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Abstract In this paper, we study the transient behavior of a level dependent single
server queuing system with a waiting room of finite size during the busy period. The
focus is on the level dependent PH/PH/1/K queue. We derive in closed form the joint
transform of the length of the busy period, the number of customers served during
the busy period, and the number of losses during the busy period. We differentiate
between two types of losses: the overflow losses that are due to a full queue and the
losses due to an admission controller. For the M/PH/1/K, M/PH/1/K under a thresh-
old policy, and PH/M/1/K queues, we determine simple expressions for their joint
transforms.

Keywords PH/PH/1/K queue · Phase-type distributions · Level dependent queues ·
Busy period · Transient analysis · Absorbing Markov chains · Matrix analytical
approach
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1 Introduction

In practice, it is often the case that arrivals and their service times depend on the
system state. For example, in roadway traffic networks it is well known that the ve-
hicle service time deteriorates as a function of the occupancy on the roadway [7].
In human-based service systems, there is a strong correlation between the volume of
work demanded from a human and her/his productivity. At the packet switch (router)
in telecommunication systems, when the buffer size increases, a controller drops the
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arriving packets with an increasing probability. Moreover, the transient performance
measures of a system are important for understanding the system evolution. All these
facts motivate us to study the transient measures of a state dependent queuing system.

The transient regime of queuing systems is much more difficult to analyze than the
steady state regime. This explains the scarcity of transient research results in this field
compared to the steady state regime. A good exception is the M/M/1 queue, which
has been well studied in both transient and steady state regimes. This paper is devoted
to the study of the more general case of the transient behavior of the level dependent
PH/PH/1/K queue, i.e., the level dependent PH/PH/1 queue with finite waiting room
of size K − 1. In particular, we shall analyze the measures related to the busy period.

Takács in [15, Chap. 1] was among the first to derive the transient probabilities of
the M/M/1/K queue, referred to as Pij (t). Basically, these are the probabilities that at
time t the queue length is j given it was i at time zero. Building on these probabili-
ties, Takács also determined the transient probabilities of the M/M/1 queue by taking
the limit of Pij (t) for K → ∞. For the M/G/1/K queue, Cohen [6, Chap. III.6] com-
puted the Laplace transform of Pij (t) and the bivariate transform of the number of
customers served and the number of losses due to overflow during the busy period.
This is done using complex analysis. Specifically, the joint transform is presented as
a fraction of two contour integrals that involve K and the Laplace-Stieltjes transform
(LST) of the customers’ service time. Rosenlund in [13] extended Cohen’s result
by deriving the joint transform of the busy period length, the number of customers
served, and the number of losses during the busy period. In a similar way to [13],
Rosenlund in [14] analyzed the G/M/1/K queue and gave the trivariate transform. The
approach of Rosenlund is more probabilistic than Cohen’s analysis. However, Rosen-
lund’s final results for the trivariate transform for M/G/1/K and G/M/1/K queues are
represented as a fraction of two contour integrals. For more recent works on the busy
period analysis of the M/G/1/K queue we refer to [8, 16]. Recently, there has been
an increased interest in the expected number of losses during the busy period in the
M/G/1/K queue with equal arrival and service rate; see, e.g., [1, 12, 17]. In this case,
the interesting phenomenon is that the expected number of losses during the busy
period in the M/G/1/K queue equals one for all values of K ≥ 1.

In this paper we shall assume that the distribution of the interarrival times and ser-
vice times is phase-type. For this reason, the embedding of the queue length process
at the instants of departures or arrivals becomes unnecessary in order to analyze its
steady state distribution. We emphasize that this is a key difference between our ap-
proach and those used in [6, 13, 14]. For an algorithmic method of the LST of the
busy period in the PH/PH/1 queue see, e.g., [10, 11]. Bertsimas et al. in [4] derived
in closed form the LST of the busy period in the PH/PH/1 queue as a function of the
roots of a specific function that involves the LST of the interarrival and service times.

