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Abstract
Westudy systemswith two classes of impatient customerswho differ across the classes
in their distribution of service times and patience times. The customers are served on a
first-come, first-served basis (FCFS) regardless of their class. Such systems are com-
mon in customer call centers, which often segment their arrivals into classes of callers
whose requests differ in their complexity and criticality. We first consider an M /G/1
+ M queue and then analyze the M /M /k + M case. Analyzing these systems using
a queue length process proves intractable as it would require us to keep track of the
class of each customer at each position in the queue. Consequently, we introduce a
virtual waiting time process where the service times of customers who will eventually
abandon the system are not considered. We analyze this process to obtain perfor-
mance measures such as the percentage of customers receiving service in each class,
the expected waiting times of customers in each class, and the average number of cus-
tomers waiting in queue. We use our characterization to perform a numerical analysis
of the M /M /k + M system and find several managerial implications of administering
a FCFS system with multiple classes of impatient customers. Finally, we compare the
performance a system based on data from a call center with the steady-state perfor-
mance measures of a comparable M /M /k + M system. We find that the performance
measures of theM /M /k +M system serve as good approximations of the system based
on real data.
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1 Introduction

In this paper, we analyze queueing systems with different classes of customers who
may abandon (renege from) the system if theirwaiting time exceeds their patience time,
i.e., the maximum amount of time they are willing to wait before abandoning the sys-
tem. This work is motivated primarily by customer call centers, which often segment
their callers into different classes. Since call centers are the prevalent customer-facing
service channel of many organizations, they often receive a variety of caller requests
which may differ significantly in their service requirements and criticality. For exam-
ple, banking call centers receive requests as simple as balance inquiries and as complex
and critical as dealing with fraudulent activity on a caller’s account. While a service
representative can obtain an account balance relatively quickly, handling fraudulent
activity takes longer as it involves a higher level of legal expertise and paperwork.
Furthermore, because fraudulent activity is usually more critical than obtaining a bal-
ance, callers who are calling about fraud may be more patient than callers who are
calling to obtain a balance. Because callers’ service requests vary so greatly, call cen-
ters often train subsets of their representatives to handle only certain types of service
requests. Based on the service the callers request from the phone menu, the auto-
matic call distributor (ACD) segments callers into classes and routes the callers within
each class to the appropriately trained subset of representatives. Depending on which
types of requests are included in each class, these classes may differ from each other
with respect to their distribution of service times and patience times. Consequently,
one subset of representatives may serve a queue that receives arrivals from multi-
ple classes that differ from each other in their typical service requirements and their
callers’ patience levels. Call centers sometimes give priority to certain classes based
on criteria such as the callers’ value to the organization or the criticality of the callers’
service request. However, in an effort to be fair, call centers often serve their callers on
a first-come, first-served basis (FCFS) regardless of class. Because the FCFS policy is
such a common practice, it is important to describe the performance of such systems.
In this study, we do this by characterizing the performance of FCFS systems with two
customer classes that may differ from each other in both their distribution of service
times and their distribution of patience times.

As queue abandonment is a common customer behavior in many service systems,
it is not surprising that a large number of studies have been devoted to characterizing
queueing systems with impatient customers. Approaches for describing the perfor-
mance of systems with a single class of impatient customers have included analytical
characterizations (Daley [11], Baccelli and Hebuterne [3], Baccelli et al. [2], Stanford
[21]) and performance approximations (Garnett et al. [12], Zeltyn and Mandelbaum
[25], Iravani and Balcıoğlu [16]). The literature also contains several studies of two-
class systems. In most of these studies, one customer class is prioritized over the
other. Choi et al. [10] analyze the underlying Markov process of an M /M /1 queue
where one class of customers with constant patience times receives preemptive prior-
ity over a second class of customers who have no impatience. The authors obtain the
joint distribution of the system size, and the Laplace transform (LT) of the response
time of the second class of customers. Brandt and Brandt [6] extend the approach in
[10] to include generally distributed patience times for the first class of customers.
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Iravani and Balcıoğlu [17] use the level-crossing technique proposed by Brill and
Posner [8,9] to study two M /GI /1 settings. They first consider a preemptive-resume
discipline where customers in both classes have exponentially distributed patience
times, and then consider a non-preemptive discipline where customers in the first
class have exponentially distributed patience times, but customers in the second class
have no impatience. Iravani and Balcıoğlu obtain the waiting time distributions for
each class and the probability that customers in each class will abandon.

A handful of papers have dealt with priority queues with two classes of impatient
customers in a multi-server setting. Motivated by call centers where callers may leave
a voicemail, Brandt and Brandt [5] consider a multi-server system where callers from
the first class are impatient and receive priority over callers from the second class, who
have no impatience. Callers from the first class who renege may join the second class
by leaving a voicemail and are only contacted when the number of idle servers in the
systemexceeds some threshold. The authors obtain the exact distribution of the number
of callers in service from the first class, and approximations of the moments of the
number of callers in service from the second class. Jouini and Roubos [18] consider an
M /M /s + M queueing system where all customers have the same mean service times
and mean patience times, but callers in one of the classes receive non-preemptive
priority. Within each class, customers may be served according to a FCFS or last-
come, first-served (LCFS) discipline. Jouini andRoubos obtain themeanunconditional
waiting times, the mean waiting times conditional on receiving service, and the mean
waiting times conditional on abandoning the system for both classes under several
policy permutations.

The studies that are most pertinent to our work are those in which classes of impa-
tient customers are served on a FCFS basis, regardless of their class. Gurvich andWhitt
[13] approximate the performance of a multiclass call center with impatient callers
under the quality-and-efficiency-driven (QED) regime introduced by Halfin andWhitt
[14]. They analyze how the call center performs under a class of asymptotically optimal
routing policies, of which the FCFS policy is a special case. Talreja andWhitt [23] rely
on a deterministic fluidmodel to approximate the performance of amulti-server, multi-
class FCFS system with impatient customers in an overloaded, efficiency-driven (ED)
regime. Adan et al. [1] design heuristics to determine the staffing levels required to
meet target service levels in an overloaded FCFSmulticlass systemwith impatient cus-
tomers. Van Houdt [24] considers an MAP/PH /1 multiclass queue where customers
in each of the classes have a general distribution of patience times. VanHoudt develops
a numerical procedure for analyzing the performance characteristics of the system by
reducing the joint workload and arrival processes to a fluid queue, and expresses the
steady-state measures using matrix analytical methods. His method produces an exact
characterization of the waiting time distribution and abandonment probability under a
discrete distribution of patience times, and approximations of the same performance
measures under a continuous distribution of patience times. Sakuma and Takine [19]
study the M /PH /1 system and assume that customers within each class have the same
deterministic patience time. In addition to obtaining the waiting time distribution and
abandonment probabilities, they obtain the joint queue length distribution. Finally,
Sarhangian and Balcıoğlu [20] study twomulticlass FCFS systems. The first system is
an M /G/1+M queue where customers across classes may differ in their service time
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distribution, but all customers share common exponentially distributed patience times.
The second system is an M /M /c+M queue where customers across classes may dif-
fer in their exponentially distributed patience times, but all customers share the same
exponentially distributed service times. For both systems, the authors obtain the LT
of the virtual waiting time for each of the k classes by exploiting the level-crossing
technique in [8] and [9]. They then relate the virtual waiting time to the actual waiting
time to compute steady-state performance measures such as the mean waiting times
and the percentage of customers who renege from each class.

