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Abstract When the boundary—the total number of servers— in an Erlang loss system
is a function of time, customers may also be lost due to boundary variations. On
condition that these customers are selected independently of their history, we solve
for the hitting-time distribution and transient distribution of busy servers. We derive
concise asymptotic expressions in the time domain for normal loads in the heavy-
traffic limit, i.e., when the offered load ρ is high, and the number of servers scales as
ρ + O

(√
ρ
)
. The solutions are computationally efficient, and simulations confirm the

theoretical results.
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1 Introduction

1.1 The problem

We consider Erlang loss systems [5,16,37,45], which are queueing systems with
Poisson arrivals of constant intensity λ, q servers with stationary i.i.d. exponential
service durations, and no waiting, also described as M/M/q/q in Kendall notation. If a
customer arrives when all servers are busy, the customer is lost. Erlang loss systems
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are birth–death processes [16, Sect. XVII.7], or in the terminology of [9, Sect. 4.3],
immigration–death processes.

The hitting time or first passing time for an Erlang loss system is the time T from a
given initial probability distribution π(0) of states until the first loss. The cumulative
distribution function F(T ) or equivalently, the survivor function or tail distribution
S(T ) = 1− F(T ), which depend on π , q, and λ, and the mean service rate μ (defined
as the reciprocal of the mean service duration) are exhaustive descriptions of the hitting
time. For instance, the expected hitting time is E [T ] = ∫∞

0 S (T ) dT . Our goal is to
find expressions for S(T ) valid for all T ≥ 0.

Many papers have been published on the transient behavior of Erlang loss systems
with constant boundaries. The problem of finding F(T ) has been solved in great
generality for birth–death processes by Laplace and Stieltjes transforms [20–22]. The
hitting time for Erlang loss systems specifically has been obtained directly by Laplace
transforms [16, Sect. XIV.9], [37, Sect. 5.2]. The resulting Laplace transforms are
usually difficult to invert analytically, but have been successfully inverted numerically
[1]. Several authors have proposed approximate asymptotic solutions based on large
deviations theory [30,32,42], singular perturbations [24,50], or diffusion (stochastic
differential equations) [4,43]. An elegant exact method has been proposed, directly
manipulating the master equations [48]. Hitting times have also been computed by
combinations of approximate methods and simulation [40].

The hitting time to a moving boundary, i.e., when the boundary q is a function
of time, is a classic problem in diffusion, e.g. [6,12], [35, Sect. 4.7], but has been
little studied for Erlang loss systems. Unfortunately, diffusion methods do not easily
carry over to Erlang loss systems, since the common diffusion assumption of white or
uncorrelated noise is violated. Although there are techniques for handling correlated
noise in diffusion systems, such schemes are involved [18], [38, Sect. S.10], [47, Sect.
XVI.6] and do not generally offer analytic solutions.

1.2 Outline of the general method

We start out by expressing the transient distribution π of busy servers as a Markov
process in a matrix formulation [9,21,27], but instead of using transform or diffusion
methods, we elaborate a representation in terms of orthogonal polynomials. The ensu-
ing reduction in complexity enables us to derive both exact and asymptotic concise
formulas for π and S(T ).

The reduction proceeds in five principal steps: first, we observe that the losses due
to boundary changes can be encoded by zero-padded matrix multiplications, allowing
an expression of S(T ) as a product (6) of matrix exponentials. Second, we perform a
spectral decomposition of the generator matrices, leading to (12). The benefit of spec-
tral decomposition is that the eigenmodes decay independently, and their decay can
be easily computed. Third, we use the Christoffel–Darboux identity [8,44] to simplify
the matrix products, using expressions of the matrix elements in terms of orthogonal
polynomials and their zeros (Theorem 1). The main effort lies in the fourth step, which
uses asymptotic transitions from orthogonal polynomials to special functions in order
to find asymptotic limits for the factors of the matrix products (Theorems 6, 8, 9). Most
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important here is that a boundary change leads to a perturbation of the eigenmodes
that we can compute to second-order (O (1/ρ)) accuracy (Theorem 6). The fifth step
finally integrates the sequence of matrix products into a differential equation for the
spectral representation ω of the transient distribution π (Theorem 10). This loses an
order (O

(
1/

√
ρ
)
) of accuracy, but since the previous step left a second-order error,

the final expression (3) of S(T ) remains asymptotically correct.
Instrumental in the derivation are recently shown asymptotic transitions [33] from

Charlier polynomials [7,8,14,34,44], and their derivatives to the Hermite function
Hν(·) [26, Sect. 10]. This function is related to the parabolic cylinder functions Dν(·)
and U (·, ·) by

Hν (z) = ez2/22−ν/2 Dν

(
z
√

2
)

= ez2/22−ν/2U (−ν − 1/2, z
√

2).

The Hermite function is an analytic extension of the Hermite polynomials Hn (z),
n integer, and satisfies many of the polynomials’ convenient recursion rules—a fact
we use extensively in the following.

Although a transition from Charlier polynomials to Hermite polynomials was given
over seventy years ago [31,44], and many related works exist, e.g. [11,15,29,39] and
the references therein, results pertaining to the more general transition to the Hermite
function are rare. A pointwise transition for non-negative real ν is implicit in [10],
but beyond that the present work requires uniform transitions for both the Charlier
polynomials and their derivatives, together with error rates, as well as the convergence
of Charlier polynomial zeros to Hermite function zeros shown in [33]. Interestingly,
some expressions for the hitting time to constant boundaries for Ornstein–Uhlenbeck
processes [2,36] also involve zeros of the Hermite function, but in these cases derived
from the Laplace transform of the probability density function.

1.3 Assumptions

We define the offered load ρ = λ/μ and the scaled boundary distance

σ (ρ; t) = q (ρ; t) − ρ√
ρ

,

which can be seen intuitively as the distance to the boundary from the mean number
of busy servers, in the unit of standard deviations. The factor

√
ρ originates in the

variability of Poisson traffic. The traffic intensity is ρ/q. We assume a simultaneous
approach to infinity by ρ and q = ρ + O

(√
ρ
)

often referred to as the Halfin–Whitt
regime [17], but this has also been used previously [3,19]. The rationale is that under
normal loads, σ converges when the offered load ρ grows large. An illustrative example
of such a boundary q is

qEXP(t) = �ρ + (
3e−t + 1

)√
ρ�, (1)

which is shown in Fig. 1. We will return to this example several times below.
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Fig. 1 In an Erlang loss system with moving boundaries, losses are caused by boundary changes (vertical
sections) in addition to temporal decay (horizontal sections)–in this example, q(t) = �ρ + (

3e−t + 1
)√

ρ�
and ρ = 100

The boundary q is integer-valued and therefore piecewise constant. We assume that
(A1) for fixed ρ, q has only a finite number of discontinuities in any finite interval. This
is necessary for the existence of the finite sums and products used in the derivation.
The timing of the jumps depends on ρ.

For the asymptotic case, we require (A2) that when ρ approaches infinity, the time
intervals �t between changes of q scale as O

(
1/

√
ρ
)
, and that σ(ρ; t) converges to

a limit σ(t). We will often abbreviate σ(t) as σt or σ for improved readability. Also,
σ (ρ; t) may be abbreviated as σ , unless there is a risk for confusion. The steps �σ in
σ (q; t) shrink as O(1/

√
ρ), while the number of steps in q grows as O

(√
ρ
)

during
any finite time interval. In the qEXP example, σt = 3e−t + 1.

We generally assume (A3) that σt is continuously differentiable in the intervals of
interest, and that each boundary change |�q| is a unit change, |�q| = 1, except in
Sect. 4, where we relax this assumption in order to study isolated discontinuities in σt .

When customers are lost due to boundary changes, we assume (A4) that such
customers are selected independently and uniformly at random, i.e., regardless of
their history. This is necessary for describing the number of busy servers as a Markov
process.

