiliary
system over time, with ω̃+(t) = ∑N

i=1

(
ω̃(1)(t) − ω̃i (t)

)
.

Lemma 2 The workload vectors of the auxiliary system and the original system satisfy
the inequality ω̃(1)(t)− ω̃(i)(t) ≥ ω(1)(t)−ω(i)(t) for all t ≥ 0 and i = 1, . . . N when
both systems experience the same arrivals and the same generic service requirements,
and start in the same initial workload state ω̃ ∈ Strun, i.e., ω̃(0) = ω(0) = ω̃ and
ω̃(1) = · · · = ω̃(d).

Proof Since both systems start in the same initial workload state it follows that
ω̃(1)(0) − ω̃(i)(0) = ω(1)(0) − ω(i)(0), for i = 1, . . . , N . Moreover, by Prop-
erty 1, it follows that ω̃(1)(t) − ω̃(i)(t) = ω(1)(t) − ω(i)(t) = 0 for t ≥ 0 and
i = 1, . . . , d. We prove the statement for i = d + 1, . . . , N by induction in
time. Assume that ω̃(1)(t1) − ω̃(i)(t1) ≥ ω(1)(t1) − ω(i)(t1), then it should hold that
ω̃(1)(t2) − ω̃(i)(t2) ≥ ω(1)(t2) − ω(i)(t2) for t2 > t1, when considering all the events
that can occur between times t1 and t2:

– When no arrivals occur only the value of ω+(t) can decrease over time, since
the workload at each server in the auxiliary system only decreases over time in
synchronicity. Thus, it follows thatω(1)(t1)−ω(i)(t1) ≥ ω(1)(t2)−ω(i)(t2) (which
is a strict inequality in the case ω(i)(t2) = 0), whereas ω̃(1)(t1) − ω̃(i)(t1) =
ω̃(1)(t2) − ω̃(i)(t2).

– In the case of an arrival of a type-A job, the value of ω̃+(t) increases by exactly
(N − d)min{X1, . . . , Xd}K , whereas the value of ω+(t) increases by at most
(N − d)min{X1, . . . , Xd}K ; see the proof of Lemma 1 and Property 3. Also,
note that a type-A job in the auxiliary system is always allocated to the first
d ordered servers, instead of d servers sampled uniformly at random. Thus, it
follows that min{X1, . . . , Xd}K = ω̃(1)(t2) − ω̃(1)(t1) ≥ ω(1)(t2) − ω(1)(t1) and
0 = ω̃(i)(t2)− ω̃(i)(t1) ≤ ω(i)(t2)−ω(i)(t1). Combining the latter two inequalities
yields ω̃(1)(t2) − ω̃(i)(t2) ≥ ω(1)(t2) − ω(i)(t2).

– In the case of an arrival of a type-B job, excluding a type-B1 job, only the value of
ω+(t) can decrease. Thus, it follows that ω(1)(t1) − ω(i)(t1) ≥ ω(1)(t2) − ω(i)(t2)
(which is a strict inequality in the case of a type-B job that adds workload to server
i), whereas ω̃(1)(t1) − ω̃(i)(t1) = ω̃(1)(t2) − ω̃(i)(t2).

– In the case of an arrival of a type-B1 job, the value of ω̃+(t) decreases
by min{ω̃(1)(t1) − ω̃(N )(t1), XdK }, whereas the value of ω+(t) decreases by
min{ω(1)(t1)−ω(N )(t1), XdK }. Observe that the decrement in the value of ω̃+(t)
can be greater than the decrement in the value of ω+(t), see Property 2, but only
if ω(1)(t2)−ωN∗(t2) = 0, where N∗ is the server at time t2 that had the minimum
workload at time t1 (which is not necessarily the server with minimum workload
at time t2). Therefore, it follows that ω̃(1)(t2) − ω̃(i)(t2) ≥ ω(1)(t2) − ω(i)(t2).
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Fig. 2 Visual representation of surplus processes, where λ = 50, N = 8, d = 2 and K = 100

We conclude that in all scenarios it still holds that ω̃(1)(t2) − ω̃(i)(t2) ≥ ω(1)(t2) −
ω(i)(t2). ��

Lemma2 implies that the surplusworkload in the auxiliary system, ω̃+(t), stochasti-
cally dominates the surplus workloadω+(t)when starting in the same initial workload
state; seeFig. 2.Nowweprove that the surplusworkload in the auxiliary system, ω̃+(t),
is a high fraction of the time equal to 0 in the long term as K grows large.

