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Abstract We introduce a novel class of tandem queueing networks which arise in
modeling the congestion behavior of wireless multi-hop networks with distributed
medium access control. These models provide valuable insight in how the network
performance in terms of throughput depends on the back-off mechanism that governs
the competition among neighboring nodes for access to the medium. The models
fall at the interface between classical queueing networks and interacting particle sys-
tems, and give rise to high-dimensional stochastic processes that challenge existing
methodologies. We present various open problems and conjectures, which are sup-
ported by partial results for special cases and limit regimes as well as simulation
experiments.

Keywords Wireless networks - Tandem queues - Neighbor blocking - Interacting
particle systems - Stability - Fluid limit - High-dimensional stochastic processes

Mathematics Subject Classification (2000) 60K25 - 60J27 - 82C22

T. Hellings - S.C. Borst (<) - J.S.H. van Leeuwaarden

Department of Mathematics and Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

e-mail: s.c.borst@tue.nl

T. Hellings
e-mail: tonhellings @ gmail.com

J.S.H. van Leeuwaarden
e-mail: j.s.h.v]leeuwaarden @tue.nl

S.C. Borst
Alcatel-Lucent Bell Labs, Murray Hill, USA

J.S.H. van Leeuwaarden
EURANDOM, Eindhoven, The Netherlands

@ Springer


mailto:s.c.borst@tue.nl
mailto:tonhellings@gmail.com
mailto:j.s.h.v.leeuwaarden@tue.nl

322 Queueing Syst (2011) 68:321-331

1 Introduction

Motivated by wireless networks with distributed medium access control, we introduce
a novel class of models at the interface between classical queueing networks and
interacting particle systems. Specifically, we focus on tandem networks in which data
packets are transferred from a source to a receiver via several relay nodes. The feature
that distinguishes these networks from their traditional counterparts is that an active
node that is transmitting a packet, ‘blocks’ its neighbors and prevents them from
being active. Upon completion of the transmission, a node is forced into back-off,
during which it is not allowed to become active, thus granting its neighbors a chance
to transmit.

The above-described tandem networks with neighbor blocking and back-offs arise
as models for wireless networks with distributed medium access control, particularly
the so-called Carrier-Sense Multiple-Access Collision Avoidance (CSMA/CA) pro-
tocol. In CSMA/CA, each node attempts to access the medium, but nodes that sense
the medium busy postpone their attempt until the medium is sensed idle.

Although widely deployed in practice, the CSMA/CA protocol is prone to severe
performance problems in multi-hop networks [1, 12, 14]. In particular, nodes in the
‘middle’ of a network tend to experience more interference than nodes on the ‘edge’
of the network and, therefore, are at a disadvantage in competing for medium access.
This issue, known as the node-in-the-middle problem, can cause extreme unfairness
and starvation effects, manifesting themselves in poor throughput and severe conges-
tion. In order to remedy this issue and ensure a smoother flow of packets in multi-hop
networks, various forms of flow control have been proposed; see [15] for an overview.

The models in the present paper pertain to a scheme referred to as extra back-off
flow control. In this scheme, a node remains silent for a certain extra back-off time
(imposed on top of the usual back-off time that is part of the CSMA/CA protocol)
after it has transmitted a packet, so as to give both the downstream and upstream
neighbors the opportunity to transmit.

We assume the source node to be saturated, but explicitly account for the queue-
ing dynamics at the other nodes, which is especially crucial since these act as relays
in transferring the flow of packets. Unfortunately, however, the queueing dynam-
ics severely complicate the mathematical analysis, and give rise to high-dimensional
stochastic processes with infinite state spaces, which generally do not admit closed-
form expressions for the stationary distribution or yield to standard numerical tech-
niques or brute-force simulation, even under Markovian assumptions. In view of the
complexity, we focus on a regime where the ordinary back-off periods are asymptot-
ically small. We refer to [4, 11, 13, 21, 25, 27] which consider CSMA/CA networks
with standard back-offs only where all nodes are assumed to be saturated. Stability
issues in non-saturated networks with standard back-offs and single-hop traffic are
pursued in [26].

The feature of neighbor blocking is reminiscent of asymmetric simple exclu-
sion processes (ASEP) from statistical mechanics; see, for instance, [17]. On a one-
dimensional lattice, particles hop to their right, at exponential times, provided that the
target site is empty. The term exclusion refers to the fact that transitions are only al-
lowed to empty sites and all other transitions are suppressed. ASEP is a popular model
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for a driven lattice gas of hard-core particles with nearest-neighbor interaction. There
are crucial differences between our model and ASEP, though. The nearest-neighbor
interaction in ASEP is biased and limited in range: a particle is only blocked by a
particle to its immediate right. Our model has a two-sided nearest-neighbor interac-
tion, so that particles can be blocked by particles at either side, and the interaction
can extend across several neighboring nodes.