1.4 Overview of the main results

In the following, all vectors are column vectors, and are given in lower-case boldface.
The notations 0 and 1 are used for vectors of zeros and ones, respectively. Matrices
are written in upper-case boldface.
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Let ωT = πT M be the spectral representation of the transient distribution π , where
the raised T indicates transpose. The matrix M derives from the diagonalization of
the Markov generator matrix, and is given in explicit form by Theorem 9. The main
result is that asymptotically, ω satisfies the matrix differential equation

dωT

dt
= ωT

(
C

∣∣
∣∣
dσt

dt

∣∣
∣∣ − μΛ

)
(2)

during time intervals, including infinite, where σt is continuously differentiable. Here,
Λ = diag

(
ν j
)

is the diagonal matrix of positive zeros ν j (σ ), j = 1, 2, . . ., of the
expression Hν(−σ/

√
2) in ascending order, and C is an eigenmode perturbation matrix

defined in Theorem 10. Intuitively speaking, the matrices Λ and C represent losses
due to temporal decay and boundary changes, respectively.

The expansion of the survivor function is

S(T ) = ω(T )T M−11, (3)

expressing that S(T ) equals the sum of the components of π(T ) not including the
absorbing state, i.e., lost customers. Theorem 10 also gives an exact formula for finite
ρ, but in this case, ω(t) is a sequence of matrix multiplications.

In practice, truncating the system (2) to a small number of dimensions (eigenmodes)
usually produces sufficient accuracy. If the initial distribution π(0) contains only the
fundamental eigenmode, such as after a long period of constant boundary, and the
boundary changes slowly, meaning |dσ/dt | � 2μ exp(−σ/

√
2), then the survivor

function can be written as

S (T ) ≈ G(σT )

G(σ0)
exp

⎛

⎝−
T∫

0

μν1 (σt ) dt

⎞

⎠ , (4)

where

G(σ ) = 1
4
√

2π
exp

(
−σ 2

4

)√
d

dσ

1

ν1 (σ )
.

The improvement by (4) over the naïve approximation S(T ) ≈ exp
(
− ∫ T

0 μν1dt
)

,

which is exact for a constant boundary and a fundamental-only initial state, is the
factor G(σT )/G(σ0). The truncation error can be estimated by truncating (2) to a few
different dimensions and comparing the results.

In 2001, the general problem of the first passage to a moving boundary with non-
monotonic motion was described as still appearing relatively open [35, p. 120]. The
hitting time of a Wiener process to a continuous, piecewise linear boundary was given
by [49]. The hitting time of an Ornstein–Uhlenbeck process to a general moving bound-
ary can be expressed as an integral equation [6], and many papers have appeared on
the efficient numerical solution of this equation. In our case, although the Cauchy
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problem (2) does not in general admit a closed form for the unknown, it can be solved
quickly and efficiently by standard numerical techniques. At this level of simplicity,
(2) and (3) seem to constitute, if not the first, at least a rare asymptotic solution to a
hitting-time problem with a general boundary.

1.5 Structure of the paper

In the next section, we introduce notation, review some well-known results, and decom-
pose the probability distribution π into eigenmodes associated with the eigenvectors
of a Markov generator matrix. In Sect. 3, we find explicit expressions and bounds
for scalar products of the eigenvectors. Theorem 6 in this section is a highlight and
a key to the compact formulation of the probability distribution. We use the expres-
sions from Sect. 3 for mapping between eigenmodes and probability in Sect. 5. After
preparing the ground in Sects. 3 and 5, the derivation of the eigenmode time evolution
in Sect. 6 becomes straightforward. Section 4 analyzes discontinuities in σt , a special
case of practical importance. Section 7 presents simulations confirming the theory.
In Sect. 7.4, we briefly probe a variation of the classical Lee–Longton approxima-
tion [28], approximating an M/G/qt/qt system by an M/M/qt/qt system. Section 8
concludes the paper.

2 Preliminaries

2.1 Notation

The notation “a � b” is to be read as “a is defined b”, and is used for highlighting
the introduction of new symbols. The expression eA denotes the matrix exponential∑∞

k=0 Ak/k!.
For a constant boundary, the number of busy servers is a Markov process when the

service duration has a stationary exponential distribution. Let the vector π∗(t), t ≥ 0,
be the probability distribution of numbers of busy servers as a function of t . The asterisk
indicates the inclusion of an absorbing state for lost customers. The time evolution of
a continuous-time Markov process with constant generator matrix Q∗ can be written
as [9, Sect. 4.5]

π∗T
(t) = π∗T

(0) eQ∗t .

Truncating π∗ to π and Q∗ to Q by removing the element, row, and column
representing the absorbing state, the survivor function can then be obtained by the
matrix formula

S(t) = πT (t) 1 = πT (0) etQ1, (5)

expressing the probability of no loss or absorption before, i.e., survival until epoch t .
For simplicity of notation, we introduce the convention that matrices in matrix

products with incompatible dimensions are padded below or to the right with zero
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rows or columns as required, except for diagonal matrices that keep their diagonal
elements and are merely truncated to size. For instance, with

U1 �
(

a11 a12
a21 a22

)
, U2 �

⎛

⎝
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞

⎠ , D �

⎛

⎜
⎝

d1 0 · · ·
0 d2
...

. . .

⎞

⎟
⎠

the product U1DU2 would be interpreted as

U1DU2 =
⎛

⎝
a11 a12 0
a21 a22 0
0 0 0

⎞

⎠

⎛

⎝
d1 0 0
0 d2 0
0 0 d3

⎞

⎠

⎛

⎝
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞

⎠ .

The boundary q(t) is integer-valued, so necessarily piecewise constant. The number
of busy servers is a Markov process for such a q, since passage to the absorbing
state only depends on the current state and not on the history (A4). The boundary q
corresponds to a piecewise constant generator matrix Q, i.e., a sequence of constant
matrices Q1, Q2, . . . Qn for the respective durations �t1,�t2, . . . �tn , where T =∑

k
�tk . We then have the generalized formula

S(T ) = πT (0) e�t1Q1e�t2Q2 . . . e�tnQn 1. (6)

As it reads, (6) is rather awkward to compute, but the special structure of Q for a
birth–death process can be used in order to radically simplify the equation.

2.2 Spectral decomposition for moving boundaries

For Erlang loss systems, the generator matrix Q can be written as [37, p. 88]

Q = μ

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−ρ ρ

1 −ρ − 1 ρ

2 −ρ − 2 ρ

3
· · · ρ

q −ρ − q

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

The eigenvalues of the matrix −Q/μ are precisely the zeros of the Charlier poly-
nomials Cq+1 (ρ, x) [23,27], a family of orthogonal polynomials, here defined as the
Erdélyi-normalized Charlier polynomials [14, pp. 226–227], [25,34],

Cn (ρ, x) �
n∑

k=0

(
n
k

)(
x
k

)
k!(−ρ)−k .
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For compactness, we will write cρ
n (x) or cn(x) or even just cn for Cn(ρ, x) when there

is no risk for confusion. Another variant of Charlier polynomial we also use below is
the Szegő-normalized orthonormal Charlier polynomials [44, p. 35],

sρ
k (x) � (−1)k

√
ρk

k! cρ
k (x). (7)

The zeros of the Charlier polynomial cρ
q (x) are real, positive, and simple [23]. If the

zeros are numbered ν1
q < ν2

q < . . . < ν
q
q , then the sequence of zeros

{
ν

j
q

}∞
q= j

is

decreasing [8, Sect. 1.5], and the zeros of cρ
q (x) and cρ

q+1(x) mutually separate each

other (the separation property), i.e., ν
j
q+1 < ν

j
q < ν

j+1
q+1 for 1 ≤ j ≤ q [ibid.]. The

distance between adjacent zeros is greater than one [23],

ν
j+1
q − ν

j
q > 1. (8)

A right eigenvector of −Q/μ corresponding to zero ν
j
q+1, j = 1, . . . q + 1, is [27,

Chap. 1]

w j
q �

(
cρ

0 (ν
j
q+1) cρ

1 (ν
j
q+1) . . . cρ

q (ν
j
q+1)

)T
.

In the following, superscripts of vectors and matrices will often be used to indicate
order, and subscripts to indicate degree of the corresponding Charlier polynomials,
but may be dropped when there is no risk for misunderstanding. In the rare case where
a power of a zero is intended, it will be enclosed in parentheses, e.g.,

(
ν1
)2

for the
square of the first zero ν1.

