
Queueing Syst (2016) 82:29–42
DOI 10.1007/s11134-015-9446-x

A coupled processor model with simultaneous arrivals
and ordered service requirements

E. S. Badila1 · J. A. C. Resing1

Received: 15 November 2014 / Revised: 19 March 2015 / Published online: 19 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We study a coupled processor model with simultaneous arrivals. Under
the assumption of ordered input, the Laplace–Stieltjes transform of the joint station-
ary amount of work in the system can be explicitly calculated by relating it to the
amount of work in a parallel queueing system without coupling. This relation is first
exploited for the system with two coupled queues. The method is then extended to
higher dimensions.

Keywords Coupled processors · Multivariate workload · Ordered service
requirements · Simultaneous arrivals

Mathematics Subject Classification Primary 60K25

Introduction

In this paper we study a coupled processor model which receives service requirements
at both queues simultaneously.We assume that the service requirement at, say, station 1
is always greater than the service requirement from station 2. Moreover, when server 2
is idle, it switches to process work from the first queue, if there is any. In [1], the model
with simultaneous arrivals and ordered service times, but without coupled processors,
was analyzed. This model has connections with tandem and priority queues, but also
with a reinsurance problem with proportional reinsurance (see [1, Sect. 4.2]). Here,
we extend the model to the coupled processors case.

B E. S. Badila
e.s.badila@tue.nl

J. A. C. Resing
resing@win.tue.nl

1 Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-015-9446-x&domain=pdf

30 Queueing Syst (2016) 82:29–42

A pioneering paper on coupled processors is Fayolle and Iasnogorodski [4], who
consider two parallelM/M/1 queueswith independent Poisson arrival processes, server
speeds ri , i = 1, 2, and such that as soon as queue i empties, the other queue works
at speed r j + r∗

j �= r j , i �= j . This system is solved for the steady-state number
of customers in both queues by reducing the problem to a boundary value problem
of a Riemann–Hilbert type. In Cohen and Boxma [2] this model is generalized by
dropping the assumption that the service requirements are exponentially distributed.
It is shown that the problem of determining the workload distribution reduces again
to a Riemann–Hilbert boundary value problem. In Cohen [3], the analysis is further
extended to the case when, with some probability, arriving customers may also request
service simultaneously from both queues. Moreover, the service requirement of a
customer is allowed to depend on whether he finds one of the queues to be empty;
the so-called semi-homogeneous workload process. Both in [2,3] the focus is on the
transient problem: the study of the time-dependent amount of work/queue lengths.

The steady-state version of the functional equation for the workload vector
(V (1), V (2)) from [3, p.186, (1.10)] reads:

K (s1, s2)ψ(s1, s2) = (r2s2 − r∗
1 s1)ψ1(s1)

+ (r1s1 − r∗
2 s2)ψ2(s2) + (r∗

1 s1 + r∗
2 s2)ψ0, (1)

withψ(s1, s2) the Laplace–Stieltjes transform (LST) of the stationary amount of work
in the system and with the unknown boundary functions

ψi (si) = E

[
e−si V (i)

(V (j) = 0)
]
, i �= j ∈ {1, 2}, ψ0 = P

(
V (1) = V (2) = 0

)
.

The function K (s1, s2) is a so-called Poisson kernel. For φ(s1, s2) the joint transform
of a generic service time vector,

K (s1, s2) = r1s1 + r2s2 − λ(1 − φ(s1, s2)).

Actually, in [3] the functional equation of the time-dependent workload is given.
The stationary version above is obtained by multiplying the functional equation [3, p.
186, (1.10)] with the discount factor ρ of the Laplace transform over time, and then
taking ρ → 0, while keeping ρ > 0.

The analysis in the above-mentioned works relies heavily on the theory of complex
functions which makes it highly non-trivial, and in addition, it is difficult to recognize
the probabilistic nature of the initial problem.

We will show in Sect. 2 that under an additional ordering assumption between the
claims, it is possible to relate the coupled processor model to a parallel queueing
system without coupling. Then the transform of the amount of work in the coupled
system follows from that obtained in the decoupled parallel system, by using a result
from [1]. This gives an explicit representation for the steady-state amount of work in
the coupled system (Sect. 3), which can be extended to multiple coupled queues by
making suitable assumptions on the coupling rates (Sect. 4).