A further key difference is that in ASEP each site can be occupied by at most one
particle, whereas in our model the nodes are endowed with buffers to store any num-
ber of packets. Due to the possible accumulation of packets, the queueing dynamics
strongly impact the flow of traffic through the network. If all nodes were assumed to
be saturated, and thus have always packets to transmit, then the queueing dynamics
would not play a role. In fact, under these assumptions connections between queueing
networks and interacting particle systems, including ASEP, were exploited in [24] to
investigate certain time-dependent characteristics of large Jackson tandem networks
(infinite series of exponential queues). Tandem queues with interaction have also been
studied in the context of manufacturing flow line systems [5, 10], in which blocking
occurs at times when the (finite-size) buffers of neighboring downstream nodes be-
come full. Blocking through buffers in linear wireless networks has been investigated
in [16, 20].

The remainder of the paper is organized as follows. In Sect. 2 we present a detailed
model description. In Sect. 3 we discuss the main conjecture, and provide support in
the form of partial results for special cases and limiting regimes as well as simulation
experiments. A brief outlook is given in Sect. 4.

2 Model description

We now present a more specific model description. Consider a tandem network of
N nodes, in which packets are transferred from the source node 1 to some receiver,
via relay nodes 2, ..., N. Assume that the source node 1 is saturated, i.e., always has
packets pending for transmission. The relay nodes 2, ..., N are each endowed with a
buffer of infinite size. All transmission times are independent and exponentially dis-
tributed with unit mean. When transmitting, a node always ‘blocks’ its k neighboring
nodes on either side, so that two nodes i and j can only be active simultaneously if
|i — j| > k. The value of k is referred to as the interference range. Upon completion
of a transmission, a node is forced into back-off, during which time it is not allowed
to be active. All back-off periods are independent and exponentially distributed with
mean 7 > 0. When a node completes a transmission and starts a back-off period, sev-
eral neighbors may become unblocked simultaneously. Any race conditions that arise
in such situations are resolved uniformly at random.

Note that the present model differs from that in [12, 13, 25, 27], in that nodes only
enter back-off once after each transmission, and do not re-enter the back-off mode
when they find themselves blocked at the end of a back-off period. Alternatively,
the back-offs in the present model may be interpreted as ‘extra’ back-offs, with the
duration of the ‘regular’ back-offs vanishing to zero.

The above-described mechanism will be referred to as the ‘basic’ back-off scheme.
We will also consider a slightly modified version, called the ‘truncated’ back-off
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scheme, where a node immediately comes out of back-off when it receives a packet
from its upstream neighbor.

For either back-off scheme, the state of the tandem network evolves as a Markov
process (X2(t),..., Xn(@®); Y1(t),..., YN(2¥)), with X;(¢) denoting the number of
packets at node i at time ¢ (including the packet being transmitted, if any) and
Yi(t) € {0, 1, b} indicating whether node i is inactive, transmitting, or in back-off,
respectively. The transitions slightly depend on the version of the back-off scheme
that is used, with nodes in back-off mode possibly moving instantly to an active state
upon receipt of a packet in the truncated scheme. Note that the state space of the
Markov process is infinite in N — 1 dimensions, and hence the stationary distribution
is difficult to determine, except in the (uninteresting) special case of N = 2. In fact,
even deriving stability conditions and throughput values turns out to be a formidable
task. For the case of N =3 and k = 1, we obtained in [15] exact and approximative
results for the stationary distribution and the throughput using the theory of quasi
birth—death processes. However, this approach does not extend to larger networks.
Also, the results in [26] demonstrate that even with standard back-offs and single-
hop traffic, an explicit characterization of the stability conditions is hard in general,
expect in the special case of a complete interference graph.