The similarity transformation DQD−1 with D � diag
(√

ρk/k!
)

, k = 0, . . . q,

transforms Q to symmetric form, so it can be written as

DQD−1 = −UμΛUT ,

where Λ � diag
(
ν j
)

is the diagonal matrix of eigenvalues of −Q/μ, sorted in
increasing order, and U is an orthonormal matrix of right eigenvectors of DQD−1.
Obviously, D−1U is a matrix of right eigenvectors for −Q/μ. On the other hand, so
is W �

(
w1 w2 . . . wq+1

)
, and accordingly, we can choose U by normalizing the

columns of DW, i.e., by letting

up
q � Dwp

q∣
∣Dwp

q
∣
∣ (9)

be the pth column vector of U. The survivor function for a constant boundary in (5)
now reads

S (t) = πT (0) D−1U e−tμΛ UT D1. (10)
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The busy server count probability distribution π (t) has q + 1 components, or eigen-
modes, that decay over time due to the losses. The zero ν j determines how quickly
mode j decays. The dominant zero ν1 corresponds to the fundamental mode, with
the slowest decay.

In case π (0) contains the fundamental mode only, then, since u1 = Dw1/
∣∣Dw1

∣∣,

π (0) = Du1
∑

Du1 = D2w1

1T D2w1 ,

so that

πT (0) D−1u1 = w1T D2

1T D2w1 D−1 Dw1
∣∣Dw1

∣∣ =
∣∣Dw1

∣∣

1T D2w1 . (11)

Suppose now that a time-variable boundary q = q (t) in (6) is constant during time
�tk , then changes, and is held constant again during time �tk+1. The loss caused
by the boundary change is then expressed precisely by a matrix multiplication, which
zeroes out the border probabilities. Define Mk � D−1Uk . The sequence (6) of step
changes from boundary q(0) to q(T ) translates into

S(T ) = πT (0) M1

[
n∏

k=1

e−�tkμΛk UT
k Uk+1

]

M−1
n+11. (12)

The intuition behind the right-hand side is that the factor M1 translates the prior prob-
ability distribution π (0) into eigenmodes ωT = πT (0) M1; the factors e−�tkμΛk =
diag

{
exp

(
−�tkμν

j
q+1

)}
, j = 1, . . . , q +1, decay each mode temporally and inde-

pendently; the products UT
k Uk+1 express the perturbations of the eigenmodes due to

the boundary change; the factor Un+1
T D = M−1

n+1 projects modes back to state prob-
abilities; and the final 1 sums them up. Specifically, the fundamental mode projects to
probability through multiplication by u1T D, where u1 is the first column of Un+1. In
order to simplify this expression for the survivor function, we will inspect the factors
exp (−�tkμΛk) and UT

k Uk+1 in Sect. 3, and M in Sect. 5.

3 Scalar products of eigenvectors

Central to simplifying (12) is the evaluation of the matrix product UT
k Uk+1. For a

decreasing boundary, its elements are the scalar products upT
q ur

q−1 for 1 ≤ p ≤ q + 1
and 1 ≤ r ≤ q. The following theorem provides an explicit formula for decreasing
boundaries. Anticipating Sect. 4, where we drop assumption (A4), we prove a slightly
more general theorem, giving the scalar products upT

q ur
s−1 for 1 ≤ p ≤ q + 1, s ≤ q,

and 1 ≤ r ≤ s. The theorem can also be used for the increasing boundary case s −1 >

q, via the identity upT
q ur

s−1 = urT
s−1up

q .
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Theorem 1 (Eigenvector scalar products) Let ν
p
q+1 be the pth zero of the Char-

lier polynomial cρ
q+1(x). Define w

j
q �

(
cρ

0 (ν
j
q+1) cρ

1 (ν
j
q+1) . . . cρ

q (ν
j
q+1)

)T
, D �

diag
(√

ρk/k!
)

, and up
q � Dwp

q /
∣
∣Dwp

q
∣
∣. Then, for the decreasing boundary case

s ≤ q,

upT
q ur

s−1 = 1

νr
s − ν

p
q+1

√
ρsq!
ρqs!

cs(ν
p
q+1)

cq(ν
p
q+1)

√√√
√−cq(ν

p
q+1)cs+1

(
νr

s

)

c′
q+1(ν

p
q+1)c

′
s

(
νr

s

) . (13)

Proof According to the well-known Christoffel–Darboux identity [8, p. 23], [44,
p. 43], for Erdélyi-normalized polynomials cq(x) and Szegő-normalized Charlier
polynomials sq(x) (7),

q∑

k=0

sk (x) sk (y) = ρq+1

q!
cq+1 (x) cq (y) − cq (x) cq+1 (y)

y − x
. (14)

By this relation, and due to the fact that ck
(
νr

k

) = 0 for all k, by (14),

(
Dwp

q
)T Dwr

s−1 =
s∑

k=0

sk(ν
p
q+1)sk

(
νr

s

) = ρs+1

s!
−cs(ν

p
q+1)cs+1

(
νr

s

)

νr
s − ν

p
q+1

.

Since cq
(
νq
) = 0, by the limiting case x → y of the Christoffel–Darboux identity,

∣∣Dwp
q
∣∣2 =

q∑

k=0

sk(ν
p
q+1)

2 = −ρq+1

q! cq(ν
p
q+1)c

′
q+1(ν

p
q+1),

and since ss (νs) = cs (νs) = 0,

∣∣Dwr
s−1

∣∣2 =
s−1∑

k=0

sk
(
νr

s

)2 =
s∑

k=0

sk
(
νr

s

)2 = ρs+1

s! cs+1
(
νr

s

)
c′

s

(
νr

s

)
.

The theorem follows from substituting these expressions into

upT
q ur

s−1 =
(
Dwp

q
)T Dwr

s−1∣∣Dwp
q
∣∣ ∣∣Dwr

s−1

∣∣ =
∑s

k=0 sk(ν
p
q+1)sk

(
νr

s

)

√∑q
k=0

[
sk(ν

p
q+1)

]2 ∑s−1
k=0

[
sk
(
νr

s

)]2
.

�
This is an exact result, valid for all values of ρ. These formulas are suitable for

numerical computations up to ρ ≈ 100. For larger ρ, it can be advantageous to use
asymptotic forms, i.e., the limiting values when ρ approaches infinity. In the following,

123



Queueing Syst (2014) 78:225–254 235

we shall derive such asymptotic formulas for (13), and show how expression (12) can
be further simplified for large ρ. This requires three theorems on the limiting behavior
of Charlier polynomials, their derivatives, and their zeros, proved in [33]. Since the
asymptotic forms are all intimately related to the Hermite function, we will refer to
them as the Hermite limits.

Theorem 2 (Transition of Charlier polynomials) For real σ , ν, and positive ρ,

(2ρ)ν/2cρ

�ρ+σ
√

ρ�(ν) = Hν

(
− σ√

2

)
+ O

(
1√
ρ

)
,

where cρ
n (ν) are the Charlier polynomials and Hν is the Hermite function. The error

bound O(1/
√

ρ) is uniform for ν and σ in any bounded interval, and is sharp in the
sense that there are ν and σ such that the error is proportional to 1/

√
ρ for arbitrarily

large ρ.

Theorem 3 (Transition of Charlier polynomial derivative) For real σ , ν, and positive
ρ,

∂

∂ν

{
(2ρ)ν/2cρ

�ρ+σ
√

ρ�(ν)
}

= ∂

∂ν
Hν

(
− σ√

2

)
+ O

(
1√
ρ

)
.

The error bound is uniform for ν and x in any bounded interval, and is sharp in the
same sense as in Theorem 2.

Theorem 4 (Convergence of Charlier polynomial zeros) For fixed real σ and positive
ρ → ∞ , let q � �ρ + σ

√
ρ�. For a convergent sequence of zeros νq → ν such

that cρ
q
(
νq
) = 0, the limit ν is a zero of the Hermite function, Hν

(
−σ/

√
2
)

= 0,

satisfying ν = νq + O
(
1/

√
ρ
)
. Conversely, for a positive real zero ν of the Hermite

function, there is a convergent sequence νq → ν of zeros of cρ
q , satisfying ν =

νq + O
(
1/

√
ρ
)
.