In this study, we analyze two systems in which two classes of impatient customers
are served according to an FCFS policy. The distinction between our setting and the
settings in previous studies is that in our setting customers across classes may differ
in their distributions of their service times and patience times, while in previous set-
tings customers across classes may only differ in one of the two distributions. This
distinction is crucial in characterizing the performance of multiclass systems with
customers whose service times and patience may vary based on the complexity and
criticality of their requests. We first consider an M /G/1+M queue and then analyze
an M /M /k+M queue. To characterize the performance of these systems, we introduce
a virtual waiting time process as described in Benes [4] and Takács et al. [22] (see
Heyman and Sobel [15], pp. 383–390 for details). In a virtual waiting time process,
the service times of customers who will eventually abandon the system are not con-
sidered. By analyzing this process, we obtain performance characteristics such as the
percentage of customers who receive service in each class, the expected waiting times
of customers in each class, and the average number of customers waiting in queue from
each class. Note that although a related formula for the virtual waiting time in a single
class M /G/1+PH queue is reported in [7], it is not suitable for direct computation as
it consists of an exponentially growing number of terms. We next perform a numerical
analysis of the M /M /k+M system under various arrival rates, mean service times, and
mean patience times. Our analysis demonstrates that accounting for differences across
classes in the distribution of customers’ service times and patience times is critical,
as the performance of our system differs considerably from a system where only the
service time distribution varies across classes. The results of our numerical analysis
have broad managerial implications including service level forecasting, revenue man-
agement, and the evaluation of server productivity. As a final exercise, we compare
the simulated performance of a system based on data from a multiclass call center
with the performance measures of a comparable M /M /k+M system. To construct our
simulated system, we select two classes from the data that differ in their distribution
of service times and caller patience times. We find that the performance measures
from the M /M /k+M system serve as good approximations of the performance of the
simulated system based on the call center data.

The remainder of the paper is organized as follows: In Sect. 2, we analyze the
M /G/1+M queue. In Sect. 3, we analyze the M /M /k+M queue, including a special
case where the two classes share a common mean service time. In Sect. 4, we derive
steady-state performance measures. In Sect. 5, we present our numerical analysis, and
in Sect. 6 we compare the performance of the simulated system based on real data and
our analytical characterization of the M /M /k+M system.
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Fig. 1 Single-server model

2 M/G/1+M system

We begin with a single-server queueing system serving two classes of customers;
see Fig. 1. Assume that class i (i = 1, 2) customers arrive according to independent
Poisson processes with rate λi and need independent and identically distributed (iid)
service times with cdf Gi (·) and mean τi . The customers are impatient, and customers
from class i leave the system after an exponential amount of time with parameter θi
(called the patience time) if their queueing time is longer than their patience time. The
patience times of customers are independent of each other. For this system, we are
interested in performance characteristics such as the long-run fraction of customers
entering service, server utilization, and the expected waiting time for service. Note
that due to the impatience of the customers in each class, the system will always be
stable even if the total arrival rate exceeds the service rate.

It seems natural to study this model through its queue length process. However,
keeping track of the number of customers from each class who are in the queue is
not sufficient. We would also need to keep track of the class of each customer at
each position in queue, since patience times depend on customer class. This renders
the Markov process intractable. Thus, we introduce the virtual queueing time process
below. This process appears to be tractable.

LetW (t) be the virtual queueing time at time t . We know thatW (t) decreases with
rate 1 at all times, while it is positive. If an arrival from class i occurs at time t and
W (t) = w, the arrival leaves without service with probability 1 − e−θiw, or enters
service with probability e−θiw, and needs a random amount of service with cdf Gi (·).
Hence, the distribution of Si (t), the size of the upward jump at time t due to a class i
arrival, given W (t) = w, is given by

P(Si (t) ≤ y|W (t) = w) = 1 − e−θiw + e−θiwGi (y), (1)

and thus

E(e−sSi (t)|W (t) = w) = 1 − e−θiw + e−θiwG̃i (s),

where G̃i (·) is the LST of Gi (·). Let
ψ(s, t) = E(e−sW (t)),

p0(t) = P(W (t) = 0),

φ(s, t) = ψ(s, t) − p0(t),
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and

ψ(s) = lim
t→∞ ψ(s, t)

= E(e−sW ),

p0 = lim
t→∞ p0(t)

= P(W = 0),

φ(s) = ψ(s) − p0,

where W is the limit (in distribution) of W (t) as t → ∞. In the interval (t, t + h],
an arrival of type i occurs with probability λi h + o(h), and no event occurs with
probability 1 − (λ1 + λ2)h + o(h) as h → 0. Then, we get

ψ(s, t + h) = (1 − λ1h − λ2h)φ(s, t)esh + (1 − λ1h − λ2h)p0(t)

+
2∑

i=1

λi h(φ(s, t) − φ(s + θi , t) + ψ(s + θi , t)G̃i (s)) + o(h).

Inserting esh = 1 + sh + o(h), rearranging terms and dividing by h, and then letting
h → 0, we obtain

d

dt
ψ(s, t) = sφ(s, t) −

2∑

i=1

λiψ(s + θi , t)(1 − G̃i (s)).

Now let t → ∞. Then, d
dt ψ(s, t) → 0, ψ(s, t) → ψ(s) and φ(s, t) → φ(s), so

0 = sφ(s) −
2∑

i=1

λiψ(s + θi )(1 − G̃i (s)).

Dividing by s and using

Hi (s) = λi
1 − G̃i (s)

s
,

we finally get

ψ(s) = p0 +
2∑

i=1

ψ(s + θi )Hi (s). (2)

Note that Hi (s)/(λiτi ) is the LST of the equilibrium distribution of the service times
of customers from class i .

Sarhangian and Balcıoğlu [20] have derived this equation by a different method;
however, they could solve it only in the special case θ1 = θ2. Here, we develop an
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efficient method to solve Eq. (2) even when θ1 �= θ2. We have included the detailed
derivation of this equation, since the same steps can be used to derive the equations in
the multi-server setup studied in the next section.

Repeated application of Eq. (2) shows that its solution can be written as

ψ(s) = p0c(s), (3)

where

c(s) =
∞∑

i=0

∞∑

j=0

ci, j (s).

The terms ci, j (s) satisfy the recursion

ci, j (s) = H1(s + (i − 1)θ1 + jθ2)ci−1, j (s) + H2(s + iθ1 + ( j − 1)θ2)ci, j−1(s),

with initially c0,0(s) = 1 and ci, j (s) = 0 if i < 0 or j < 0. The recursive procedure
to obtain (3) as well as convergence properties of the series c(s) will be explained in
more detail in Sect. 3, where we analyze the multi-server system. Finally, to determine
p0, we use ψ(0) = 1 in (2), yielding

p0 = 1 −
2∑

i=1

ψ(θi )λiτi = 1 − p0

2∑

i=1

c(θi )λiτi ,

so

p0 =
[
1 +

2∑

i=1

c(θi )λiτi

]−1

.

We shall see in Sect. 4 that many performance measures can be computed in terms of
ψ(θi ).

Remark 1 (Hyper-Exponential impatience) For Hyper-Exp(θi j , pi j ) impatience of
class i customers, it is straightforward to derive the equation

ψ(s) = p0 +
2∑

i=1

∑

j

pi jψ(s + θi j )Hi (s),

where

p0 = 1 −
2∑

i=1

∑

j

pi jψ(θi j )λiτi .