123

Queueing Syst (2016) 82:29–42 31

1 Problem description

We consider two parallel M/G/1 queues, with simultaneous arrivals and corre-
lated service requirements. The arrival process is a Poisson process with rate λ.
We will denote by An the time elapsed between arrival epochs n and n + 1.
The service requirements at the two queues of successive customers are indepen-
dent, identically distributed random vectors (B(1)

n , B(2)
n), n ≥ 1. In the sequel we

denote with (B(1), B(2)) a random vector with the same distribution as the vectors
(B(1)

n , B(2)
n), n ≥ 1. The joint Laplace–Stieltjes transform of this vector is

φ(s1, s2) := E

(
e−s1B(1)−s2B(2)

)
.

In addition, let c1 and c2 be the servers’ processing rates. An essential assumption in
the model is that, after normalizing the system with the server rates, with probability
one, each customer has a bigger service requirement in queue 1 than in queue 2, i.e.,

P

(
B(1)/c1 ≥ B(2)/c2

)
= 1.

Moreover, the processors are coupled in the sense that as soon as server 2 becomes
idle, it switches its capacity to servingwork from buffer 1.Wewill assume that it works
at rate c12 when processing from buffer 1.We are interested in the joint stationary distri-
bution of the amount of work in the two queues. Let us denote with V (1) the stationary
amount of work in queue 1 and with V (2) the stationary amount of work in queue 2.

As a convention, we will denote with Vt the vector representing the amount of work
in the system at time t and with Vn the amount of work in the system just before the
nth job arrives. Formally, Vn is the left limit Vt (n)−, where t (n) is the arrival instant
of the nth customer.

Our aim is to study such a queueing system under the above assumption of ordered
service times. In particular we want to find an expression for the Laplace–Stieltjes
transform of the joint stationary amount of work.

2 Recursive equations for the amount of work in the coupled system

In this section we will derive stochastic recursive equations for the joint amount of
work in the system.

Let V (1)
n be the amount of work in queue 1 as seen by customer n upon arrival, and

V (2)
n the amount of work in queue 2 at the same time instant. We assume that at time

0 the first customer arrives in an empty system. Then we have the following recursion
for the random variables (V (1)

n , V (2)
n), n ≥ 1 :(

V (1)
1 , V (2)

1

)
= (0, 0),

V (1)
n+1 =

[
(V (1)

n + B(1)
n − c1An) ∨ 0 + c12

c2
(V (2)

n + B(2)
n − c2An) ∧ 0

]
∨ 0,

V (2)
n+1 = (V (2)

n + B(2)
n − c2An) ∨ 0. (2)

123

32 Queueing Syst (2016) 82:29–42

We use the notation x ∧ 0 = min{x, 0} and x ∨ 0 = max{x, 0}. We remark that

− 1

c2

[
(V (2)

n + B(2)
n − c2An) ∧ 0

]

is the amount of time that server 2 has been idle between the arrival epochs n and n+1.
Then the second term in the recursion of V (1)

n+1 is minus the amount of work server 2
processes at rate c12 from buffer 1 during his idle period (if it has an idle period).

This extra term appears because the servers are coupled. It is useful to compare
this with the recursion for a system without coupling between the servers. Consider
two parallel queues simultaneously receiving service requirement distributed as the
vector (B̃(1), B̃(2)). The servers are not coupled any more and server 1 always works
at speed c̃1, while server 2 always works at speed c̃2. Let (Ṽ (1)

n , Ṽ (2)
n) be the amount

of work in such a system. Then the following recursion holds

(
Ṽ (1)
1 , Ṽ (2)

1

)
= (0, 0) ,

Ṽ (1)
n+1 =

(
Ṽ (1)
n + B̃(1)

n − c̃1 Ãn

)
∨ 0, (3)

Ṽ (2)
n+1 =

(
Ṽ (2)
n + B̃(2)

n − c̃2 Ãn

)
∨ 0,

with Ãn the inter-arrival time between customer n and n+1. This is Lindley’s recursion
because both queues evolve in isolation as one-dimensional systems. Notice that,
marginally, queue 2 evolves as if there was no coupling in (2).

We are ready to give the main result of this section, which connects the amount
of work in the coupled system to a workload process in a system without coupling
between the servers. For further usage we will denote by system (C) the coupled
system and by system (D) the system without coupling.

Proposition 1 Let (V (1)
n , V (2)

n)n≥1 be theworkloadprocess at arrival epochs in system

(C). Then the process (V (1)
n + c12

c2
V (2)
n , V (2)

n)n≥1 is the workload process in a system

of type (D) with generic input (B(1)
n + c12

c2
B(2)
n , B(2)

n), where the servers have speed

(c1 + c12, c2) and do not interact with each other.