The zeros x(ν) of Hν(x) for positive real ν are strictly monotonic and differentiable
[13], implying that so are the positive real zeros ν(x). An important entity in the
expression for the survivor function is the zero difference �νq � νq+1 − νq between
same-order zeros of the Charlier polynomials of adjacent degrees. Since the zeros
are decreasing with increasing q, this difference is always negative. The following
theorem provides the asymptotics of �νq :

Theorem 5 (Charlier polynomial zero difference) For fixed σ and ρ → ∞ in such
a way that q = ρ + σ

√
ρ is integer, the zeros νq defined by cρ

q
(
νq
) = 0 converge to

ν satisfying Hν

(
−σ/

√
2
)

= 0. The following asymptotic relation holds uniformly

for bounded ν and σ :

�νq = −1√
2ρ

Hν+1

(
−σ/

√
2
)

∂ Hν

(
−σ/

√
2
)

/∂ν

[
1 + O

(
1√
ρ

)]
= ∂ν

∂σ
·
[

1√
ρ

+ O

(
1

ρ

)]
.
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Fig. 2 There is a transition of Charlier polynomials (2ρ)ν/2C�ρ+σ
√

ρ� (ρ, ν) (thin lines) to the Hermite

function Hν(−σ/
√

2) (thick line). Here, σ = 1, and the different values of ρ are 100 (dotted), 400 (dashed),
and 1,600 (solid)

Fig. 3 A: The smallest positive zero in ν of Hermite function Hν(−σ/
√

2) (lower, thick line); B: Dominant
zero of the corresponding Charlier polynomial (lower, dotted line) for ρ = 100; C: The second ero of Hermite
function (upper, thin line) for ρ = 100; D: The second zero of the corresponding Charlier polynomial (upper,
dashed line)

Figure 3 illustrates the distance between adjacent zeros as a function of σ , together
with the Hermite limit given by Theorem 1. Before the proof of Theorem 5, we show
some examples of the accuracy of the Hermite limit given by Theorems 2, 4, and 5
above.

Example 1 (Hermite limits) The transition of the Charlier polynomials to the Hermite
function predicted by Theorem 2 is shown for ρ = 100, 400, and 1600 in Fig. 2. The
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Fig. 4 Difference �ν1
q between dominant zeros for ρ = 100 (dashed line) and ρ = 400 (thin line)

compared to Hermite limit −dν1/dσ (thick line)

first two zeros of the Charlier polynomials for ρ = 100 and the Hermite function are
shown in Fig. 3. The zero difference �νq is compared to the Hermite limit given by
Theorem 5 in Fig. 4 for ρ = 100.

Proof When ρ → ∞ , the zeros νq converge to a limit ν∞ , since they are decreasing
and positive, so the first part follows from Theorem 4. From this theorem it also follows
that

�νq = (
νq+1 − ν∞

) − (
νq − ν∞

) = O

(
1√
ρ

)
.

In order to improve this bound, let σ ′ � σ + 1/
√

ρ , and define for arbitrary ν and σ ,

y (ν, σ ) � (2ρ)ν/2cρ

�ρ+σ
√

ρ�(ν). (15)

By the definition of νq and νq+1 , y
(
νq , σ

) = y
(
νq+1, σ

′) = 0. A zero of Charlier
polynomial cρ

q+1 cannot be a zero of polynomial cρ
q , implying that y

(
νq+1, σ

) �= 0 ,
so

�νq = y
(
νq+1, σ

) − y
(
νq+1, σ

′)
[

y
(
νq+1, σ

) − y
(
νq , σ

)

�νq

] . (16)

Since y is an entire function of ν , the denominator in (16) can be Taylor expanded. In
this expansion, the derivative ∂y (ν, σ ) /∂ν is also entire, and by Theorem 3, converges
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uniformly to ∂ Hν

(
−σ/

√
2
)

/∂ν for bounded ν with rate O
(
1/

√
ρ
)
, so

y
(
νq+1, σ

) − y
(
νq , σ

)

�νq
= ∂ H

∂ν

(
νq , σ

) + O
(
�νq

)
, (17)

where the error term is uniform for bounded σ . Although y(ν, σ ) is an entire function
of ν, it is not continuously differentiable with respect to σ , so the enumerator in (16)
cannot be directly approximated by a derivative. Instead, we can use the backward
recurrence rule for the Charlier polynomials [25],

cρ
q (ν) − cρ

q+1(ν) = ν

ρ
cρ

q (ν − 1) ,

implying that

y (ν, σ ) − y
(
ν, σ ′) = ν

√
2√
ρ

y (ν − 1, σ ) (18)

so for the enumerator, by Theorem 2, and substituting into (16),

�νq =
√

2√
ρ

νq

[
Hνq−1

(
−σ/

√
2
)

+ O
(
1/

√
ρ
)]

∂ Hνq

(
−σ/

√
2
)

/∂ν + O
(
1/

√
ρ
) .

By the analyticity of the Hermite function,

Hνq−1

(
−σ/

√
2
)

= Hν−1

(
−σ/

√
2
)

+ O
(
ν − νq

)

and similarly for ∂ Hν

(
−σ/

√
2
)

/∂ν. Since O
(
ν − νq

) = O
(
1/

√
ρ
)

uniformly for

bounded ν and Hν−1

(
−σ/

√
2
)

�= 0 and ∂ Hν

(
−σ/

√
2
)

/∂ν �= 0 [13], and by the

recurrence [26, p. 289]

Hν+1(x) − 2x Hν(x) + 2νHν−1 = 0, (19)

we obtain the first equality in Theorem 5. On the other hand, by differentiating the

equation Hν

(
−σ/

√
2
)

= 0, and using the rule ∂ Hν(z)/∂z = 2νHν−1(z) [26, p. 289],

−ν
√

2Hν−1

(
−σ/

√
2
)

+ ∂ Hν(−σ/
√

2)

∂ν

∂ν

∂σ
= 0.

For brevity, with some abuse of notation, we have written ∂ Hν(−σ/
√

2)/∂σ for
∂ Hν(s)/∂s at s = −σ/

√
2. After division by the factor ∂ Hν/∂ν, we obtain the second

equality, completing the proof. �
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Fig. 5 Eigenvector scalar products u1T
q u2

q−1
√

ρ (thin, dashed) and −u2T
q u1

q−1
√

ρ (thin, solid) for ρ =
100, together with Hermite limit (thick line)

We now have asymptotic forms for Charlier polynomials c (ν) (Theorem 2),
their derivatives c′(ν) (Theorem 3), zeros ν (Theorem 4), and zero differences �ν

(Theorem 5). In terms of these, we can express the asymptotics of the scalar prod-
uct upT

q ur
q−1. Theorem 6 computes the elements of the mode transition matrices. In

particular, it shows that upT
q up

q−1 = 1 with only a O (1/ρ) error, i.e., second-order
error.

Theorem 6 (Asymptotic eigenvector scalar products) Let up
q be defined as in

Theorem 1. When p �= r ,

upT
q ur

q−1 = 1√
ρ (νr − ν p)

√
dν p

dσ

dνr

dσ
+ O

(
1

ρ

)

and when p = r , upT
q up

q−1 = 1+O (1/ρ). The error terms are uniform for bounded σ .

Example 2 (Eigenvector scalar products for unit step) Figure 5 illustrates the scalar
product |upT

q ur
q−1|

√
ρ for p, r = 1, 2, together with the Hermite limit given by

Theorem 6 for ρ = 100.

Proof We proceed by computing the asymptotic limit of the expression upT
q ur

q−1 by
setting q = s in (13) in Theorem 1.