One can also show that our results reduce to known results (see Daley [11] for
example) when specialized to a system with a single class of customers.
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Fig. 2 Multi-server model

3 M/M/k+M system

3.1 Model

Now we consider a FCFS multi-server system with k servers serving two classes of
customers; see Fig. 2. However, unlike in Sect. 2, we now assume that the service
times are exponentially distributed. To be precise, we assume that customers from
class i arrive according to a PP(λi ), need iid Exp(μi ) service times, and exhibit iid
Exp(θi ) patience times (i = 1, 2). If service does not start before the patience time
expires, the customer leaves without service.

3.2 Virtual queueing time process

As in the single-server case, we study the virtual queueing time process, augmented
by a supplementary variable to construct a Markov process. Let W (t) be the virtual
queueing time at time t in this system. This is the queueing time that would be expe-
rienced by a virtual customer arriving at time t . Let Ni (t) be the number of servers
serving a class i customer just after time t + W (t) but before the next customer (if
there is one) entering service at time t + W (t). This means that Ni (t) is the number
of servers busy with a class i customer just before a customer arriving at time t enters
service. So N1(t) + N2(t) is always at most k − 1.

This unusual definition enables us to determine the size of the upward jump of the
virtual queueing time if an arriving customer at time t decides to join the queue (since
his patience exceedsW (t)). The jump is theminimumof the service time of the arriving
customer and the residual service times of the customers in service at the moment he
enters service at time t+W (t).Aswewill explain below, {(W (t), N1(t), N2(t)), t ≥ 0}
is a Markov process with upward jumps, the size of which depend on W (t), and a
continuous downward deterministic drift of rate 1 between jumps.

Suppose W (t) = 0 and (N1(t), N2(t)) = (i, j). Then, (i, j) is the number of busy
servers of classes 1 and 2 at time t . For 0 ≤ i + j ≤ k − 1, the transition rates of
services in state (0, i, j) are given by

q(0,i, j), (0,i−1, j) = iμ1,

q(0,i, j), (0,i, j−1) = jμ2,

and for 0 ≤ i + j < k − 1 the transition rates of arrivals are
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q(0,i, j), (0,i+1, j) = λ1,

q(0,i, j), (0,i, j+1) = λ2.

This accounts for all transitions from states (0, i, j), 0 ≤ i + j ≤ k − 1, except
for the transition rates of arrivals in states with i + j = k − 1. These transition rates
are described below.

Now suppose the state of the tri-variate process at time t is (w, i, j) with w ≥ 0
and i + j = k − 1. This means that just after time t + w we will have i busy servers
of class 1 and j servers of class 2. Consider an arrival from class 1 at time t . This
customer has to wait an amount w for service to begin. He reneges before his service
starts with probability 1−e−θ1w, in which case the state does not change, and he enters
service at time t + w with probability e−θ1w. Then, the next departure occurs after
an Exp((i + 1)μ1 + jμ2) time X and the departure at time t + w + X is from class
1 with probability (i + 1)μ1/((i + 1)μ1 + jμ2) and from class 2 with probability
jμ2/((i + 1)μ1 + jμ2). In the first case, the state jumps at time t from (w, i, j) to
(w+ X , i, j). In the second case, the state jumps to (w+ X , i +1, j −1). The process
is similar in the case of a class 2 arrival. Hence, we get the following transition rates
from states (w, i, j) with w ≥ 0 and i + j = k − 1:

q(w,i, j), ([w+x,w+x+dx),i+1, j−1) = λ1 × e−θ1w((i + 1)μ1 + jμ2)e
−((i+1)μ1+ jμ2)xdx

× jμ2

(i + 1)μ1 + jμ2

= λ1e
−θ1w jμ2e

−((i+1)μ1+ jμ2)xdx,

q(w,i, j), ([w+x,w+x+dx),i, j) = λ1e
−θ1w(i + 1)μ1e

−((i+1)μ1+ jμ2)xdx

+ λ2e
−θ2w( j + 1)μ2e

−(iμ1+( j+1)μ2)xdx,

q(w,i, j), ([w+x,w+x+dx),i−1, j+1) = λ2e
−θ2wiμ1e

−(iμ1+( j+1)μ2)xdx .

Between upward jumps, the W process decreases continuously and deterministically
at rate 1, while it is positive. WhenW reaches 0 in state (0, i, j), the process will stay
in this state until either an arrival or service completion occurs.

A sample path of the Markov process {(W (t), N1(t), N2(t)), t ≥ 0} is shown in
Fig. 3. It describes the following events: At time t0 = 0, the system is in state (0, 1, 1),
which means that the virtual queueing time is 0, two servers are busy, one with a class
1 customer and the other with a class 2 customer. Then, a class 2 customer arrives at
time t1, so the system states change to state (0, 1, 2). At time t2, a class 1 customer
arrives and W (t) jumps an Exp(2μ1 + 2μ2) amount. At time t2 + W (t2), a class 2
customer will complete service (from the two class 1 and two class 2 customers in
service), so (N1(t), N2(t)) jumps to (2, 1) at time t2. The next customer arrives at
time t3. He is from class 1, and his patience exceeds W (t3). So this customer joins
the queue and W (t) jumps an Exp(3μ1 + μ2) amount. At time t3 +W (t3), the class 2
customer will complete service before one of the three class 1 customers in service, so
(N1(t), N2(t)) jumps to (3, 0) at time t3. At time t4, a class 2 customer arrives, but his
patience is less thanW (t4), and thus he leaves the systemwithout receiving service. At
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W (t)

t0 = 0 t1 t2 t3 t4 t5 t6 t

N1(t), N2(t) (1,1) (1,2) (2,1) (3,0) (2,0)(3,0) (3,0)

Fig. 3 Sample path of the virtual queueing time process of a system with four servers

time t5 = t3 +W (t3), the class 2 customer completes service and the virtual queueing
time reaches 0. The last event in Fig. 3 occurs at time t6. A class 1 customer completes
service, and the system state jumps to (0, 2, 0).

We next determine the Laplace–Stieltjes transform (LST) of the virtual queueing
time.

3.3 Steady-state analysis

We first introduce the notation

ψi (s, t) = E(s−sW (t); N1(t) = i, N2(t) = k − 1 − i), 0 ≤ i ≤ k − 1,

pi, j (t) = P(W (t) = 0, N1(t) = i, N2(t) = j), 0 ≤ i + j ≤ k − 1,

φi (s, t) = ψi (s, t) − pi,k−1−i (t), 0 ≤ i ≤ k − 1,

and

ψi (s) = lim
t→∞ ψi (s, t)

= E(s−sW ; N1 = i, N2 = k − 1 − i), 0 ≤ i ≤ k − 1,

pi, j = lim
t→∞ pi, j (t)

= P(W = 0, N1 = i, N2 = j), 0 ≤ i + j ≤ k − 1,

φi (s) = ψi (s) − pi,k−1−i ,

where (W , N1, N2) is the limit (in distribution) of (W (t), N1(t), N2(t)) as t → ∞.
We start with the balance equations for the steady-state probabilities pi, j . Let

pn = [p0,n p1,n−1 . . . pn,0], 0 ≤ n ≤ k − 1.
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Then, the balance equations can be written in vector–matrix form as

p0(λ1 + λ2) = p1M1,

pn(λ1 + λ2) + pnΔn = pn−1�n−1 + pn+1Mn+1, 1 ≤ n < k − 1, (4)

where the (n + 1) × (n + 1) matrix Δn = diag(nμ2, μ1 + (n − 1)μ2, . . . , nμ1) and
the nonzero elements of the (n+1)× (n+2)matrix�n = [λn,i, j ] and the (n+1)×n
matrix Mn = [μn,i, j ] are given by

λn,i,i+1 = λ1, 0 ≤ i ≤ n,

λn,i,i = λ2, 0 ≤ i ≤ n,

μn,i,i−1 = iμ1, 1 ≤ i ≤ n,

μn,i,i = (n − i)μ2, 0 ≤ i ≤ n − 1.