Wewill show that (V (1)
n + c12

c2
V (2)
n , V (2)

n)has the samedistribution as (Ṽ (1)
n , Ṽ (2)

n), the
solution to the recursive system (3), by using a probabilistic coupling between systems
(C) and (D). That is, we will let the two systems evolve on the same probability space
given by the sequences (An)n≥1 and (B(1)

n , B(2)
n)n≥1. The choice for the input variables

in system (D) is the following:

Ãn := An,
(
B̃(1)
n , B̃(2)

n

)
:=

(
B(1)
n + c12

c2
B(2)
n , B(2)

n

)
,

c̃1 := c1 + c12, c̃2 := c2. (4)

123

Queueing Syst (2016) 82:29–42 33

To be more precise, start both systems empty at time t = 0. At the nth arrival
epoch tn , system (C) receives input (B(1)

n , B(2)
n), whereas system (D) receives input

(B(1)
n + c12

c2
B(2)
n , B(2)

n). Let us focus on system (D). The key idea is to partition the

amount of work at queue 1 in system (D) into V (1)
t and

c12
c2
V (2)
t , then during the busy

periods of server 2, distribute the total capacity per time unit c1 + c12 of server 1 in

the following way: c1 is dedicated to processing V (1)
t while c12 is used to process the

remaining
c12
c2
V (2)
t . In this way, during the busy periods of server 2, the amount of work

in queue 1 of system (C) and the work in the c1-dedicated component of queue 1 in
system (D) evolve in the same way.

As soon as queue 2 becomes empty (which now happens at the same moment in
system (C) as in system (D) because the second queue evolves unchanged between the
two systems), in both systems (C) and (D), server 1 will process work V (1)

t at speed
c1 + c12. Another remark is that due to the ordering between the service requirements,
queue 2 will always become idle before queue 1 in any of the systems (C) or (D) (see
also Remark 1 below).

We give below the formal proof of Proposition 1. The idea of the proof is to verify

that V (1)
n + c12

c2
V (2)
n satisfies (3) with the input variables from (4).

Proof of Proposition 1 We first remark that we can drop the maximum w.r.t. 0 in the
first term of recursion (2):

V (1)
n+1 =

[
V (1)
n + B(1)

n − c1An + c12
c2

(V (2)
n + B(2)

n − c2An) ∧ 0

]
∨ 0, (5)

the reason being that the other term is either 0 or negative as pointed out below (2),
so it can only decrease the term between the square brackets in the recursion of the
coupled queue 1.

Adding the term
c12
c2
V (2)
n+1 = c12

c2
(V (2)

n + B(2)
n − c2An) ∨ 0 to both sides of (5) gives

V (1)
n+1 + c12

c2
V (2)
n+1 =

[
V (1)
n + B(1)

n − c1An + c12
c2

(V (2)
n + B(2)

n − c2An)

]

∨ c12
c2

(V (2)
n + B(2)

n − c2An) ∨ 0.

We used the fact that the operator ∨ is distributive w.r.t. addition and the obvious
decomposition x ∧ 0 + x ∨ 0 = x .

There are two possible cases:
In the event that V (1)

n + B(1)
n − c1An > 0, the RHS above is of the form a ∨ b ∨ 0,

with a > b, hence b can be removed. In the end we can rewrite the above as

V (1)
n+1 + c12

c2
V (2)
n+1 =

(
V (1)
n + c12

c2
V (2)
n + B(1)

n + c12
c2

B(2)
n − (c1 + c12)An

)
∨ 0.

123

34 Queueing Syst (2016) 82:29–42

This is the desired Lindley recursion for V (1)
n + c12

c2
V (2)
n .

In the event that V (1)
n + B(1)

n − c1An < 0, queue 1 would empty at epoch n + 1
without any additional help, so that V (1)

n+1 = 0. Then by the ordering assumption,

V (2)
n+1 = 0 as well, and the above identity is trivially satisfied. This proof shows that

the ordering between the normalized claims is an essential assumption. 	

Remark 1 Notice that the normalized input in the related system (D) remains ordered:

B(1)
n + c12

c2
B(2)
n

c1 + c12
= c1

B(1)
n
c1

+ c12
B(2)
n
c2

c1 + c12
≥ B(2)

n

c2
,

because, by assumption, B(1)
n /c1 ≥ B(2)

n /c2.