Using the same definition of y (15) as in the proof of Theorem 5,

∂y(ν, σ )

∂ν
= ∂

∂ν

[
(2ρ)ν/2

]
cq+1 (ν) + (2ρ)ν/2 ∂

∂ν

[
cq+1(ν)

]
,
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Fig. 6 There must be an open bounded set of σ and ν such that ∂y/∂ν is non-zero

so for ν = νq+1,

cq
(
νq+1

)

c′
q+1

(
νq+1

) = y
(
νq+1, σ

) − y
(
νq+1, σ

′)

∂y
∂ν

(
νq+1, σ ′) , (20)

where σ ′ � σ + 1/
√

ρ.
Suppose that σ belongs to a bounded interval and let ν (σ ) be the kth smallest

positive real zero of Hν

(
−σ/

√
2
)

(cf. Fig. 3 for an illustration of the smallest and

second smallest zero). Since ∂y
(
νq , σ

)
/∂ν approaches ∂ Hν(σ )

(
−σ/

√
2
)

/∂ν �= 0

uniformly for bounded ν when ρ → ∞ by Theorem 3, there must be an open bounded
set Ω

Ω = {(σ, ν) | σa < σ < σb, |ν − ν (σ )| < ε}

for some ε > 0 (Fig. 6), such that ∂y (ν, σ ) /∂ν does not vanish on Ω . This enables
us to introduce

z(ν, σ ) �
∂2 y
∂ν2 (ν, σ )

∂y
∂ν

(ν, σ )
,

which is bounded and analytic in ν on Ω . Combining (17) and (20),

cq
(
νq+1

)

c′
q+1

(
νq+1

) = �νq

{
1 + �νq

2
z
(
νq , σ

) + O

(
1

ρ

)} ∂y
∂ν

(
νq , σ

)

∂y
∂ν

(
νq+1, σ ′) , (21)
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where the error term is uniform on Ω . We can write

∂y

∂ν

(
νq+1, σ

′) =
[

∂y

∂ν

(
νq+1, σ

′) − ∂y

∂ν

(
νq , σ ′)

]

+
[

∂y

∂ν

(
νq , σ ′) − ∂y

∂ν

(
νq , σ

)] + ∂y

∂ν

(
νq , σ

)
.

For the first bracket, by the analyticity of y in ν,

∂y

∂ν

(
νq+1, σ

′) − ∂y

∂ν

(
νq , σ ′) = O

(
1√
ρ

)
,

where the error terms are uniform on Ω . For the second bracket, the function
∂y (ν, σ ) /∂ν cannot be differentiated with respect to σ , but by differentiating (18),
and again using the analyticity of y in ν,

∂y

∂ν

(
νq , σ ′) − ∂y

∂ν

(
νq , σ

) = O

(
1√
ρ

)
.

Accordingly, the quotient in (21) is

∂y
∂ν

(
νq , σ

)

∂y
∂ν

(
νq+1, σ ′) =

∂y
∂ν

(
νq , σ

)

∂y
∂ν

(
νq , σ

) + O
(
1/

√
ρ
) = 1 + O

(
1√
ρ

)
,

where the error terms are uniform on Ω .
On the other hand, similar to the derivation of (17) in the proof of Theorem 5,

�νq = −y
(
νq , σ ′)

y(νq ,σ ′)
−�νq

= − y
(
νq , σ ′) − y

(
νq , σ

)

∂y
∂ν

(
νq+1, σ ′) − �νq

2
∂2 y
∂ν2

(
νq+1, σ ′) + O (1/ρ)

and

cq+1
(
νq
)

c′
q

(
νq
) = cq+1

(
νq
) − cq

(
νq
)

c′
q

(
νq
) = y

(
νq , σ ′) − y

(
νq , σ

)

∂y
∂ν

(
νq , σ

)

so

cq+1
(
νq
)

c′
q

(
νq
) = −�νq

{
1 − �νq

2
z
(
νq+1, σ

′) + O

(
1

ρ

)} ∂y
∂ν

(
νq+1, σ

′)

∂y
∂ν

(
νq , σ

) , (22)

where all error terms are uniform on Ω . Multiplying (21) and (22),

−
cq

(
ν

p
q+1

)
cq+1

(
νr

q

)

c′
q+1

(
ν

p
q+1

)
c′

q

(
νr

q

) = �ν
p
q �νr

q

[
1 + O

(
1√
ρ

)]
R, (23)
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where

R �
{

1 + �ν
p
q

2
z
(
ν

p
q , σ

)
}{

1 − �νr
q

2
z
(
νr

q+1, σ
′)
}

+ O

(
1

ρ

)
(24)

uniformly on Ω . By Theorems 1 and 5, the theorem is proved when p �= r . When
p = r,

R = 1 + �νq

2

[
z
(
νq , σ

) − z
(
νq+1, σ

′)] + O

(
1

ρ

)
,

where the middle term can be split into the two parts

z
(
νq , σ

) − z
(
νq+1, σ

′) = [
z
(
νq , σ

) − z
(
νq , σ ′)] + [

z
(
νq , σ ′) − z

(
νq+1, σ

′)] .

For the second bracket, by the analyticity of z in ν,

z
(
νq , σ ′) − z

(
νq+1, σ

′) = −�νq
∂z

∂ν

(
νq , σ ′) + O

(
1

ρ

)
= O

(
1√
ρ

)
.

For the first bracket, the function z (ν, σ ) cannot be differentiated with respect to σ ,
but by differentiating (18) twice, and using the analyticity of y in ν,

∂2

∂ν2 y (ν, σ ) − ∂2

∂ν2 y
(
ν, σ ′) = O

(
1√
ρ

)

so

z
(
ν, σ ′) =

∂2 y
∂ν2 (ν, σ ) + O

(
1/

√
ρ
)

∂y
∂ν

(ν, σ ) + O
(
1/

√
ρ
) = z (ν, σ ) + O

(
1/

√
ρ
)
,

implying that z (ν, σ ) − z
(
ν, σ ′) = O

(
1/

√
ρ
)

uniformly on Ω . Since p = r , the

factor 1+O(
√

ρ) cancels out in the product (23), resulting in upT
q up

q−1 = 1+O (1/ρ)

uniformly on Ω . �

4 Asymptotic discontinuities

Theorem 6 does not cover discontinuities in σt . Since this is an important case in
practice, in this section, we will analyze this situation while temporarily suspending
assumption (A3).

Theorem 7 (Asymptotic eigenvector scalar products for large steps) Assume that
σ has a discontinuity at t , and define q � q(t−), s � q(t+) + 1, σt− �
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limρ→∞(q−ρ)/
√

ρ, and σt+ � limρ→∞(s−ρ)/
√

ρ. Under the same conditions as in
Theorem 1,

upT
q ur

s−1 = e
(
σ 2

t−−σ 2
t+
)
/4

ν p − νr

√

2
dνr

dσ

dν p

dσ

Hν p

(
−σt+/

√
2
)

Hν p+1

(
−σt−/

√
2
)
[

1 + O

(
1√
ρ

)]
,

(25)

where ν p is the pth smallest zero of Hν

(
−σt−/

√
2
)

, and νr is the rth smallest zero

of Hν

(
−σt+/

√
2
)

. The derivatives dν p/dσ and dνr/dσ are to be taken at σt− and

σt+, respectively.

Example 3 (Eigenvector scalar products for large steps) As an example, consider an
instantaneous boundary reduction from σ = 4 to σ = 1,

qSTEP(t) �
{

�ρ + 4
√

ρ� if t ≤ 0

�ρ + √
ρ� if t > 0

. (26)

Let t = 0 and t = 0+ denote the epochs just before and after the step, respectively.
Then, by (12),

ωT (0+) = ωT (0)UT (q0) U (q0 + �q) ,

where q0 = ρ + 4
√

ρ and �q = −3
√

ρ. If the fundamental mode is the only mode
initially present in ω(0) = (ω1, 0, ...)T , we obtain the component-wise relations

ωk(0+) = ω1(0)u1T (q0) uk (q0 + �q) . (27)

The Charlier and Hermite limit mode transition matrices T � UT (q0) U (q0 + �q)

for ρ = 100 become

TC=

⎛

⎜⎜⎜
⎝

.8589 .2124 .1333
−.4976 .4887 .2043
−.0311 −.7837 .0537

. . .

⎞

⎟⎟⎟
⎠

TH =

⎛

⎜⎜⎜
⎝

.8378 .2210 .1393
−.5310 .4496 .1934
−.0133 −.7904 .0208

. . .

⎞

⎟⎟⎟
⎠

,

respectively.