The above equations can be simplified to

pn = pn+1Rn+1, 0 ≤ n < k − 1. (5)

The (n + 1) × n matrices Rn in (5) recursively follow from

R1 = M1(λ1 + λ2)
−1,

Rn+1 = Mn+1((λ1 + λ2)I + Δn − Rn�n−1)
−1, 1 ≤ n < k − 1,

where I denotes the identity matrix.
Now we proceed to derive differential equations for the time-dependent LSTs

ψi (s, t) and then take t to infinity to obtain the steady-state equations. For small
h > 0, we get

ψi (s, t + h) = (1 − λ1h − λ2h)φi (s, t)e
sh

+ (1 − λ1h − λ2h − (iμ1 + (k − 1 − i)μ2)h)pi,k−1−i (t)

+ λ1h(φi (s, t) − φi (s + θ1, t)) + λ2h(φi (s, t) − φi (s + θ2, t))

+ λ1hψi (s + θ1, t)
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2

+ λ1hψi−1(s + θ1, t)
(k − i)μ2

s + iμ1 + (k − i)μ2

+ λ2hψi (s + θ2, t)
(k − i)μ2

s + iμ1 + (k − i)μ2

+ λ2hψi+1(s + θ2, t)
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2

+ λ1hpi−1,k−1−i (t) + λ2hpi,k−2−i (t) + o(h),
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where, by convention, pi, j (t) = 0 if i < 0 or j < 0. Inserting esh = 1 + sh + o(h),
rearranging terms and dividing by h, and then letting h → 0, we obtain

d

dt
ψi (s, t) = sφi (s, t) − λ1ψi (s + θ1, t)

− λ2ψi (s + θ2, t) − (iμ1 + (k − 1 − i)μ2)pi,k−1−i (t)

+ λ1ψi (s + θ1, t)
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2

+ λ1ψi−1(s + θ1, t)
(k − i)μ2

s + iμ1 + (k − i)μ2

+ λ2ψi (s + θ2, t)
(k − i)μ2

s + iμ1 + (k − i)μ2

+ λ2ψi+1(s + θ2, t)
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2

+ λ1 pi−1,k−1−i (t) + λ2 pi,k−2−i (t).

Now let t → ∞. Then, the system reaches steady state and d
dt ψi (s, t) → 0,ψi (s, t) →

ψi (s), φi (s, t) → φi (s) and pi, j (t) → pi, j , so

0 = sφi (s) − λ1ψi (s + θ1) − λ2ψi (s + θ2) − (iμ1 + (k − 1 − i)μ2)pi,k−1−i

+ λ1ψi (s + θ1)
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2

+ λ1ψi−1(s + θ1)
(k − i)μ2

s + iμ1 + (k − i)μ2

+ λ2ψi (s + θ2)
(k − i)μ2

s + iμ1 + (k − i)μ2

+ λ2ψi+1(s + θ2)
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2

+ λ1 pi−1,k−1−i + λ2 pi,k−2−i . (6)

It is useful to rewrite the above equations in vector–matrix form. Let

ψ(s) = [ψ0(s) ψ1(s) . . . ψk−1(s)],
φ(s) = ψ(s) − pk−1

= [φ0(s) φ1(s) . . . φk−1(s)].

Then, (6) can be written as

sφ(s) = pk−1Δk−1 − pk−2�k−2 + ψ(s + θ1)A1(s) + ψ(s + θ2)A2(s)

and, by substituting (5),

sφ(s) = pk−1Δk−1 − pk−1Rk−1�k−2 + ψ(s + θ1)A1(s) + ψ(s + θ2)A2(s), (7)
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where the nonzero elements of the k × k matrices A1(s) = [a1,i, j (s)] and A2(s) =
[a2,i, j (s)] are given by

a1,i,i (s) = λ1
s + (k − 1 − i)μ2

s + (i + 1)μ1 + (k − 1 − i)μ2
, 0 ≤ i ≤ k − 1,

a1,i−1,i (s) = −λ1
(k − i)μ2

s + iμ1 + (k − i)μ2
, 0 < i ≤ k − 1,

a2,i,i (s) = λ2
s + iμ1

s + iμ1 + (k − i)μ2
, 0 ≤ i ≤ k − 1,

a2,i+1,i (s) = −λ2
(i + 1)μ1

s + (i + 1)μ1 + (k − 1 − i)μ2
, 0 ≤ i < k − 1.

For s > 0, we can divide Eq. (7) by s and use the notation

D(s) = I + Δk−1 − Rk−1�k−2

s
, Hi (s) = Ai (s)

s
, i = 1, 2, (8)

to obtain

ψ(s) = pk−1D(s) + ψ(s + θ1)H1(s) + ψ(s + θ2)H2(s). (9)

This equation is suitable to recursively determine ψ(s) for s > 0. Let

Di, j (s) = D(s + iθ1 + jθ2), ψ i, j (s) = ψ(s + iθ1 + jθ2), i, j ≥ 0.

Then, Eq. (9) yields, for i, j ≥ 0,

ψ i, j (s) = pk−1Di, j (s) + ψ i+1, j (s)H1(s + iθ1 + jθ2)

+ψ i, j+1(s)H2(s + iθ1 + jθ2). (10)

To obtain ψ(s) = ψ0,0(s), we can repeatedly apply the above equation:

ψ0,0(s) = pk−1D0,0(s) + ψ1,0(s)H1(s) + ψ0,1(s)H2(s)

= pk−1(D0,0(s) + D1,0(s)H1(s) + D0,1(s)H2(s)) + ψ2,0(s)H1(s + θ1)H1(s)

+ψ0,2(s)H2(s + θ2)H2(s) + ψ1,1(s)(H2(s + θ1)H1(s) + H1(s + θ2)H2(s))

and so on. This results after n iterations in the following expression for ψ(s):

ψ(s) = pk−1

∑

i+ j<n

Di, j (s)Ci, j (s) +
∑

i+ j=n

ψ i, j (s)Ci, j (s). (11)

The k × k matrices Ci, j (s) are defined as follows: A sequence of grid points p =
{(i0, j0), (i1, j1), . . . , (in, jn)} is called a path from (i0, j0) to (in, jn) if each of its
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j

i1 2

1

2

H0,0×

H1,0×

H1,1×

H1,2× p = {(0, 0), (1, 0), (1, 1), (1, 2), (2, 2)}

Fig. 4 Path p = {(0, 0), (1, 0), (1, 1), (1, 2), (2, 2)} with C p(s) = H1,2(s)H1,1(s)H1,0(s)H0,0(s)

steps (il+1, jl+1)− (il , jl) are either (1, 0) or (0, 1). For the path p, we introduce (see
Fig. 4)

C p(s) = Hin−1, jn−1(s) . . . Hi1, j1(s)Hi0, j0(s),

where, for l = 0, . . . , n − 1,

Hil , jl (s) =
{
H1(s + ilθ1 + jlθ2) if (il+1, jl+1) − (il , jl) = (1, 0),
H2(s + ilθ1 + jlθ2) if (il+1, jl+1) − (il , jl) = (0, 1).