Lemma 3 For every ε > 0 there exists Kε(d, N ) such that, for all K > Kε(d, N ), the
value of ω̃+(t) is at least a fraction (1 − ε) of the time equal to 0 in the long term.

Proof First denote τ1 := inf{t ≥ 0|ω̃+(t) > 0} as the time that the value of ω̃+(t)
remains equal to 0, when starting in synchronicity. Note that τ1 is the time until the
next upward jump; see Property 3. Therefore the expectation of τ1 is given by

E[τ1] = 1

(1 − p)dλ
= Kd

λ
.

Denote the time that theworkload in the auxiliary system remains in non-synchronicity,
i.e., the time that ω̃+(t) > 0 when starting in initial workload state ω̃(0) = ω̃, where
ω̃ ∈ Strun, by τ2 := inf{t ≥ 0|ω̃+(t) = 0}. Moreover, let {Y |ω̃(0) = ω̃} denote
the number of increments in the value of ω̃+(t) before reaching synchronicity when
starting in ω̃ ∈ Strun. Then the expectation of τ2 is

E[τ2] =
∞∑
n=0

E[τ2|Y = n, ω̃(0) = ω̃] · P(Y = n|ω̃(0) = ω̃)

=
∞∑
n=0

E[Z |Y = n, ω̃(0) = ω̃]
(N−d)!

N ! (1 − p)pd−1λ
· P(Y = n|ω̃(0) = ω̃)

≤ 1
(N−d)!

N ! (1 − p)pd−1λ

[
(N − d)

(
m

(
ω̃+

K

)
+ 1

)

+
∞∑
n=1

(
n(N − d)

(
m(E[min{X1, . . . , Xd}]) + 1

) · P(Y = n|ω̃(0) = ω̃)
)]
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= 1
(N−d)!

N ! (1 − p)pd−1λ

[
(N − d)

(
m

(
ω̃+

K

)
+ 1

)

+ (N − d)
(
m(E[min{X1, . . . , Xd}]) + 1

)
E[Y |ω̃(0) = ω̃]

]
,

with E[min{X1, . . . , Xd}] ≤ E[X ] = 1. The second equality results from Wald’s
equation, i.e., the equality between the expected time to reach synchronicity (given
the number of upward jumps) and the expected number of downward jumps (given the
number of upward jumps) multiplied with the expected time between such downward
jumps. The inequality in the next step results from the proof of Lemma 1, which
implies that the surplus workload increases by at most (N − d)min{X1, . . . , Xd}K
per upward jump, and using the bound on the expected number of downward jumps
(given the number of upward jumps), i.e., Eq. (3).

Together with Wald’s equation

E[Y |ω̃(0) = ω̃] = E[τ2](1 − p)dλ,

we can bound the expected time in non-synchronicity, namely

E[τ2] (N − d)!
N ! (1 − p)pd−1λ

≤ (N − d)

(
m

(
ω̃+

K

)
+ 1

)
+ (N − d)

(
m(E[min{X1, . . . , Xd }]) + 1

)
E[τ2](1 − p)dλ

⇔ E[τ2]
(

(N − d)!
N ! (1 − p)pd−1λ − (N − d)

(
m(E[min{X1, . . . , Xd }]) + 1

)
(1 − p)dλ

)

≤ (N − d)

(
m

(
ω̃+

K

)
+ 1

)

⇔ E[τ2] ≤ (N − d)
(
m( ω̃+

K ) + 1
)

(N−d)!
N !

λ
K (1 − 1

K )d−1 − (N − d)
(
m(E[min{X1, . . . , Xd }]) + 1

)
λ
Kd

= 1

λ
O(K ),

under the assumption that (N−d−1)!
N ! (1 − 1

K )d−1 >
m(E[min{X1,...,Xd }])+1

Kd−1 . Moreover,

m( ω̃+
K ) ↓ 0 as K grows large, and by renewal theory (cf. [11]) we know that

m(E[min{X1, . . . , Xd}]) < ∞ since E[min{X1, . . . , Xd}] ≤ 1.
Now if we choose Kε(d, N ) such that for K = Kε(d, N ) one has

E[τ2]
E[τ1] + E[τ2] ≤ ε,

then for all K > Kε(d, N ) it follows that

E[τ1]
E[τ1] + E[τ2] > 1 − ε = 1 − O

(
1

Kd−1

)
.
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This completes the proof that the auxiliary surplusworkload is at least a fraction (1−ε)

of the time equal to 0 in the long term. ��
Remark 3 So far it has been assumed that in the initial state the first d ordered work-
loads are equal, but this assumption is not necessary. One can show via an approach
analogous to Lemma 3, but with the bound E[Z ] < N

(
m( ω̃+

K ) + 1
)
, that the expected

time to reach synchronicity when starting in an arbitrary initial workload state is still
finite. Note that after reaching synchronicity the assumption is valid and that directly
after synchronicity ω̃+(t) = ω+(t) = (N − d)min{X1, . . . , Xd}K .