Proof The proof consists of taking the asymptotic limit of each factor on the right-hand
side of (13). By Theorem 4,

1

νr
s − ν

p
q+1

= 1

νr − ν p

[
1 + O

(
1√
ρ

)]
. (28)
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It follows easily from Stirling’s approximation, taking the logarithm, and then Taylor
expanding that

ρqe−ρ

q! = 1√
2πρ

exp

(
−σ 2

2

)[
1 + O

(
1√
ρ

)]
, (29)

so

√
ρsq!
ρqs! = e(σ 2

t−−σt+2)/4
[

1 + O

(
1√
ρ

)]
. (30)

Since

cq
(
νq+1

) = cq
(
νq+1

) − cq
(
νq
) = �νq · ∂

∂ν
cq

(
νq
) + O

((
�νq

)2
)

,

then, by Theorems 2, 3, 5, and the recurrence relation (19),

cs
(
νq+1

)

cq
(
νq+1

) = −√
2

�νq

Hν

(
−σt+/

√
2
)

Hν+1

(
−σt−/

√
2
)
[

1 + O

(
1√
ρ

)]
. (31)

By (21) and (22) in the proof of Theorem 6,

√√√√√−
cq

(
ν

p
q+1

)
cs+1

(
νr

s

)

c′
q+1

(
ν

p
q+1

)
c′

s

(
νr

s

) =
√

�ν
p
q �νr

s

[
1 + O

(
1√
ρ

)]
. (32)

Substituting (28), (30), (31), and (32) into (13) in Theorem 1 completes the proof. �

5 Conversion between eigenmodes and probability

Converting between the busy-server probability distribution π and the eigenmode ω

is important, because the initial condition and the survivor function are expressed
in terms of probability, while the time evolution is more easily computed in terms
of eigenmodes. First, we consider the translation of the mode vector to the survival
function.

We define the pth mode conversion factor

G p � e−ρ/2 wpT
q D21

∣∣∣wpT
q D

∣∣∣
. (33)

We will use the theorems from Sect. 3 for simplifying this expression.
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Fig. 7 Hermite limit of conversion factors Gk (σ ). For k = 1 and k > 1, Gk (σ ) approaches 1 and 0,
respectively

Theorem 8 (Translation of eigenmodes to survivor function) The translationωT M−11
of the mode vector to the survivor function can be written as

S (t) = ωT g eρ/2,

where g � M−11 e−ρ/2 = MT D21 e−ρ/2 = (
G1, G2, . . . Gq

)T
is a vector of mode

conversion factors. It satisfies |g| ≤ 1, and

G p (σ ) = 1
4
√

2π
exp

(
−σ 2

4

)√
d

dσ

1

ν p
·
[

1 + O

(
1√
ρ

)]
,

where ν p is the pth smallest positive zero of the Hermite function Hν

(
−σ/

√
2
)

.

Example 4 (Mode conversion factors) Figure 7 illustrates the asymptotic conversion
factors G p(σ ) for p = 1, 2, 3 and ρ = 100.

Proof Since g = M−11 e−ρ/2 = UT D1 e−ρ/2 = MT D21 e−ρ/2,

|g| =
√

1T DT U · UT D1 e−ρ/2 ≤ e−ρ/2
√

1T D21 = e−ρ/2

√√√√
∞∑

k=0

ρk

k! = 1.

For a single-mode ω = (
0, . . . , 0, ωp, 0, . . . 0

)T , by (9), the projection becomes

ωT UT D1 = ωpupT
q D1 = ωpG p.
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By the Christoffel–Darboux identity (14), tacitly understanding superscript p
on wq , νq+1, and �νq ,

wT
q D21

∣∣∣wT
q D

∣∣∣
=

∑q
k=0 sk (0) sk

(
νq+1

)

√∑q
k=0 sk

(
νq+1

)2
= 1

νq+1

√√√√−ρq+1

q!
cq

(
νq+1

)

c′
q+1

(
νq+1

) . (34)

By (21), cq
(
νq+1

)
/c′

q+1

(
νq+1

) = �νq
[
1 + O

(
1/

√
ρ
)]

, so by (29),

e−ρ/2 wT
q D21

∣∣∣wT
q D

∣∣∣
= 1

4
√

2π
exp

(
−σ 2

4

)
√

−�ν
p
q
√

ρ

ν
p
q+1

[
1 + O

(
1√
ρ

)]
.

Application of Theorems 4 and 5 completes the proof. �
We will now consider the reverse translation M from probability distribution π to

mode vector ωT = πT M.

Theorem 9 (Translation of probability distribution to eigenmodes) The probability
distribution π translates to the mode vector ω by ωT = πT M where the j th element
( j = 0, 1, . . . q) of the pth column mp of M is

m p
j =

√
q!

ρq+1

c j
(
νq+1

)

√
−cq

(
νq+1

)
c′

q+1

(
νq+1

) . (35)

Let z( j) � ( j − ρ)/
√

ρ, and let Eπ [·] denote the expectation with respect to π .
Then the pth component of ω is

ωp = e−ρ/2

G p(σ )

Eπ

[
Hν p

(
−z/

√
2
)]

∂ Hν p

(
−σ/

√
2
)

/∂ν p

[
1 + O

(
1√
ρ

)]
, (36)

where ν p is the pth smallest positive zero of the Hermite function Hν p

(
−σ/

√
2
)

. In

the special case where π contains only the fundamental mode, then

ω1 = e−ρ/2

G1(σ )

[
1 + O

(
1√
ρ

)]
. (37)

Proof The pth mode equals the projection of π on the pth column mp of M,
πT mp = πT wp/|Dwp|. The j th component of wp is c j

(
νq+1

)
, and if we tacitly

understand superscript p on wq and νq+1, again by the Christoffel–Darboux identity
(14), then

∣∣Dwq
∣∣ =

√
−ρq+1

q! cq
(
νq+1

)
c′

q+1

(
νq+1

)
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so the j th component m p
j of mp is (35). By (34) in the proof of Theorem 8,

m p
j = e−ρ/2

G p(σ )

c j
(
νq+1

)

c′
q+1

(
νq+1

)
[

1 + O

(
1√
ρ

)]
.

By Theorems 2 and 3, (36) follows. Equation (37) follows from (11) and (33). �

6 Time evolution of the mode vector

We are now ready to present the general exact and asymptotic solutions to the hitting-
time problem, formulated as a recursion and a differential equation, respectively.
In essence, this theorem carries out a temporal integration of the product (12), and
expresses it as a differential equation.

Theorem 10 (Time evolution of the mode vector) The change of the mode vector ω

over time intervals �tk where the boundary is constant, but ends with a unit step, can
be expressed as

ωT (t + �tk) = ωT (t)e−�tkμΛk UT
k Uk+1. (38)

The initial mode vector ωT (0) = πT M (0) is given by Theorem 9, the transient dis-
tribution πT (t) = ωT (t)M−1 (t), and thereby the projection to the survivor function
S(t) = πT (t)1 by Theorem 8, and the mode transition UT

k Uk+1 by Theorem 1.
For the asymptotic case, assume that σ(t) = limρ→∞ σ(ρ; t) is continuously

differentiable. In the limit as ρ approaches infinity, and the time intervals between
boundary changes �tk = O

(
1/

√
ρ
)

approach zero, (38) becomes the differential
equation

dωT

dt
= ωT

(
C

∣∣∣∣
dσ

dt

∣∣∣∣ − μΛ

)
, (39)

where Λ = diag
(
ν j
)

is the diagonal matrix of positive zeros in ν of the Hermite func-

tion Hν(σ/
√

2), and the skew-symmetric matrix C � limρ→∞
[√

ρ
(
UT

k Uk+1 − I
)]

is given by Theorem 6.

Proof Equation (38) is an immediate consequence of Eq. (12). For large ρ, the expo-
nential exp (−�tkμΛk) can be expanded into

e−�tkμΛk = I − �tkμΛk + O
(
�t2

k

)
.