3 Stability and throughput

In order to state the main conjecture, let 6; () be the long-term throughput of node i
as function of the back-off parameter 5, i.e., the long-term average number of packets
transmitted by node i per time unit, or equivalently, the long-term fraction of time that
node i is transmitting (assuming it exists). Note that by definition,

01(n) = 602(n) = --- = On (1),

since the throughput of a node can never exceed that of its upstream neighbor. Also,
let X l.(m)(t) be the number of packets at time ¢ at node i, in a modified version of the
network where the first m nodes are saturated, while the remaining N — m nodes
receive packets from their upstream neighbors. Let Qi(m)(n) be the corresponding

throughput of node i. Note that X i(l) (t) and Gi(l) (n) correspond to the original system
with only the source node 1 saturated. Define

1:=min{m: 6™ (7)) = 67", ()}
It is easily verified that / is well defined, since
Oyt ) =0y " ().
Indeed, suppose the latter is not the case, i.e.,

o Va6V,
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then node N must be saturated in addition to nodes 1, ..., N — 1. This results in a
completely symmetric system, and leads to

(N=1) _ _ p(N=1)
0, =.=0y 7,
which is a contradiction with the supposition that
N—1 N—1
Oy () > 63" ().

Conjecture 1 Consider the tandem network with the basic back-off scheme, inter-
ference range k > 1, and N > 2k + 1 nodes. Then for any back-off parameter n > 0,

1 61(n) > 62(n) > --- > 6;(n), 6i(n) = Qi(l)(n), i=1,...,1, and the process
(Xo(1), ..., X;(2)) is transient, with

(X2(0), ..., Xi(1))
t

— (Ap,...,A)) ast— o0,

where A; := 91.(17)1(77) - 9i(l)(77) >0.
(i) The process (X;4+1(t), ..., Xn(t)) is positive-recurrent, which entails 6;(n) =

Orp1(n) =+ - =0On (1)
(iii) The bottleneck node l is given by [ =k + 1.

Conjecture 1 thus states that node k£ + 1 is the bottleneck in the tandem network,
in that the throughput values strictly decrease moving downstream up to node k + 1,
implying that nodes 2, ...,k + 1 are all ‘unstable’, while nodes k + 2,..., N are
‘stable’, all having the same throughput as node k + 1. The intuition is that node i + 1
is worse off than node i forany i =1, ..., k, since it has one more upstream neighbor
to compete with, while by the same token node i + 1 cannot be strictly worse off than
nodei fori=k+1,...,N —1.

A quite powerful method for establishing (in)stability properties as in Conjec-
ture 1 is provided by the so-called fluid-limit approach [6-9, 22, 23]. The fluid-limit
approach has been successfully applied to derive stability conditions for a wide range
of multi-class queueing networks.

In the present situation, the fluid-limit approach would involve deriving a set of lin-
ear differential equations x; () = 6;_1(n; I (x(1))) — 0;(n; I (x(¢))), and establishing
that x(“)(t)/t tends to the vector (Aj, ..., Agy1) as t — oo, while x@ (t) reaches 0
in finite time for any initial state x(0) € R¥~! with ||x(0)| = 1. Here,

x(t) = ("), xDw),
X)) = (), .1 (1),
XD () = (xig2(®), ..., xn (D)),

1(x) = {i: x; =0},

and6;(n; 1), I C{2,..., N}, represents the throughput of node j in a scenario where
the nodes i ¢ I are saturated and always compete for access to the medium, while the
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Fig. 1 6;(n) and 6, (n) = 63(n) 0
for k =1, N = 3 and the basic
back-off scheme

0.5 1.0 1.5 2.0 2.5 3.0

nodes i € I receive the packets that have been transmitted by their upstream neigh-
bors and only contend for the medium when they have packets pending for transmis-
sion, with 0 (n; {m +1,...,N}) = 9](.m)(r;) as defined earlier. Note that the process
x(t) follows simple piecewise linear trajectories. The difficulty, though, stems from
the fact that the coefficients 0;(n; I) that govern the evolution of the process x(z)
involve the stationary distribution of a Markov process with an infinite state space
in |I| dimensions. In effect, deriving the stability properties and throughput values is
therefore potentially as hard as determining the entire stationary distribution of the
stochastic process involved.

The latter is only feasible in special cases. For example, in case k =1 and N =3,
it may be shown that 61(n; I) > 62(n; I) for any I C {2,3}. Thus, the process
(x2(t), x3(¢)) cannot spend any amount of time in a region with x>(¢) = 0. Also,
02(n; ¥) < 63(n; ¥), so x3(¢) must hit 0 eventually. From that point onward, x3(¢)
will remain 0 while x(¢) will grow at rate 01 (n; {3}) — 62(n; {3}) > 0. This means
that node 2 is unstable while node 3 is stable. Note that inequalities for the coefficients
0;(n; I) suffice for establishing the (in)stability properties. In order to obtain the ex-
act throughput values 6 () = 61 (n; {3}) and 62(n7) = 63 (n) = 62(n; {3}) = 63(n; {3}),
however, we need to find the stationary distribution of a modified system where
nodes 1 and 2 are saturated while node 3 receives packets that have been transmitted
by node 2. Now observe that the number of packets X3(¢) at node 3 then evolves
as a quasi-birth—death process. The stationary distribution of X3(#) may then be nu-
merically obtained using the matrix-analytic method, along with the exact values of
01(n; {3}) and 62(n; {3}) = 63(n; {3}).