Now we are ready to prove the main theorem of the paper.

Theorem 1 For every ε > 0 there exists Kε(d, N ) such that, for all K > Kε(d, N ),
a necessary stability condition for independent scaled Bernoulli service requirements
is

(1 − ε)
λE[min{X1, . . . , Xd}]

Kd−1 < 1. (4)

Proof From Lemma 2, we know that ω̃+(t) stochastically dominates ω+(t), and
Lemma 3 states that for every ε > 0 there exists Kε(d, N ) such that for all
K > Kε(d, N ) the value of ω̃+(t) is at least a fraction (1 − ε) of the time equal
to 0 in the long term. Hence, this latter statement also holds for the value of ω+(t).
Moreover, by definition, if ω+(t) = 0, then the system is in synchronicity. In syn-
chronicity, type-A jobs add exactly min{X1, . . . , Xd}K work to the sampled servers.
We conclude that, independent of the behavior in non-synchronicity, in the long term
at least a fraction (1− ε) of the type-A jobs adds exactly min{X1, . . . , Xd}K work to
the current maximum workload. Thus, for the system to be stable it should at least be
able to handle these latter type-A jobs. ��
Remark 4 The expected time in non-synchronicity depends on the renewal function
m(t); see Lemma 3. This function in turn depends on the distribution of the X com-
ponent in the service requirement distribution B. For some distributions an explicit
expression for m(t) is known (cf. [11]):

– X ≡ 1: m(t) = �t,
– X ∼ Exp(1): m(t) = t ,

– X ∼ Unif[0, 2]: m(t) + 1 = ∑�t/2
i=0 (−1)i (t/2−i)i

i ! et/2−i .

4 Numerical results

In Sect. 3 it is proven that the system, for scaled Bernoulli distributed service require-
ments and K large enough, is a high fraction of the time in synchronicity in the long
term. In this section, we will use simulation to quantify this statement for various
values of N and K , where d = 2 is fixed.

In Fig. 3, the long-term fraction of time in synchronicity is depicted as a function of
K for various values of N . The fraction λ

K is kept constant to ensure that the workload
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Fig. 3 Long-term fraction of time in synchronicity (obtained by simulation) for the setting d = 2, X ≡ 1
and λ

K = 0.5 (top) and λ
K = 0.9 (bottom)

Fig. 4 Stability conditions for the setting N = 10, d = 2 and X ≡ 1

in the system is approximately equal for all K . It can be seen that the system with
N = d is always in synchronicity, which follows from Property 1. Moreover, the long-
term fraction of time in synchronicity is higher for lower values of λ

K . The reason is
that the empty state is included in the definition of synchronicity. Another observation
is that for fixed λ and K , increasing N decreases the long-term fraction of time in
synchronicity. This is related to the fact that Kε(d, N ) defined in Lemma 3 depends
on N .

Figure 4 shows both the sufficient and nearly necessary stability conditions as
functions of K in the setting N = 10 and d = 2. Note that the lines in the figure are
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not parallel; for K = 5000 the difference is 1000, and for K = 10,000 the difference is
850. More specifically, for K increasing the difference vanishes. Another observation
obtained by simulation (not depicted in the figure) is that the stability condition of
this system is (almost) equal to the sufficient stability condition. This implies that the
nearly necessary stability condition tends to be a loose bound for finite values of K .