3 The transform of the equilibrium amount of work at arrival epochs

In [1] it has been shown how to calculate the Laplace–Stieltjes transform of the joint
stationary amount of work in a system of type (D) under the same ordering assump-
tion [1, Formula (7)]. Thus, by inverting the correspondence from Proposition 1, and
using Remark 1, we can recover without any additional effort the joint transform of
(V (1), V (2)), the steady-state amounts of work in the coupled system, with the extra
remark that, because of Poisson arrivals, we have the PASTA property, which means
that in equilibrium the amount of work is the same as the workload seen by an arriving
customer.

The inverse relation from Proposition 1 is

(
V (1), V (2)

)
=

(
Ṽ (1) − c12

c2
Ṽ (2), Ṽ (2)

)
. (6)

If we denote by

ψ(C) (s1, s2) := E

(
e−s1V (1)−s2V (2)

)
, ψ(D) (s1, s2) := E

(
e−s1 Ṽ (1)−s2 Ṽ (2)

)
,

the LST of the equilibrium amount of work in system (C) and, respectively, system
(D), then via (6), the relation between the LSTs becomes:

ψ(C)(s1, s2) = ψ(D)

(
s1, s2 − s1c

1
2/c2

)
. (7)

Remark 2 Equation (1) canbe adapted to describe the stationaryworkload (Ṽ (1), Ṽ (2))

in the decoupled systemby setting the coupling rates r∗ equal to 0. The kernel K (s1, s2)
has to be modified as well to

K(D)(s1, s2) =
(
c1 + c12

)
s1 + c2s2 − λ

[
1 − φ

(
s1, s2 + s1c

1
2/c2

)]

123

Queueing Syst (2016) 82:29–42 35

because server 1 receives the extra input c12/c2B
(2) and always works at speed c1+c12.

Then (1) becomes

K(D)(s1, s2)ψ(D)(s1, s2) = c2s2ψ(D),1(s1) + (c1 + c12)s1ψ(D),0, (8)

since by the ordering relation from Remark 1, ψ(D),2(s2) is constant and equal to
ψ(D),0:

ψ(D),2(s2) = E

[
e−s2 Ṽ (2)

(Ṽ (1) = 0)
]

= P(Ṽ (1) = Ṽ (2) = 0) =: ψ(D),0.

On the other hand, the kernel for the coupled system (C) is

K(C)(s1, s2) = c1s1 + c2s2 − λ[1 − φ(s1, s2)].

The equation that has to be satisfied by ψ(C)(s1, s2) now reads (with ψ(C),2(s2) ≡
ψ(C),0, again because of the ordering)

K(C)(s1, s2)ψ(C)(s1, s2) =
(
c2s2 − c12s1

)
ψ(C),1(s1) +

(
c1 + c12

)
s1ψ(C),0, (9)

with the key remark that the two boundary functions ψ(D),1(s1) and ψ(C),1(s1) are
identical (Proposition 1):

E[e−s1 Ṽ (1)
(Ṽ (2) = 0)] ≡ E

[
e−s1V (1)

(V (2) = 0)
]

and the same holds for ψ(C),0 and ψ(D),0.
Now it is easy to check that if ψ(D)(s1, s2) is the solution of (8), then

ψ(D)

(
s1, s2 − s1c12/c2

)
as in (7) is the solution of (9), and conversely, if ψ(C)(s1, s2)

is the solution of (9) then ψ(C)

(
s1, s2 + c12/c2s1

)
is the solution of (8). In particular, it

follows from [1] that the amount of work in system (C) is ergodic under the condition

lim
s1→0
s1>0

∂

∂s1
K(D)(s1, 0) > 0 ⇔ E

(
B(1)

)
+ c12/c2E

(
B(2)

)
<

(
c1 + c12

)
E(A). (10)

This simplymeans that the first queue in system (D) is capable of handling the amount
of input per time unit while working at speed (c1 + c12) and this is sufficient to ensure
that the entire system is stable, because of the ordering assumption. It may happen
that E(B(1)) > c1E(A), i.e., that queue 1 of system (C) would be supercritical if
it were to work only on its own. Inequality (10) together with Remark 1 implies
E(B(2)) < c2E(A), thus queue 2 is ergodic and during its (non-degenerate) idle
periods it is capable of maintaining stability in queue 1 because of the coupling.