For the path p = {(i0, j0)}, we set C p(s) = I . Let P(i, j) be the set of all paths
from (0, 0) to (i, j). Then, Ci, j (s) is defined as

Ci, j (s) =
∑

p∈P(i, j)

C p(s).

Note that, for i + j > 0, the k×k matrices Ci, j (s) can be recursively calculated from

Ci, j (s) =
∑

p∈P(i−1, j)

Hi−1, j (s)C p(s) +
∑

p∈P(i, j−1)

Hi, j−1(s)C p(s)

= H1(s + (i − 1)θ1 + jθ2)Ci−1, j (s) + H2(s + iθ1 + ( j − 1)θ2)Ci, j−1(s), (12)

where C0,0(s) = I and Ci, j (s) is the all zero matrix if i < 0 or j < 0. The following
lemma states that the series of Ci, j (s) is well defined for all s > 0.

Lemma 1 For each δ > 0, the series
∑∞

i=0
∑∞

j=0 Ci, j (s) is absolutely and uniformly
convergent for all s > δ.
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Proof Fix δ > 0. It suffices to show that there are constants M and r < 1 such that
for all s > δ and i + j ≥ 0,

|Ci, j (s)| ≤ Mri+ j E, (13)

where E is the all-one matrix and the inequality is component wise. In this bound, s
needs to stay away from zero, since H1(s) and H2(s), and thus by (12) alsoCi, j (s), are
unbounded as s approaches zero. Now fix r < 1. Since |Hl(s)| ≤ λl E/s (l = 1, 2),
there is an N ≥ 0 such that, for s > δ and i + j ≥ N ,

|Hl(s + iθ1 + jθ2)| ≤ r

2k
E, l = 1, 2. (14)

Recursion (12) implies that, for each i, j ≥ 0, Ci, j (s) is bounded for s > δ. Hence,
there is a (sufficiently large) M such that (13) is valid for s > δ and the finitely many
i + j ≤ N . By induction we now prove that (13) is valid for all i + j ≥ N . Suppose
it holds for all i + j = n (which is true for n = N ). From (12) and (14), we get, for
s > δ and i + j = n + 1,

|Ci, j (s)| ≤ |H1(s + (i − 1)θ1 + jθ2)||Ci−1, j (s)|
+|H2(s + iθ1 + ( j − 1)θ2)||Ci, j−1(s)|

≤ r

2k
E

(|Ci−1, j (s)| + |Ci, j−1(s)|
)

≤ r

2k
2MrnE2 = Mrn+1E,

where the last inequality follows from the induction hypothesis. �	
SinceDi j (s) are uniformlybounded for all s > δ > 0 and i+ j ≥ 0,we immediately

get the following.

Corollary 1 The series
∑∞

i=0
∑∞

j=0 Di, j (s)Ci, j (s) is absolutely and uniformly con-
vergent for all s > δ > 0.

Using that |ψi, j (s)| ≤ 1, the second term in (11) is bounded by

∣∣∣∣∣∣

∑

i+ j=n

ψ i, j (s)Ci, j (s)

∣∣∣∣∣∣
≤

∑

i+ j=n

|Ci, j (s)|.

So it vanishes as n → ∞ by virtue of the absolute convergence of the series ofCi, j (s).
Hence, taking n → ∞ in (11), we get, from Corollary 1,

ψ(s) = pk−1(s)C(s), (15)

where

C(s) =
∞∑

i=0

∞∑

j=0

Di, j (s)Ci, j (s). (16)
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In particular, we have

ψ(θi ) = pk−1C(θi ), i = 1, 2. (17)

To complete the LST of the virtual queueing time, we need to determine pk−1. First
we set s = 0 in (7), yielding

0 = pk−1Δk−1 − pk−1Rk−1�k−2 +
2∑

i=1

ψ(θi )Ai (0)

= pk−1Δk−1 − pk−1Rk−1�k−2 + pk−1

2∑

i=1

C(θi )Ai (0), (18)

where the second equality follows from (17). To uniquely determine pk−1, we finally
need the normalizing equation

k−1∑

n=0

pne + φ(0)e = 1, (19)

where e is the all-one vector and pn is given by (5) for 0 ≤ n < k − 1. However, Eq.
(19) requires the computation of φ(0), which is the hard step. Taking the derivatives
on both sides of (7) and setting s = 0, we get

φ(0) =
2∑

i=1

(
ψ(θi )A

′
i (0) + ψ ′(θi )Ai (0)

)
. (20)

Here, prime indicates derivative with respect to s. Thus, to calculate φ(0) we need
ψ ′(s) at s = θ1 and s = θ2. For this we can use (15). Differentiating (15) yields

ψ ′(s) = pk−1C
′(s) = pk−1

∞∑

i=0

∞∑

j=0

(
D′
i, j (s)Ci, j (s) + Di, j (s)C

′
i, j (s)

)
. (21)

The terms C ′
i, j (s) can be recursively computed by differentiating (12):

C ′
i, j (s) = H1(s + (i − 1)θ1 + jθ2)C

′
i−1, j (s) + H2(s + iθ1 + ( j − 1)θ2)C

′
i, j−1(s)

+ H ′
1(s + (i − 1)θ1 + jθ2)Ci−1, j (s) + H ′

2(s + iθ1 + ( j − 1)θ2)Ci, j−1(s),

where C ′
i, j (s) is the all zero matrix if i = j = 0 or if i < 0 or j < 0. Term by term

differentiation of (16) is justified by the following two lemmas.

Lemma 2 For each δ > 0, the series
∑∞

i=0
∑∞

j=0 C
′
i, j (s) is absolutely and uniformly

convergent for all s > δ.
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Proof The proof is similar to the proof of Lemma 1. Fix δ > 0. It suffices to show that
there are constants M and r < 1 such that, for all s > δ and i + j ≥ 0,

|C ′
i, j (s)| ≤ Mri+ j E . (22)

First fix r < 1. Since Hl(s) ≤ λl E/s and H ′
l (s) ≤ λl E/s2 (l = 1, 2), there is an

N ≥ 0 such that, for s > δ and i + j ≥ N ,

|Hl(s + iθ1 + jθ2)| ≤ r

4k
E, |H ′

l (s + iθ1 + jθ2)| ≤ r

4k
E, l = 1, 2. (23)

Recursions (12) and (22) imply that, for each i, j ≥ 0,Ci, j (s) andC ′
i, j (s) are bounded

for s > δ. Hence, there is a (sufficiently large) M such that both (13) and (22) are
valid for s > δ and the finitely many i + j ≤ N . Following the induction steps in the
proof of Lemma 1, it follows that (13) is valid for all i + j ≥ N . We now show that
(22) also holds for all i + j ≥ N . Suppose that (22) holds for all i + j = n (which is
true for n = N ). From (22) and (23), we get, for i + j = n + 1,

|C ′
i, j (s)| ≤ |H1(s + (i − 1)θ1 + jθ2)||C ′

i−1, j (s)| + |H2(s + iθ1 + ( j − 1)θ2)||C ′
i, j−1(s)|

+ |H ′
1(s + (i − 1)θ1 + jθ2)||Ci−1, j (s)| + |H ′

2(s + iθ1 + ( j − 1)θ2)||Ci, j−1(s)|
≤ r

4k
E

(
|C ′

i−1, j (s)| + |C ′
i, j−1(s)| + |Ci−1, j (s)| + |Ci, j−1(s)|

)

≤ r

4k
4MrnE2 = Mrn+1E,

where the last inequality follows form the induction hypothesis. �	
Lemma 3 For each s > 0, the derivative of C(s) exists and is equal to

C ′(s) =
∞∑

i=0

∞∑

j=0

(
D′
i, j (s)Ci, j (s) + Di, j (s)C

′
i, j (s)

)
.