Inserting this into (38), subtracting ωT on both sides and dividing by �t ,

ωT (t + �tk) − ωT (t)

�tk
= ωT

(
UT

k Uk+1 − I

�tk
− μΛkUT

k Uk+1

)

+ O(�tk).
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By Theorem 6, UT
k Uk+1 = I + C/

√
ρ + O (1/ρ). By (A3), |�σ | = 1/

√
ρ, so

ωT (t + �tk) − ωT (t)

�tk
= ωT

(
C

∣∣∣
∣
�σ

�tk

∣∣∣
∣ − μΛk

)
+ O(�tk).

In the limit, when ρ → ∞ and by (A2), �tk → 0, this converges to (39). �
If the system (39) is truncated to one dimension, it has the exact solution

ωT (T ) = ωT
0 exp

⎛

⎝−
T∫

0

μΛdt

⎞

⎠.

This solution does have a truncation error, but is a good approximation when the initial
distribution π(0) contains only the fundamental mode, and |dσ/dt | is small. We can
quantify the meaning of “small” by requiring that the term C |dσ/dt | in (39) does not
significantly affect the fundamental mode, or

∣∣∣∣ω
T c1 dσ

dt

∣∣∣∣ � ω1μν1,

where c1 is the first column of C. Given that the fundamental mode dominates, i.e.,
|ω1| � ∑

j �=1 |ω j |, the condition of a small disturbance can be formulated as

∣∣∣∣
dσ

dt

∣∣∣∣ � μν1

|c1|∞ � 2μ exp

(
− σ√

2

)
,

where we used Theorem 6 and some computation. The survivor function becomes

S(T ) ≈ G1(σT )

G1(σ0)
exp

⎛

⎝−
T∫

0

μν1dt

⎞

⎠ . (40)

The factor G1(σT )/G1(σ0) describes losses due to boundary changes, while the factor

exp
(
− ∫ T

0 μν1dt
)

describes the fundamental’s temporal decay. The first factor can

be comfortably computed by Theorem 8 and the second by Theorem 4.
By combining Theorems 6 and 7, we can handle σ which have discontinuities and

are only piecewise continuously differentiable.

7 Simulations

In order to illustrate and verify the theoretical results, we compare these with discrete-
event simulations. In all cases, the simulation uses ρ = 1600 and μ = 1. The exper-
imental survivor functions are computed by sorting the hitting times from 400 simu-
lation runs. We assume that the initial distribution is fundamental mode only.
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Fig. 8 Survivor function for the exponentially decreasing boundary qEXP in (1). The theoretical prediction
based on the fundamental mode only is shown as the thick, dashed line. The simulation result is shown as
the thin, solid line

7.1 Exponential change

We first consider a system with the exponentially decreasing boundary qEXP in (1).
Simulation results are compared to the theoretical survivor function in Fig. 8. The
service time is exponentially distributed. The theoretical survivor function S(t) is
computed by (40), i.e., by approximation with the fundamental mode only. The agree-
ment is good, since the boundary changes slowly.

7.2 Step change

The second simulation uses the boundary qSTEP in (26) from example 3. Figure 9
displays the result of a simulation as the thin, solid line, and the theoretical value based
on (40) as the dotted line. Here, there are some discrepancies due to the steepness of
the boundary change.

If we instead use the lowest two modes from the component-wise relations (27) in
example 3, then we have the survival probability

S(T ) ≈ ωT (0+) exp

⎛

⎝−
T∫

0

μΛdt

⎞

⎠
(

G1(σT )

G2(σT )

)
.

Here, the first factor is a vector ω holding the initial state of two modes after the
step; the diagonal matrix Λ is composed of the first and second eigenvalues λ1 and
λ2, respectively; and the third factor is a vector of two mode conversion factors. The
result is shown as the thick, dashed line in Fig. 9, demonstrating the accuracy.
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Fig. 9 Survivor function for the step boundary qSTEP in (26). The theoretical prediction based on the
fundamental mode only, and on the two lowest modes are shown by the dotted line and the dashed line,
respectively. The simulation result is shown as the thin, solid line

7.3 Rapid change

We finally consider a system with the rapidly decreasing boundary

qRAPID(t) � �ρ + (
3e−100t + 1

)√
ρ�. (41)

The qualitative behavior for this boundary in simulation is the same as for qSTEP in
(26). Truncating (39) to two modes and numerical integration produces the survivor
function as shown in Fig. 10.

7.4 Non-exponential service duration

When service durations are non-exponentially distributed, the number of busy
servers is not generally a Markov process, even for a constant boundary. Still, it is
well known that the probability distribution of the number of busy servers upon arrival
of a new customer depends only on the arrival rate and the mean service time, and is
otherwise independent of the distribution of the service duration when q is constant
[45].

Unfortunately, this does not hold for moving boundaries, since such a system is
non-stationary. However, similar to approximations of other queueing systems with
non-exponential service duration [46, Sect. 4.4], we have tested a variation of the
Lee-Longton approximation of an M/G/q system by an M/M/q system [28], by
mapping to an Erlang loss system having the same ρ, but modifying μ to retain the
second moment of the service time,

μ′ = μ

√
2

1 + C2
v

, (42)
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Fig. 10 Survivor function for the rapidly decreasing boundary qRAPID in (41). The theoretical prediction
based on (39) truncated to two modes is shown as the thick, dashed line. The simulation result is shown as
the thin, solid line

Fig. 11 The survivor function for non-exponential service distributions (thin, solid lines) may be approx-
imated by exponential service distributions with a modified μ (thick, dashed lines), provided that the
coefficient of variation is small. The boundary is qEXP in (1). From bottom to top survivor functions for
constant, uniform, exponential, and gamma service time distributions

where Cv is the coefficient of variation of the service time. Figure 11 shows simulation
results for qEXP above, with the following service time distributions, all with unit
mean: constant (C2

v = 0), uniform (C2
v = 1/3), exponential (C2

v = 1), and gamma
(�(1/2, 2); C2

v = 2). Simulations are shown as solid thin lines, while dashed thick lines
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represent theoretical values. The theoretical prediction uses the asymptotic formula
(39) truncated to the two lowest modes. Simulations indicate that the approximation
is useful for C2

v ≤ 2. For larger Cv , the behavior starts to depend substantially on the
third moment, as has been observed for M/G/q systems [41,46]. For hyperexponential
distributions H2(p, λ1, λ2) with C2

v ≤ 4, the systems still behave like M/M/qt/qt

systems, although the third moment influences the shape, and (42) no longer applies.

8 Conclusions

Given an M/M/qt/qt Erlang loss system with constant arrival intensity λ, constant
service rate μ, and a variable number of servers q = ρ + σ(t)

√
ρ, where ρ = λ/μ,

we derived the transient distribution of busy servers and the cumulative distribution of
the hitting time. By using spectral decomposition and special properties of orthogonal
polynomials, we found computationally efficient formulas valid for arbitrary t ≥ 0,
both for finite ρ and for the asymptotic case. If the offered load is large, e.g., ρ ≥
100, then the asymptotic formulas typically differ by a relative error O(1/

√
ρ) from

the exact values. For non-exponential service durations, we found the classical Lee-
Longton approximation [28] useful.

A well-established technique for solving queueing problems asymptotically is trans-
lation into stochastic differential equations [4,43], but these become difficult to solve
for general boundaries, which imply colored noise. Our results suggest that translation
in the reverse direction could instead be a fruitful approach for solving some difficult
stochastic differential equations involving moving boundaries and/or colored noise.