Using the relation between ψ(C)(s1, s2) and ψ(D)(s1, s2) we obtain

123

36 Queueing Syst (2016) 82:29–42

Theorem 1 Under the stability condition (10), with ρ̃1 := λE(B̃(1))/(c12 + c1), the
joint transform of the stationary amount of work in a system of type (C) is

ψ(C)(s1, s2) = (1 − ρ̃1)

(
c1 + c12

)
s1

c1s1 + c2s2 − λ[1 − φ(s1, s2)] · c2S2(s1) − c2s2 + s1c12
c2S2(s1)

.

(11)
For each fixed s1 withRe s1 > 0, S2(s1) is the zero of the equation

K(C)

(
s1, S2(s1) + s1c

1
2/c2

)
= 0,

which is unique in the positive half of the complex plane.

Proof The derivation for the decoupled system is known (c.f. [1, Formula (7)]). It is
easy to adapt the analysis in Sect. 3 of [1] to give the transform of the workload when
the servers’ speeds are not normalized. The joint transform of the stationary amount
of work in the decoupled system becomes

ψ(D)(s1, s2) = (1 − ρ̃1)
c̃1s1

c̃1s1 + c̃2s2 − λ[1 − φ(D)(s1, s2)] · c̃2S2(s1) − c̃2s2
c̃2S2(s1)

, (12)

with φ(D)(s1, s2) the joint LST of the generic input

φ(D)(s1, s2) = E

(
e−s1 B̃(1)−s2 B̃(2)

)
.

The stability condition for this system is ρ̃1 < 1, and for each fixed s1 withRe s1 > 0,
S2(s1) is the zero of the equation

K(D)(s1, s2) = c̃1s1 + c̃2s2 − λ[1 − φ(D)(s1, s2)] = 0, (13)

which is unique in the positive half of the complex plane.
We have the analogous relation to (7):

φ(s1, s2) = φ(D)

(
s1, s2 − s1c

1
2/c2

)
. (14)

Combining (7), (12), and (14) we obtain

ψ(C)(s1, s2) = (1 − ρ̃1)

(
c1 + c12

)
s1

c1s1 + c2s2 − λ[1 − φ(s1, s2)] · c2S2(s1) − c2s2 + s1c12
c2S2(s1)

.

The kernel identity K(D)(s1, s2) = K(C)(s1, s2 + s1c12/c2) (see Remark 2) together
with (13) gives that S2(s1) is then the unique zero with positive real part of

K(C)

(
s1, s2 + s1c

1
2/c2

)
= 0.

This yields the desired result. 	

123

Queueing Syst (2016) 82:29–42 37

4 The k-dimensional model

In this section we consider multiple coupled servers in parallel which receive simul-
taneous requirements. It is shown that also in this case, the coupled system can be
reduced to a decoupled system, upon modifying the input. However for three servers
we have to specify in addition how to divide the extra service capacity of an idle server
over the other queues. This was trivial for two servers since one can only assist the
other during its idle periods. With such specifications in place, the formal idea of the
proof for the k-dimensional system is analogous to the case k = 3, and it relies on the
result for two coupled queues. Thus, we can work with k = 3, to keep formulae still
accessible, without losing generality.

We extend the ordering assumption between the service requirements to

P

(
B(1)/c1 ≥ B(2)/c2 ≥ B(3)/c3

)
= 1.

In addition, while server 3 is idle and server 2 is busy, we denote by c13 and c23 the
processing rate of server 3 into buffers 1 and 2, respectively. If also server 2 becomes
idle, we denote by c12 the processing rate of server 2 into buffer 1 during its idle time,
and moreover, server 3 contributes an extra rate ĉ13 into buffer 1, so that the total
contribution from server 3 becomes c13 + ĉ13 while server 2 is idle.

Moreover we assume that c13/c1 ≤ c23/c2 in order to ensure that the amount of work
in queue 1 remains above the amount of work in queue 2 at all times. Because of this
assumption, the amount of work in the system is again ordered:

P

(
V (1)/c1 ≥ V (2)/c2 ≥ V (3)/c3

)
= 1.

The Lindley-type recursion for queue 2 is similar to (5). In the sequel, we will
derive the recursion for queue 1. Because of the coupling, the idle period of queue 2
plays a role in the dynamics of queue 1 so for this reason (and to keep notation short)
we introduce

J (2)
n := (c23 + c2)

−1
[
V (2)
n−1 + B(2)

n−1 − c2An−1

+ c23/c3
(
V (3)
n−1 + B(3)

n−1 − c3An−1

)
∧ 0

]
,

J (3)
n := c−1

3

(
V (3)
n−1 + B(3)

n−1 − c3An−1

)
.