Proof Fix s > 0. First note that the series converges by Lemmas 1–2 and the fact that
Di, j (s) and D′

i, j (s) are uniformly bounded for all i + j ≥ 0. It suffices to prove that,
for each sequence {hn} converging to 0 such that s + hn > 0 for all n,

lim
n→∞

C(s + hn) − C(s)

hn
=

∞∑

i=0

∞∑

j=0

B ′
i, j (s),

where Bi, j (s) = Di, j (s)Ci, j (s). Let {hn} be such a sequence. Thus, there is a δ > 0
such that s + hn > δ for all n. According to (13) and (22) and that the fact that
Di, j (s + hn) and D′

i, j (s + hn) are uniformly bounded for all n and i + j ≥ 0, there
are constants M and r < 1 such that, for all n and i + j ≥ 0,

|B ′
i, j (s + hn)| ≤ Mri+ j E . (24)
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We need to show that for each ε > 0 there is an N such that, for n > N ,

∣∣∣∣∣∣
C(s + hn) − C(s)

hn
−

∞∑

i=0

∞∑

j=0

B ′
i, j (s)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∞∑

i=0

∞∑

j=0

(
Bi, j (s + hn) − Bi, j (s)

hn
− B ′

i, j (s)

)∣∣∣∣∣∣
< ε. (25)

Let ε > 0. For given n and i, j ≥ 0, it follows from the mean value theorem that there
is an 0 < η < 1 such that (Bi, j (s + hn) − Bi, j (s))/hn = B ′

i, j (s + ηhn). Hence, by
(24),

∣∣∣∣
Bi, j (s + hn) − Bi, j (s)

hn
− B ′

i, j (s)

∣∣∣∣ ≤ |B ′
i, j (s + ηhn)| + |B ′

i, j (s)| ≤ 2Mri+ j E .

Note that M and r do not depend on n, i, j . So there is a constant K such that, for all
n,

∑

i+ j≥K

∣∣∣∣
Bi, j (s + hn) − Bi, j (s)

hn
− B ′

i, j (s)

∣∣∣∣ <
ε

2
. (26)

Further, for given i, j ≥ 0, (Bi, j (s + hn) − Bi, j (s))/hn converges to B ′
i, j (s) as n

tends to infinity. Hence, there is an N such that, for n > N ,

∑

0≤i+ j<K

∣∣∣∣
Bi, j (s + hn) − Bi, j (s)

hn
− B ′

i, j (s)

∣∣∣∣ <
ε

2
. (27)

Combining (26) and (27) yields (25). �	
Substitution of (17) and (21) with s = θi in (20) yields

φ(0) = pk−1

2∑

i=1

(
C(θi )A

′
i (0) + C ′(θi )Ai (0)

)

and the normalization equation (19) can be rewritten as

k−1∑

n=0

pne + pk−1

2∑

i=1

(
C(θi )A

′
i (0) + C ′(θi )Ai (0)

)
e = 1. (28)

The above findings are summarized in the following theorem.

Theorem 1 The steady-state LST ψ(s) of the virtual queueing time satisfies

ψ(s) = pk−1C(s),
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where C(s) is defined by (16) and the probability vectors pn for 0 ≤ n ≤ k − 1 are
the solution to the system of linear equations (5), (18) and (28).

3.4 Special case�1 = �2 = �

We now assume μ1 = μ2 = μ. This case has also been studied by Sarhangian and
Balcıoğlu [20]. The problem simplifies considerably, since we do not need to keep
track of N1(t) and N2(t) separately, only N (t) = N1(t) + N2(t). Define

ψ(s) = lim
t→∞ E(s−sW (t); N (t) = k − 1)

= E(s−sW ; N = k − 1),

pi = lim
t→∞ P(W (t) = 0, N (t) = i)

= P(W = 0, N = i), 0 ≤ i ≤ k − 1,

φ(s) = ψ(s) − pk−1.

Then, the balance equations (4) can be simplified to

pn−1(λ1 + λ2) = pnnμ, 1 ≤ n ≤ k − 1, (29)

and (9) reduces to

ψ(s) = pk−1 + ψ(s + θ1)
λ1

s + kμ
+ ψ(s + θ2)

λ2

s + kμ
.

The solution of this equation is given by (cf. (15))

ψ(s) = pk−1c(s),

where

c(s) =
∞∑

i=0

∞∑

j=0

ci, j (s).

For i + j > 0, the terms ci, j (s) are determined from the recursion

ci, j (s) = λ1

s + (i − 1)θ1 + jθ2 + kμ
ci−1, j (s) + λ2

s + iθ1 + ( j − 1)θ2 + kμ
ci, j−1(s),

with c0,0(s) = 1 and ci, j (s) = 0 if i < 0 or j < 0. The normalization equation
becomes

1 =
k−1∑

n=0

pn + φ(0) =
k−1∑

n=0

pn + ψ(θ1)
λ1

kμ
+ ψ(θ2)

λ2

kμ
.
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Together with (29), this yields, for n = 0, . . . , k − 1,

pn =
(
1 − ψ(θ1)

λ1

kμ
− ψ(θ2)

λ2

kμ

) ρn

n!∑k−1
j=0

ρ j

j !
,

where ρ = λ1+λ2
μ

.

4 Performancemeasures

Nowwe showhowmany useful performancemeasures in steady state can be computed
in terms of the LST evaluated at θ1 and θ2. Suppose the M/M/k + M system is in
steady state. An arrival faces a queuing time ofW . If the arrival is from class i , he will
enter service if his impatience time Ti is longer than W . For class 1, this probability
is given by the following (and similarly for class 2, by replacing θ1 by θ2):

P(T1 > W ) = E(e−θ1W ) =
∑

i+ j≤k−1

E(e−θ1W ; N1 = i, N2 = j)

=
∑

n<k−1

pne + ψ(θ1)e.

Here, we are using that W = 0 and E(e−θW ; N1 = i, N2 = j) = pi j when i + j <

k−1. Next, using Little’s law, we see that the expected number of servers busy serving
class 1 customers is given by

λ1P(T1 > W )
1

μ1
= λ1

μ1

(
∑

n<k−1

pne + ψ(θ1)e

)

and the steady state throughput is equal to

2∑

i=1

λi P(Ti > W ) =
2∑

i=1

λi

(
∑

n<k−1

pne + ψ(θi )e

)
.