Figure 1 shows the throughputs of nodes 1 and 2 calculated from the numeri-
cal solution to a quasi-birth—death process in [15]. For small back-off parameters,
nodes 2 and 3 benefit, while larger back-offs eventually lead to lower throughputs for
all three nodes. Although the throughput values converge to each other rapidly—in
fact 61(n) — 6(n) = 0(71_3), see [15]—they will never be exactly equal, and hence
the tandem network will never be stable.

As Conjecture 1 reflects, determining the throughput values is a challenging prob-
lem in general. We therefore now proceed to state a few partial results for limit
regimes with very small and very large back-off periods, respectively.
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Recall that Conjecture 1 suggests that the basic back-off scheme fails to stabilize
the network for any back-off parameter 1. The next proposition confirms this for a
network with nearest-neighbor blocking (k = 1) and n sufficiently small, and states
that the same holds for the truncated back-off scheme.

Proposition 2 Consider the tandem network with either the basic or the trun-
cated back-off scheme, interference range k = 1, and N > 3 nodes. Denote Oi* =
lim,06;i(n),i=1,...,N.Then

2 1
9*:—’ 0*:--~:9*:—7
1=3 2 NT3
regardless of whether the basic back-off scheme or the truncated back-off scheme is
used.

Proof In the limit as 1 |, 0, the system behaves as a system without any extra back-
offs, except that a node that has just completed a transmission refrains from compet-
ing for the medium in case there are any other contenders.

We first prove that 6 = 2/3, 67 = 03 = 1/3. We distinguish two cases: (i)
67 > 05; and (ii) 65 = 65 In case (i) node 3 is unstable, and hence if N = 3, node 2
will always lose out to nodes 1 and 3 in the competition for the medium, i.e., 65 =0,
yielding a contradiction. If N > 3, node 2 can only grab the channel when node 1
finishes a transmission while node 4 is blocking node 3, so that 6 < 6, which yields
a contradiction with the assumption that 65 > 63 and the fact that 6; < 65 by def-
inition. In case (ii), note that each transmission of node 2 will be followed back-
to-back by a transmission of node 1. Also, transmissions of node 1 will end/begin
as a Poisson process of rate 1 during periods that node 3 is transmitting. Hence,
0F =65 + 9;‘ = 26, implying that node 2 is unstable, and that all transmissions of
node 1 are of the two types described above, so 6; = 2605 The fact that node 1 is
saturated implies ;" 4 6] = 1, and it follows that 8] =2/3, 6] = 9; =1/3.

We now proceed to show that 6} = --- =65 = 1/3. Suppose not, then there exists
a node i with 67 <60* ; =1/3, for some i =4,..., N. Since node i is unstable,
Gi* + o; = 1, with o; denoting the fraction of time that either node i — 1 or node
i +1is active. Because 0; <67 | +67 |, wehave 6 | +607+6* | > 1, while 1/3 =

i+1° i+1

0F | =67 > Gi*H, which means 6 | =6 =67 "1 = 1/3, yielding a contradiction. [

The next proposition states that the truncated back-off scheme achieves stability
for sufficiently large back-off parameter .

Proposition 3 Consider the tandem network with the truncated back-off scheme,
interference range k = 1, and N > 3 nodes. There exists a critical value n* such that
forall n > n*,

01(n) =0(n) =---=06On(m).

Proof Suppose there exists a node i with 6; < 6;_; =6; < 1/(1 4 7). Since node i is
unstable, 6; + 7; + o; = 1, with 7; denoting the fraction of time that node i spends in
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back-off and o; the fraction of additional time that either node i — 1 or node i + 1 is
active. Because o0; < 6;_1 + 6,41, and t; = 6; E[V;], with V; representing the effective
back-off time of node i, we have 6;_; + 6; (1 + E[V;]) +6;4+1 > 1, while 1 /(1 4+ 1) >
0;i—1 > 6; > 0;11, yielding 3 + E[V;] > 1 + n. Now observe that V; = min{B;, U;},
with B; denoting the nominal back-off duration of node i U; the amount of time
until node i receives a packet after entering a back-off period. If node j < i is the
right-most upstream node of node i that is active when node i enters the back-off
period, then U; is stochastically dominated by Z;l_:lj Zy, with Zj, i.i.d. copies of
an exponentially distributed random variable with unit mean. Indeed, if nodes j +
1,...,i — 1 are inactive at that moment, they either have no packets or are in back-
off. In the worst case each of nodes j + 1,...,i — 1 have to wait for their left-hand
neighbor to finish its transmission before starting their first transmission. If none of
the upstream nodes of node i is active when node i enters the back-off period, then
node 1 must be in back-off and U; is stochastically dominated by ¥; = B —{—Z’h_:ll Zy.
It follows that E[V;] < E[min{B;, Y;}] < n/2 +i — 1. Substitution yields /2 +i +
2>1+4n,ie,n<2@G+1).