−(J (2)
n ∧ 0) is the idle period in queue 2 right before epoch n, and it follows from (2)

that (
c23 + c2

)
J (2)
n ∨ 0 = V (2)

n . (15)

Also, −(J (3)
n ∧ 0) is the idle period in queue 3. The fact that −(J (2)

n ∧ 0) is an idle
period is again a consequence of the ordering, because if server 2 is idle then server
3 must also be idle and hence coupled to queue 2. We can combine the terms above
into the identity

123

38 Queueing Syst (2016) 82:29–42

J (2)
n =

(
c23 + c2

)−1 (
V (2)
n−1 + B(2)

n−1 − c2An−1 + c23 J
(3)
n ∧ 0

)
. (16)

Now we can write the stochastic recursion for the amount of work in queue 1 at
arrival epoch n + 1:

V (1)
n+1 =

[
V (1)
n + B(1)

n − c1An + (c12 + ĉ13)J
(2)
n+1 ∧ 0 + c13 J

(3)
n+1 ∧ 0

]
∨ 0. (17)

In addition,−
[(
c12 + ĉ13

)
J (2)
n+1 ∧ 0

]
is the extra amount ofwork that server 2 and server

3 are capable of processing while working coupled to server 1 during the idle period

of server 2. Similarly, −
(
c13 J

(3)
n+1 ∧ 0

)
is the amount of work that can be processed

by server 3 while coupled directly to server 1.

Proposition 2 Let
(
V (1)
n , V (2)

n , V (3)
n

)
be the amount of work at epoch n in the coupled

system (C). Then the following process defined for n ≥ 1:

Ṽ (1)
n := V (1)

n + c∗
2/c2V

(2)
n + c∗

3/c3V
(3)
n , (18)

Ṽ (2)
n := V (2)

n + c23/c3V
(3)
n ,

Ṽ (3)
n := V (3)

n ,

with

c∗
2 := c12 + ĉ13

c2 + c23
c2, c∗

3 := c12 + ĉ13
c2 + c23

c23 + c13,

represents the amount of work at epoch n in a queueing system without coupling
between the servers. The service rates are c̃1 := c1 + c∗

2 + c∗
3 = c1 + c12 + c13 + ĉ13 for

server 1, c̃2 := c2 + c23 for server 2, and c̃3 := c3 for server 3. The input in the three

queues at epoch n is B̃(1)
n := B(1)

n +c∗
2/c2B

(2)
n +c∗

3/c3B
(3)
n , B̃(2)

n := B(2)
n +c23/c3B

(3)
n ,

and B̃(3)
n := B(3)

n , respectively.

By a similar coupling argument as in the case k = 2, assume that all queues start
empty and that the arrival epochs are the same as in the coupled system. Server 1
processes at rate c̃1 = c1 + c12 + c13 + ĉ13, server 2 at rate c̃2 = c2 + c23, and server 3 at

the same rate c3. Queue 3 evolves again unchanged. Using a bit of algebra, Ṽ
(1)
n from

(18) can be rewritten as

Ṽ (1)
n = V (1)

n + c12 + ĉ13
c2 + c23

(
V (2)
n − c2

V (3)
n

c3

)
+

(
c12 + c13 + ĉ13

) V (3)
n

c3
.

Focus on the ends of the successive busy periods in the three queues. The first one
to empty is queue 3. Up to the moment the third queue is empty, partition the work in
queue 2 as in Sect. 3. Actually, queue 2 together with queue 3 make up precisely the
two-dimensional system studied in Sect. 3.

123

Queueing Syst (2016) 82:29–42 39

The service rate in queue 1 can be partitioned in the following way: c1 is dedicated
to processing type V (1)

t work, and
(
c12 + c13 + ĉ13

)
is dedicated to processing the work(

c12 + c13 + ĉ13
)
V (3)
t /c3. We remark that V (2)

t − c2V
(3)
t /c3 is a.s. non-negative due to

ordering. The remainder of Ṽ (1)
n is waiting in the buffer up to the moment queue 3

empties. At this point in time, work V (2)
t − c2V

(3)
t /c3 is still left in buffer 2, and it is

processed at rate c2 + c23, whereas in buffer 1 the amount left equals

V (1)
t − c1

V (3)
t

c3
+ c12 + ĉ13

c2 + c23

(
V (2)
t − c2

V (3)
t

c3

)
.