Next we compute the expected time of a class 1 customer waiting for service. This is
given by

E(min(W , T1)) = E(E(min(W , T1)|W )) = E

(
1 − e−θ1W

θ1

)

= 1 − E(e−θ1W )

θ1
= 1 − P(T1 > W )

θ1
.
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By Little’s law, we obtain the following for the expected number of class i customers
waiting for service:

E(Lq
i ) = λi E(min(W , Ti )) = λi

θi
(1 − P(Ti > W )).

Finally, the expected conditional waiting time of class i customers entering service
follows from

E(W |Ti > W ) = E(W ; Ti > W )

P(Ti > W )
,

where

E(W ; Ti > W ) = E(We−θi W ) = d

ds
E(e−sW )

∣∣∣∣
s=θi

= ψ ′(θi )e.

These formulas simplify considerably when applied to the M/G/1 + M system. In
particular, the probability that the server is busy serving a class i customer is given by

ρi = λiτiψ(θi ),

where ψ(s) is as defined in Eq. (2). The probability that the server is busy is given by

ρ = ψ(θ1)λ1τ1 + ψ(θ2)λ2τ2.

In steady state, the throughput is given by

λ1ψ(θ1) + λ2ψ(θ2)

and the reneging rate by

λ1(1 − ψ(θ1)) + λ2(1 − ψ(θ2)).

The expected number of class i customers waiting for service in steady state is given
by

E(Lq
i ) = λi

θi
(1 − ψ(θi )).

The expected number of class i customers in the system in steady state is given by

E(Li ) = E(Lq
i ) + λiτiψ(θi ).

This implies that, in the special case when τi = 1/θi ,

E(Li ) = λi

θi
.
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This is expected, since in this case the system behaves like an infinite server queue for
each class of customers.

5 Numerical analysis

Recall that the previous analytical models of multiclass FCFS systems have allowed
for customers across classes to differ in either their service time distributions or their
patience time distributions, but not in both distributions [19,20,24]. A contribution of
our work is that we allow customers across classes to differ in both distributions. This
enables us to model service systems such as call centers that segment their arrivals into
classes of callers whose requests may differ greatly in their complexity and criticality.
We are therefore interested in using our characterization to compare the performance
of a system where customers across classes differ in only one of the distributions
with the performance of a system where the customers across classes differ in both
distributions. To do this, we conduct a numerical analysis by using the performance
measures that we derived for the M /M /k+M system in Sect. 4.

We compare the performance of three systems over a range of system loads. In all
of the systems, requests from class 1 have a mean service time of 1 unit (μ1 = 1)
and requests from class 2 have a mean service time of .5 units (μ2 = 2). In the first
system, customers in both classes are equally patient, with a mean patience time of
2/3 units (θ1, θ2 = 1.5). We call this system the base system as customers from the
two classes differ in their distribution of service times but not in their distribution of
patience times. In the second system, the mean patience time of class 1 customers is 1
unit (θ1 = 1), while the mean patience time of class 2 customers is .5 units (θ2 = 2).
We call this system the positive system as there is a positive correlation across classes
between customers’ service times and patience times, i.e., class 1 customers have
longer average service times and longer mean patience times. In the third system,
class 1 customers have a mean patience time of .5 units (θ1 = 2), while class 2
customers have a mean patience time of 1 unit (θ2 = 1). Holding with our naming
convention, we call this system the negative system. In each scenario in our analysis,
the arrival rate of the class 1 and the class 2 customers are equal (λ1 = λ2). To vary
the system load, we hold the number of servers in the system at 5, while varying the
total arrival rate (λ = λ1 + λ2) between 6 and 20.

InFig. 5,wepresent four steady-state performancemeasures from the three systems.
The measures include the percentage of all customers who receive service, the mean
waiting time of all customers, the system throughput, and the average service time of
customers who receive service. We discuss each of these measures:

– % All customers receiving service (Fig. 5a) The percentage of all customers who
receive service is lowest in the positive system and highest in the negative system
over all arrival rates. Recall that class 1 customers are more patient than class
2 customers in the positive system and vice versa in the negative system. Con-
sequently, a greater (smaller) proportion of the customers who receive service
are from class 1 in the positive (negative) system. Also recall that class 1 cus-
tomers have longer average service times than class 2 customers. Since servers
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Fig. 5 Various performance measures of numerical analysis

in the positive (negative) system spend a greater (smaller) percentage of their
time serving the customers with longer service times, their aggregate service rate
decreases (increases), which decreases (increases) the percentage of all customers
who receive service. This result has ramifications for service level forecasting as
one of the common measures of service level is the percentage of customers who
receive service. This demonstrates that managers who do not account for differ-
ences in the distribution of customers’ service times and patience times across
classes may produce inaccurate service level forecasts.

– Mean waiting time of all customers (Fig. 5b) Irrespective of the arrival rate, cus-
tomers have the highest mean waiting times in the positive system. However, the
mean waiting times of customers in the base system and the negative system are
nearly the same. This result was surprising as we expected the average waiting
times of the customers in the negative system to be lowest since the average wait-
ing times of customers are highest in the positive system. Because this trend was
puzzling to us, we calculate the mean waiting times conditional on receiving ser-
vice and on reneging for both systems. We find two trends. First, in both of the
systems the average waiting times of customers who receive service are higher
than the average waiting times of customers who renege. Second, both of these

123



136 Queueing Systems (2019) 91:113–142

waiting time measures are lower in the negative system than in the base system.
So, if both of these measures are lower in the negative system, why are the average
waiting times of all customers nearly equal between the two systems? The answer
lies in the fact that a higher percentage of customers receive service in the negative
system. One can think of the average waiting time of all customers as a weighted
average of the waiting times of the customers who receive service and of the cus-
tomers who renege, where the respective weights are the percentage of customers
who receive service and the percentage of customers who renege. Recall from Fig.
5a that the percentage of customers who receive service is highest in the negative
system. This means that in the negative system there is a greater weight from a
subset of customers who tend to wait longer, since the average waiting time for
customers who receive service is greater than the average waiting time of cus-
tomers who renege. The result is that the average waiting times of all customers in
the base system and the negative system are nearly equal even though the average
waiting times of customers who receive service and the average waiting times of
customers who renege are both lower in the negative system.1 This result again
has ramifications for service level forecasting as the average waiting time of all
customers is another common measure of service level.

– System throughput (Fig. 5c) We observed in Fig. 5a that the percentage of cus-
tomers receiving service is lowest (highest) under the positive (negative) system.
It is therefore not surprising that system throughput is lowest (highest) under the
positive (negative) system. However, what is surprising is that in the positive sys-
tem, throughput is first increasing in the arrival rate, but is then decreasing after
some threshold arrival rate. Initially, increasing the arrival rate increases server
utilization and hence system throughput. However, the gains in throughput due
to the increase in server utilization diminish and are eventually offset by a reduc-
tion in the effective service rate of the system. The reason that the service rate is
decreasing in system load is that the percentage of time the servers spend with
customers from class 1 (who take longer to serve) is increasing in load. This is
because a higher proportion of class 2 customers renege as load increases since
they are less patient than class 1 customers. The interesting takeaway is that in a
system where customers’ service times and patience times are positively corre-
lated, increasing traffic can actually decrease throughput. This result has potential
implications for systems with limited service capacity that generate revenue based
on system throughput, for example, restaurants. Mangers of such systems may
attempt to increase traffic through marketing efforts in order to generate additional
revenue but may instead reduce their revenue if the customers in their system who
take longer to serve are also more patient.