This way an upper bound to n* is found to be 2(N + 1). U

It may be shown that the statement of Proposition 3 extends to back-offs of the
form n B, with E[B] = 1, for any strictly random (non-deterministic) variable B. For
purely deterministic back-offs, the statement does not hold.

The next proposition, which is taken from [15], provides exact expressions for the
critical value n* and the throughput 6(n), n > n*, for a 3-node network with nearest-
neighbor blocking (k = 1).

Proposition 4 Consider the tandem network with a truncated back-off scheme, in-
terference range k = 1, and N = 3 nodes. Define n* := /5 — 1. If n < n*, then the
throughput values are given by

8 +4n +n*
01(n) = — )
124+ 14n+5n“+1n
4+ 61 + 21>
62() = 63(1) = ] @

124+ 14n4+502 4+ 13

If n > n*, then 01 (n) = 62(n) = 03(n) and

01(n) = ————.
1+7)+m

The proof of Proposition 4 relies on the fact that for 7 < +/5 — 1, we have 6; () >
02(n) = 63(n), and hence nodes 1 and 2 are saturated, while node 3 can have at most
one packet. Hence, the network can be modeled as a Markov process with a finite state
space which has a closed-form solution for the stationary distribution. This solution
yields (1) and (2). Observe that 61(n) — 2/3 and 6>(n) — 1/3 as n | 0, confirming
Proposition 2.
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Fig.2 6;(n) and 6, (n) = 63(n) 0
for k=1, N =3 and the
truncated back-off scheme

Table 1 Critical values for the
truncated back-off scheme and
interference range k = 1

n* 124 126 128 128 128 128 128 1.28

For n > +/5 — 1, only the number of packets at node 2 gives rise to an infinite
state space and, therefore, the network can again be modeled as a quasi-birth—death
process. The resulting throughput values are plotted in Fig. 2.

For the 4-node network, numerical results can be derived and for networks with
5 nodes or more, results are presented based on extensive simulation experiments.
The results suggest that the critical value n* only marginally depends on N. For 5 <
N < 10, simulation experiments showed the existence of critical values n* beyond
which the system remains stable for all values of N. The critical values are shown in
Table 1. These values seem to settle around n* ~ 1.28, suggesting that nodes 5, 6, ...
have little impact on the dynamics of the network.

4 Outlook

We have introduced a novel class of tandem networks at the interface between clas-
sical queueing networks and interacting particle systems. The models involved give
rise to rather intricate stochastic processes, and pose severe challenges to existing
methodological frameworks.

We have formulated Conjecture 1 relating to stability properties and throughputs
values of the various nodes. A possible fluid-limit approach was sketched, where the
set of differential equations contains coefficients that involve the stationary distribu-
tion of Markov processes with high-dimensional infinite state spaces. Fortunately, for
establishing stability properties, it is only required to prove suitable inequalities for
these coefficients, for which elementary arguments suffice in some cases. However,
calculating the exact throughput values appears to be essentially as hard as determin-
ing the entire stationary distribution of the original stochastic process.

The direct use of Lyapounov techniques [18, 19] for the original process pro-
vides an alternative approach for establishing stability properties and possibly deriv-
ing throughput bounds. As a further option, it seems worth exploring whether similar
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proof concepts may be exploited as developed in the framework of monotone separa-
ble networks [2, 3].

The conjectures and numerical results suggest that the throughput values in a net-
work with N = 2k + 1 nodes yield remarkably accurate estimates for those in larger
networks. It would be interesting to develop further theoretical support for that ob-
servation. By the same token, networks with an extremely large number of nodes
will typically provide accurate throughput estimates for networks with a moderate
number of nodes. This creates promising scope for spatial asymptotics, for instance,
considering networks where the number of nodes grows infinitely large, and using
Markov random-field methods.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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