From this point on, partition server 1 capacity in the following way: dedicate rate(
c1 + c13

)
to process work V (1)

t − c1V
(3)
t /c3, and rate

(
c12 + ĉ13

)
to process work

c12+ĉ13
c2+c23

(
V (2)
t − c2V

(3)
t /c3

)
. In this way, at the moment queue 2 empties, there is still

work left in queue 1 that is

V (1)
t − c1

V (3)
t

c3
− c1 + c13

c2 + c23

(
V (2)
t − c2

V (3)
t

c3

)
,

and this is processed at speed c1 + c12 + ĉ13 + c13 as long as there is no new arrival.

Proof of Proposition 2 The idea is to add successively the terms
(
c12 + c23

)
J (2)
n+1 ∨ 0

and c∗
3 J

(3)
n+1 ∨ 0 = c∗

3/c3V
(3)
n+1 to the recursion in (17) in order to compensate for the

minima with 0 in the first bracket.
First add the term

(
c12 + ĉ13

)
J (2)
n+1 ∨ 0 = c∗

2/c2V
(2)
n+1 to both sides of (17). Making

use of (15) for the left-hand side and of (16) for the right-hand side, (17) becomes,
after rearranging terms,

V (1)
n+1 + c∗2

c2
V (2)
n+1

=
[
V (1)
n + B(1)

n − c1An + c∗2
c2

(
V (2)
n + B(2)

n − c2An
)

+ c∗3
c3

(
V (3)
n + B(3)

n − c3An
)

∧ 0

]

∨
[
c∗2
c2

(
V (2)
n + B(2)

n − c2An
)

+ c∗3 − c13
c3

(
V (3)
n + B(3)

n − c3An
)

∨ 0

]
∨ 0. (19)

Now add the term c∗
3 J

(3)
n+1 ∨ 0, which is the same as c∗

3/c3V
(3)
n+1, by Lindley’s

recursion. After regrouping terms, (19) becomes

V (1)
n+1 + c∗

2

c2
V (2)
n+1 + c∗

3

c3
V (3)
n+1

=
[
V (1)
n +B(1)

n −c1An+ c∗
2

c2

(
V (2)
n + B(2)

n −c2An

)
+ c∗

3

c3

(
V (3)
n +B(3)

n −c3An

)]

123

40 Queueing Syst (2016) 82:29–42

∨
[
c∗
2

c2

(
V (2)
n + B(2)

n − c2An

)
+ c∗

3 − c13
c3

(
V (3)
n + B(3)

n − c3An

)

+ c13
c3

(
V (3)
n + B(3)

n − c3An

)
∨ 0

]
∨ c∗

3

c3

(
V (3)
n + B(3)

n − c3An

)
∨ 0. (20)

We show now that the two middle terms that appear in the maximum sequence above
are always dominated by either one of the extremal terms. There are three cases to be
considered. If

V (3)
n + B(3)

n − c3An > 0

then by the ordering assumption, V (2)
n + B(2)

n − c2An and V
(1)
n + B(1)

n − c1An are also
positive, and it is easy to see that the first term on the right-hand side is the largest one.

The alternative is

V (3)
n + B(3)

n − c3An < 0,

and there are two sub-cases to be considered: if

−c13
c3

(
V (3)
n + B(3)

n − c3An

)
< V (1)

n + B(1)
n − c1An,

then the first term dominates the second one on the right-hand side of (20) and the
third term is negative by assumption, so one can ignore the intermediate terms again.

The other subcase is when

−c13
c3

(
V (3)
n + B(3)

n − c3An

)
> V (1)

n + B(1)
n − c1An,

thus the first term on the right-hand side of (20) is smaller than the second term. We
show that this second term is now negative: the above inequality means that queue 3 is
able to empty queue 1 at epoch n+1 without the help of queue 2, so as a consequence
of the ordering assumptions, queue 3will also empty queue 2 at epoch n+1: V (2)

n+1 = 0,
and it is easy to see using the definitions of c∗

2 and c
∗
3 and the recursion (5) for the two

coupled queues, that this latter fact is equivalent to the second term being negative.
In conclusion, the intermediate terms on the right-hand side of (20) can be ignored,

and this gives, after rearranging terms,

Ṽ (1)
n+1 =

{
Ṽ (1)
n + B̃(1)

n − c̃1An

}
∨ 0.

By ignoring queue 1, it follows at once from Proposition 1 that Ṽ (2)
n satisfies the

corresponding Lindley recursion, and since queue 3 evolves unchanged the proof is
complete. 	