– Average service time Fig. 5d In the base system, the average service time of cus-
tomers who receive service remains the same regardless of the arrival rate. This is

1 For example, in the base systemwith λ = 20, the averagewaiting time of customers who receive service is
0.654 and the average waiting time of customers who renege is 0.337. In the negative system, the respective
averages are 0.641 and 0.324. However, in the base system the percentage of customers receiving service
is 33.4%, while it is 37.2% in the negative system. Hence, the total average waiting time in the base system
is 0.334× 0.654+ (1− 0.334) × 0.337 = 0.443, and the total average waiting time in the negative system
is 0.372 × 0.641 + (1 − 0.372) × 0.324 = 0.442, which are nearly equal.
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because customers in each class are equally patient, whichmakes the proportion of
customers receiving service who are from each class invariant to the system load.
However, in the positive (negative) system, the average service time increases
(decreases) as the arrival rate increases. In the positive system, the class 1 cus-
tomers are more patient. Thus, as the load on the system increases, the proportion
of customers receiving service who are from class 1 increases. Because class 1
customers take longer to serve, the average service time increases as the arrival
rate increases. The reverse is true in the negative system, where class 2 customers
are more patient but take less time to serve. This relationship between system load
and average service time has managerial implications. Servers in customer-facing
systems are often evaluated and incentivized based on their average service times.
For example, a common practice in call centers is to provide financial rewards for
agents to keep their average service time under some threshold. Our analysis shows
that managers may reach false conclusions regarding their servers’ productivity
if they evaluate their servers based solely on their average service times. In the
negative system,managersmay receive the impression that servers are speeding up
when the arrival rate is higher. Consequently, managers may wrongly reward their
servers for their supposed efforts to work faster under heavy loads. Conversely, in
the positive system, managers may falsely reprimand their servers for allegedly
slowing down as arrival rates increase. Our model demonstrates than an observed
correlation between average service times and system load, such as we see in Fig.
5d, may have no correlation with the servers’ efforts. Rather, the observed cor-
relation may be entirely due to a correlation across classes between customers’
service times and patience times.

We make one final observation regarding the performance of these systems as
the arrival rate tends to infinity. We have shown that of the customers who receive
service, the proportion who are from the more patient class increases as the arrival
rate increases. Intuitively, we would expect this proportion to tend to one as the arrival
rate tends to infinity due to the stochastic dominance of the patience times of one
class over the other. Indeed, as we increase the arrival rate in the negative and positive
systems from our numerical examples, we observe this phenomenon. For example,
when we set the arrival rate to 1000 for each class in the positive system, of the callers
who receive service, 95.9% are from class 2. An outcome of this phenomenon is that as
the arrival rate tends to infinity the average service time and throughput of the system
tends to the same performance measures of an overloaded system comprised entirely
of customers from the more patient class. Hence, in the positive system the average
service time tends to 1 and system throughput tends to 5, while in the negative system
average service time tends to .5 and system throughput tends to 10.

Overall, our numerical analysis demonstrates the importance of accounting for dif-
ferences across classes in the distribution of customers’ service times and patience
times. We see that differences in these distributions may substantially affect key per-
formance measures, which have a wide range of managerial implications, including
service level forecasting, revenue management, and the evaluation of server perfor-
mance.Consequently, a contribution of ourwork is that our analytical characterizations
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Fig. 6 Empirical density function of service times from two call center classes

Fig. 7 Empirical distribution function of caller patience times from two call center classes

may be used to demonstrate to managers some of the implications of administering a
multiclass FCFS queue.

6 Model as performance approximation

Managers may be interested in knowing whether they may use the performance mea-
sures from our model to approximate the performance of their real world systems.
Thus, as a final exercise we compare the simulated performance of a system based on
real data with the performance of a comparable M /M /k+M system. Our data come
from a multiclass call center of a small US-based bank. To construct our simulated
system, we select two classes from the data which differ in their distribution of service
times and caller patience times. The first class is comprised of general banking calls
such as balance inquiries, and the second class is comprised of technical support calls
such as password reset requests. In Fig. 6 we display the estimated density function of
the service times from each class, and in Fig. 7 we display the estimated distribution
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function of the callers’ patience times from each class.2 Note that class 1 callers tend
to have shorter service times and shorter patience times than class 2 callers,3 i.e., there
is a positive correlation across the classes between service times and patience times.
To make the systems comparable, we set the mean service time and mean patience
time of the two classes in the M /M /k+M system equal to the estimated means of
the two classes in the simulated system. Finally, we are interested in understanding
to what extent the accuracy of the approximation increases when service rates are
allowed to differ across classes. Thus, we also obtain the performance measures of
this system under the restriction that the service rates across classes are equal. To do
this, we calculate the average service rate across both classes and use the formulas
from Sect. 3.4 to obtain the performance measures.

In all of the systems, we assume that calls from each class arrive according to
independent Poisson processes with equal arrival rates. To compare the performance
of the systems across different loads, we hold the number of servers in the system at
5 and vary the total arrival rate to be 36, 45, 60, and 120 calls per hour. In Table 1,
we compare the performance of the three systems, where “Simulation” corresponds
to the simulated system, “μ1 �= μ2” corresponds to the analytical characterization of
the system where service rates are allowed to differ across classes and “μ1 = μ2”
corresponds to the analytical characterization where we restrict the service rates to be
the same across classes. For each class, we present the average waiting time in seconds
(AWT), the percentage of callers who receive service (%RS), and the average number
of callers waiting in queue (AQ). We also present the server utilization (Util %), and
the average service time of callers who receive service (AST(All)). We measure how
close our analytical characterizations come to the simulated system using relative
error, which is given by |simulated − analytical|/simulated. Overall, we find that
the performance measures of the μ1 �= μ2 system serve as good approximations
of the simulated system, with relative errors of no greater than 3.76%. Of particular
note is the high accuracy in predicting the percentage of callers who receive service
(%RS) and the average service time of callers who receive service (AST(All)), with
relative errors typically less than 1%. Under the lowest arrival rate (λ = 36), the
μ1 = μ2 characterization provides nearly the same approximation accuracy as the
μ1 �= μ2 characterization. However, as the arrival rate increases, the accuracy of
the μ1 = μ2 characterization decreases relative to the μ1 �= μ2 characterization.
In particular, the μ1 = μ2 characterization underforecasts AWT, AQ, Util% and
AST(All) while overforecasting %RS. This is due to the fact that, in this system,
callers who tend to be more patient also tend to have longer service times. While the
μ1 �= μ2 characterization accounts for this correlation, the μ1 = μ2 characterization
does not. Overall, these results demonstrate that managers of two-class FCFS service

2 Because we do not know the patience times of the callers in our data who received service, the patience
time data are right-censored. Thus, we estimate the patience time distribution using the Kaplan–Meier
estimator, which accounts for this form of censoring. However, since waiting times in this call center
were not long enough to reveal the entire distribution of patience times, the Kaplan–Meier estimator only
estimates a portion of the distribution. To fill in the remainder of the distribution, we assume that callers’
patience times are exponentially distributed with rate parameters equal to the callers’ reneging rate over the
estimated portion of the distribution.
3 The mean service times of callers from class 1 and class 2 are 223.97 and 448.82 s, respectively. The
mean patience times are 394.08 and 946.53 s, respectively.
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systems may use our analytical characterization of the μ1 �= μ2 system to produce
good approximations of the performance of their systems by collecting the mean
service time and the mean patience time of customers in each class.
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