Acknowledgments This research was funded by the European Union FP7 research project THE, “The
Hand Embodied,” under Grant agreement 248587. The author thanks the anonymous reviewers for com-
ments, and Dr. Henrik Jörntell of Lund University, Department of Experimental Medical Science for support.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Abate, J., Whitt, W.: Calculating transient characteristics of the Erlang loss model by numerical trans-
form inversion. Stoch. Models 3, 663–680 (1998). doi:10.1080/15326349808807494

2. Alili, L., Patie, P., Pedersen, J.L.: Representations of the first hitting time density of an Ornstein–
Uhlenbeck process. Stoch. Models 21(4), 967–980 (2005). doi:10.1080/15326340500294702

3. Borovkov, A.A.: Stochastic Processes in Queueing Theory. Springer, Berlin (1976)
4. Borovkov, A.A.: Asymptotic Methods in Queueing Theory. Wiley, New York (1984)
5. Brockmeyer, E., Halstrøm, H.L., Jensen, A.: The life and works of A K Erlang: solution of some

problems in the theory of the probabilities of significance in automatic telephone exchanges. Trans.
Dan. Acad. Tech. Sci. 2, 138–155 (1948)

6. Buonocore, A., Nobile, A.G., Ricciardi, L.M.: A new integral equation for the evaluation of first-
passage-time probability densities. Adv. Appl. Prob. 19(4), 784–800 (1987). URL http://www.jstor.
org/stable/1427102

7. Charlier, C.V.L.: Über die Darstellung willkürlicher Funktionen. Ark. mat. astron. fys. 2 (1905).
8. Chihara, T.S.: An Introduction to Orthogonal Polynomials. No. 13 in Mathematics and its applications.

Gordon and Breach, New York (1978)

123

http://dx.doi.org/10.1080/15326349808807494
http://dx.doi.org/10.1080/15326340500294702
http://www.jstor.org/stable/1427102
http://www.jstor.org/stable/1427102


Queueing Syst (2014) 78:225–254 253

9. Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Methuen, London (1965)
10. Dominici, D.: Asymptotic analysis of the Askey scheme I: from Krawchouk to Charlier. Cent. Eur.

J. Math. 5(2), 280–304 (2007). doi:10.2478/s11533-006-0041-6
11. Dunster, T.M.: Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory. 112,

93–133 (2001). doi:10.1006/jath.2001.3595
12. Durbin, J.: The first-passage density of a continuous Gaussian process to a general boundary. J. Appl.

Prob. 22(1), 99–122 (1985). URL http://www.jstor.org/stable/3213751
13. Elbert, A., Muldoon, M.E.: Inequalities and monotonicity properties for zeros of Hermite functions.

Proc. R. Soc. Edinb., Sect. A 129, 57–75 (1999). doi:10.1017/S0308210500027463
14. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. McGraw-

Hill, New York (1953)
15. Feinsilver, P.J.: Special Functions, Probability Semigroups, and Hamiltonian Flows Lecture Notes in

Mathematics, vol. 696. Springer, Berlin (1978)
16. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1, 3rd edn. Wiley, New

York (1968)
17. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3),

567–588 (1981). URL http://www.jstor.org/stable/170115
18. Hänggi, P., Jung, P.: Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995).

doi:10.1002/9780470141489.ch4
19. Jagerman, D.: Some properties of the Erlang loss function. Bell Syst. Tech. J. 53(3), 525–551 (1974).

doi:10.1002/j.1538-7305.1974.tb02756.x
20. Karlin, S., McGregor, J.: The classification of birth and death processes. Trans. Am. Math. Soc. 86(2),

366–400 (1957). URL http://www.jstor.org/stable/1993021
21. Karlin, S., McGregor, J.: Many server queueing processes with Poisson input and exponential service

times. Pac. J. Math. 8(1), 87–118 (1958). URL http://projecteuclid.org/euclid.pjm/1103040247
22. Karlin, S., McGregor, J.L.: The differential equations of birth-and-death processes, and the Stieltjes

moment problem. Trans. Am. Math. Soc. 85(2), pp. 489–546 (1957). URL http://www.jstor.org/stable/
1992942

23. Kijima, M.: On the largest negative eigenvalue of the infinitesimal generator associated with M/M/n/n
queues. Oper. Res. Lett. 9, 59–64 (1990). doi:10.1016/0167-6377(90)90041-3

24. Knessl, C.: On the transient behavior of the M/M/m/m loss model. Stoch. Models 6(4), 749–776 (1990).
doi:10.1080/15326349908807172

25. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-
Analogues. Springer, Berlin (2010)

26. Lebedev, N.: Special Functions and their Applications. Dover Publications, New York (1972)
27. Ledermann, W., Reuter, G.E.H.: Spectral theory for the differential equations of simple birth and death

processes. Philos. Trans. R. Soc. London 246(914), pp. 321–369 (1954). URL http://www.jstor.org/
stable/91569

28. Lee, A.M., Longton, P.A.: Queueing processes associated with airline passenger check-in. Oper. Res.
Q. 10(1), 56–71 (1959). URL http://www.jstor.org/stable/3007312

29. Maejima, M., van Assche, W.: Probabilistic proofs of asymptotic formulas for some classical polyno-
mials. Math. Proc. Camb. Philos. Soc. 97, 499–510 (1985). doi:10.1017/S0305004100063088

30. Mandjes, M., Ridder, A.: A large deviations approach to the transient of the Erlang loss model. Perform.
Eval. 43, 181–198 (2001). doi:10.1016/S0166-5316(00)00050-X

31. Meixner, J.: Erzeugende Funktionen der Charlierschen Polynome. Math. Z. 44(1), 531–535 (1939).
doi:10.1007/BF01210670

32. Mitra, D., Weiss, A.: The transient behavior in Erlang’s model for large trunk groups and various traffic
conditions. In: Bonatti, M. (ed.) Teletraffic Science for New Cost-Effective Systems, Networks, and
Services, ITC-12, pp. 1367–1374. Elsevier-Science, Amsterdam (1988)

33. Nilsson, M.: On the transition of Charlier polynomials to the Hermite function. arXiv:1202.2557
[math.CA] (2013). URL http://arxiv.org/abs/1202.2557

34. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Func-
tions. Cambridge University Press, Cambridge (2010). URL http://dlmf.nist.gov

35. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)
36. Ricciardi, L.M., Sato, S.: First-passage-time density and moments of the Ornstein-Uhlenbeck process.

J. Appl. Prob. 25(1), 43–57 (1988).URL http://www.jstor.org/stable/3214232

123

http://dx.doi.org/10.2478/s11533-006-0041-6
http://dx.doi.org/10.1006/jath.2001.3595
http://www.jstor.org/stable/3213751
http://dx.doi.org/10.1017/S0308210500027463
http://www.jstor.org/stable/170115
http://dx.doi.org/10.1002/9780470141489.ch4
http://dx.doi.org/10.1002/j.1538-7305.1974.tb02756.x
http://www.jstor.org/stable/1993021
http://projecteuclid.org/euclid.pjm/1103040247
http://www.jstor.org/stable/1992942
http://www.jstor.org/stable/1992942
http://dx.doi.org/10.1016/0167-6377(90)90041-3
http://dx.doi.org/10.1080/15326349908807172
http://www.jstor.org/stable/91569
http://www.jstor.org/stable/91569
http://www.jstor.org/stable/3007312
http://dx.doi.org/10.1017/S0305004100063088
http://dx.doi.org/10.1016/S0166-5316(00)00050-X
http://dx.doi.org/10.1007/BF01210670
http://arxiv.org/abs/arXiv:1202.2557
http://arxiv.org/abs/1202.2557
http://dlmf.nist.gov
http://www.jstor.org/stable/3214232


254 Queueing Syst (2014) 78:225–254

37. Riordan, J.: Stochastic Service Systems. The SIAM Series in Applied Mathematics. SIAM, New York
(1962)

38. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications, 2nd edn. Springer,
Berlin (1989)

39. Ronveaux, A., Zarzo, A., Area, I., Godoy, E.: Transverse limits in the Askey tableau. J. Comput. Appl.
Math. 99, 327–335 (1998). doi:10.1016/S0377-0427(98)00167-8

40. Ross, S.M., Seshadri, S.: Hitting time in an Erlang loss system. Prob. Eng. Inf. Sci. 16, 167–184 (2002).
doi:10.1017/S0269964802162036

41. Shin, Y.W., Moon, D.H.: Sensitivity and approximation of M/G/c queue: numerical experiments. In:
Proceedings of the 8th International Symposium Operations Research and its Application (ISORA’09),
pp. 140–147. Zhangjiajie, China (2009).

42. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis: Queues, Communications, and
Computing. Chapman & Hall, New York (1994)

43. Srikant, R., Whitt, W.: Simulation runlengths to estimate blocking probabilities. ASCM Trans. Comput.
Simul. 6, 7–52 (1996). doi:10.1145/229493.229496
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