In Lemma 1we proved that themaximumworkload is bounded by theworkload in a
corresponding M/G/1 queue. From this lemma it follows that for independent scaled
Bernoulli service requirements, the maximum workload is bounded by the workload
in a corresponding M/G/1 queue with arrival rate λM/G/1(K ) = (1 − p)dλ and
service requirement BM/G/1(K ) = min{X1, . . . , Xd}K since all arrivals, other than
the arrivals of type-A jobs, have service requirements forwhichmin{B1, . . . , Bd} = 0.
This bound can be used to find an upper bound on the expected waiting time since
an arriving job needs to wait at most for the current maximum workload, which is
bounded by the workload VM/G/1 in the corresponding M/G/1 queue. From M/G/1
theory (cf. [4, Section X.3]) we get

E[W ] ≤ E[VM/G/1]

= λM/G/1(K )E[B2
M/G/1(K )]

2(1 − λM/G/1(K )E[BM/G/1(K )])
= (1 − p)dλE[min{X1, . . . , Xd}2]K 2

2(1 − (1 − p)dλE[min{X1, . . . , Xd}]K )
. (5)

Note that this bound is tight for N = d since the system behaves exactly as the
corresponding M/G/1 queue, and is asymptotically tight in K for N > d. For X ≡ 1
constant and d = 2 we get

E[W ] ≤ (1 − p)2λK 2

2(1 − (1 − p)2λK )

= λ

2(1 − λ
K )

,

which is linear in K if we assume that λ
K is fixed. Notice that this upper bound does

not depend on the number of servers.
Figure 5 shows the expected waiting time as a function of K for various values of

N ; again we kept the fraction λ
K constant to ensure that the workload is approximately

equal for all K . When comparing both figures we can conclude that for finite K the
number of servers N influences the expected waiting time more than the value of the
fraction λ

K . Moreover, for N large, a larger K is needed for the upper bound to be
accurate.

Observe that with the upper bound for the expected waiting time we also have an
upper bound for the expected latency, since

E[T ] ≤ E[W ] + E[min{B1, . . . , Bd}],
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Fig. 5 Expected waiting time (obtained by simulation) for the setting d = 2, X ≡ 1 and λ
K = 0.5 (top)

and λ
K = 0.9 (bottom). Note that N = 2 corresponds to the upper bound given in (5)

Fig. 6 Difference between the expected latency and the expected waiting time (obtained by simulation) for
the setting d = 2, X ≡ 1 and λ

K = 0.5

where E[min{B1, . . . , Bd}] ≤ 1 since, by assumption, E[Bi ] = 1, for i = 1, . . . , d.
Note that the upper bound for the service requirements, i.e.,E[min{B1, . . . , Bd}] ≤

1, is not (asymptotically) tight in K , since E[min{B1, . . . , Bd}] ↓ 0 as K grows large.
In Fig. 6 the difference between the expected latency and the expected waiting time
is depicted as function of K for various values of N . Indeed, it can be seen that this
difference vanishes as K grows large.
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5 Conclusion

In this paper, we have proven that the maximum workload in a parallel-server system
with c.o.c. redundancy is upper bounded by the workload in a related M/G/1 queue.
This directly yields a sufficient stability condition.Moreover,we proved that in the case
of independent scaled Bernoulli service requirements the system is asymptotically a
high fraction of the time in so-called synchronicity in the long term. In synchronicity
the upper bound of the related M/G/1 queue is in fact tight, and this resulted in
an asymptotically necessary stability condition. Interestingly, both the sufficient and
asymptotically nearly necessary conditions are independent of the number of servers,
but do depend on the number of replicas d. In contrast, in the case of exponentially
distributed service requirements the stability condition depends linearly on the number
of servers and not on the number of replicas. This indicates that the stability condition
in a c.o.c. redundancy system with i.i.d. service requirements is highly sensitive to the
distribution of these service requirements.

The bound on the maximum workload also resulted in an upper bound for the
expected waiting time, which is again (asymptotically) tight (as the scale of the service
requirement grows large). This bound directly resulted in an upper bound for the
expected latency.

We assumed that jobs arrive according to a Poisson process, but it might be possible
to relax this assumption. In particular, the proof of the sufficient stability condition
does not rely on Poisson arrivals and could be extended to a general arrival process.
The extension of the proof of the asymptotically necessary condition is more involved.
Another interesting topic for further research is to extend the developed framework to
obtain the stability condition for more general service requirements. Finally, it might
be possible to prove the stability condition in a c.o.c. redundancy system with i.i.d.
service requirements with the additional feature of fork-join service. In such a system,
a replica is created on d servers and k out of d replicas must be served completely.
We expect that the notion of synchronicity continues to holds. More specifically, we
expect that Proposition 1 (the sufficient stability condition) still holds when replacing
E[min{B1, . . . , Bd}] by the expectation of the kth order statistic, i.e., the expectation
of the kth smallest value. However, the proof of the necessary stability condition will
require significantly more involved arguments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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