123

Queueing Syst (2016) 82:29–42 41

B(2)

B -B(1) (2)

Fig. 1 Tandem fluid queue

As in Sect. 2, if we denote by ψ(C) and ψ(D) the transforms of the amount of work
in the coupled and, respectively, in the related decoupled system, then the relation
analogous to (7) is

ψ(C)(s1, s2, s3) = ψ(D)

(
s1, s2 − c∗

2

c2
s1, s3 − c23

c3
s2 − c∗

3

c3
s1

)
,

and it is easy to see that the input in the decoupled system remains ordered, which
means, in principle, one can determineψ(C) from the relation above using the available
expression for ψ(D) obtained in [1] (Sect. 3, Formulae (8) and (12)).

5 Conclusions and final remarks

We have pointed out a relation between a coupled processor model and two parallel
queues without coupling, under the assumption of ordered input. This relation was
further used to derive the joint Laplace–Stieltjes transform of the amount of work in
equilibrium.

We have also derived the relation explicitly for the case of three coupled processors.
This can be used in principle to determine the joint transformof the equilibriumamount
ofwork by using the expression derived in Proposition 2 in [1], for the queueing system
with the processors not coupled.
Relation with two coupled queues in tandem There is also a relation between the
coupled processor model with two queues described above and two tandem queues
which are coupled. The relation is similar to the one between the systems without
coupling, which was pointed out for Lévy input in Kella [5] (see also [1]).

Consider two queues working in tandem, and having a compound Poisson arrival
process which at epoch n brings work B(2)

n in the first queue and work B(1)
n − B(2)

n in
the second queue (Fig. 1). Both queues work at unit speed and the output from queue
1 flows into queue 2. The queues are also coupled, which means that as soon as queue
1 is empty it switches its capacity to help queue 2, so that the processing rate of queue
2 doubles during the idle periods of queue 1. The assumption of equal rates seems to
be necessary to have this model related to the coupled processor model studied in the
previous sections.

Since the amount of work does not depend on the server’s policy, one can assume
that the amount of fluid coming from server 1 is processed with priority over the
accumulated exogenous input into buffer 2. Then the point of the assumption of equal
rates is that server 2 finishes processing the fluid at the same instant that server 1

123

42 Queueing Syst (2016) 82:29–42

becomes idle. For this reason, the amount of work in queue 1 together with the total
amount of work in the tandem system taken as a whole is the same as the workload
vector in the coupled system (C).

As a final remark, we mention that the number of jobs waiting to be served in
a tandem queueing system with coupled processors has been studied in Resing and
Örmeci [6] related to data transfer in cable networks. The focus is on the number
of jobs at two stations which receive a Poisson input at only the first station (no
exogenous arrivals) and the server distributes its capacity among the queues while
both are non-empty and it switches full capacity to one queue when the other has
no jobs to be served, hence the system behaves as a coupled processor model. The
functional equation is solved by relating it again to a Riemann-Hilbert boundary value
problem, and in van Leeuwaarden and Resing [7] it is also pointed out how to derive
performance measures as the mean delay at one station, based on its solutions.

Acknowledgments E.S. Badila was supported by Project 613.001.017 of the Netherlands Organisation
for Scientific Research (NWO). J.A.C. Resing was supported by the IAP BESTCOM Project funded by the
Belgian government.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Badila, E.S., Boxma, O.J., Resing, J.A.C., Winands, E.M.M.: Queues and risk processes with simulta-
neous arrivals. Adv. Appl. Prob. 46(3), 812–831 (2014)

2. Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North-Holland
Publ. Cy, Amsterdam (1983)

3. Cohen, J.W.: Analysis of Random Walks. IOS Press, Amsterdam (1992)
4. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem.

Z. Wahrsch. Verw. Gebiete 47, 325–351 (1979)
5. Kella, O.: Parallel and tandem fluid networks with dependent Lévy inputs. Ann. Appl. Probab. 3, 682–

695 (1993)
6. Resing, J.A.C., Örmeci, L.: A tandem queueing model with coupled processors. Oper. Res. Lett. 31(5),

383–389 (2003)
7. van Leeuwaarden, J.S.H., Resing, J.A.C.: A tandem queue with coupled processors: computational

issues. Queueing Syst. 51(1–2), 29–52 (2005)

123

http://creativecommons.org/licenses/by/4.0/

	A coupled processor model with simultaneous arrivals and ordered service requirements
	Abstract
	Introduction
	1 Problem description
	2 Recursive equations for the amount of work in the coupled system
	3 The transform of the equilibrium amount of work at arrival epochs
	4 The k-dimensional model
	5 Conclusions and final remarks
	Acknowledgments
	References