In [2] we extended the results of Rosenlund in [13] for the M/M/1/K queue in
several ways. First, we studied a level dependent M/M/1/K queue with admission
control. Secondly, we considered the residual busy period that is initiated with n ≥ 1
customers. Moreover, we derived the distribution of the maximum number of cus-
tomers during the busy period and other related performance measures. In this paper
we shall extend these results by considering the level dependent PH/PH/1/K queue. In
a similar way to [2], this shall be done using the theory of absorbing Markov chains.
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The key point is to model the event that the system becomes empty as absorbing.
Contrary to the analysis in [2], the derivation of the joint transform does not use the
explicit inverse of some Toeplitz matrices; here we shall proceed with a different
approach that is based on the analyticity of probability generating functions.

The paper is organized as follows. In Sect. 1.1 we give a detailed description of the
model and the assumptions made. Section 2 reports our results presented in a number
of different theorems, propositions, and corollaries. More precisely, Theorem 1 gives
our main result for the four-variate transform as a function of the inverse of a specific
matrix. Proposition 1 presents a numerical recursion to invert this matrix. In Proposi-
tions 2, 3, and 4 we derive the closed-form expressions for the four-variate transform
for the M/PH/1/K, the level dependent M/PH/1/K, and the PH/M/1/K queues.

1.1 Model

We consider a level dependent PH/PH/1/K queuing system, i.e., a level dependent
PH/PH/1 queue with finite waiting room of size K −1 customers. The arrival process
is a renewal process with phase-type interarrival times distribution and with Laplace-
Stieltjes transform (LST) φi(w), Re(w) ≥ 0, in the case where the queue length is
i ∈ {0,1, . . . ,K}. The service times distribution is phase-type with LST ξi(w), in
the case where the queue length is i ∈ {0,1, . . . ,K}. A phase-type distribution can
be represented by an initial distribution vector α, a transient generator T, and an
absorption rate vector T o, i.e., T−1T o = −eT , where eT is a column vector with all
entries equal to one. For more details we refer, for example, to [10, p. 44]. Then, it is
well known that the LST of the interarrival times can be written as follows:

φi(w) = fi(wI − Fi )
−1Fo

i , Re(w) ≥ 0, (1)

where the initial probability distribution fi is a row vector of dimension Ma , the
transient generator Fi is an Ma-by-Ma matrix, and the absorption rate vector Fo

i is a
column vector of dimension Ma . Similarly, the LST of the service times reads

ξi(w) = si(wI − Si )
−1So

i , Re(w) ≥ 0, (2)

where si is a row vector of dimension Ms , Si is an Ms -by-Ms matrix, and So
i is a

column vector of dimension Ms .
We assume that an admission controller is installed at the entry of the queue that

has the duty of dropping the arriving customers with probability pi when the queue
length is i ∈ {0,1, . . . ,K}. In other words, the customers are admitted in the queue
with probability qi = 1 − pi when its queue length is i. The arrivals at the queue of
size K are all lost. In the sequel, we shall refer to the latter type of losses as overflow
losses. It should be clear that in this case pK = 1 and qK = 0.

We are interested in the queue behavior during the busy period, which is defined
as the time interval that starts with an arrival that joins an empty queue and ends at
the first time at which the queue becomes empty again. We note that an arrival at an
empty queue is admitted in the system with probability q0, 0 < q0 ≤ 1. Similarly, we
define the residual busy period as the busy period initiated with n ≥ 1 customers. Note
that for n = 1 the residual busy period and the busy period are equal. In the following,
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we shall assume that, unless otherwise stated, at the beginning of the residual busy
period the distribution vector of the phases of the interarrival times and service times
are distributed according to fn and sn.

Consider an arbitrary residual busy period. Let Bn denote its length. Let Sn denote
the total number of served customers during Bn. Let Ln denote the total number
of losses, i.e., arrivals that are not admitted to the queue either due to the admission
control or to the full queue, during Bn. We shall differentiate between the two types of
losses. Let Lc

n denote the total number of losses that are not admitted to the queue due
to the admission control, during Bn. Let Lo

n denote the total number of the overflow
losses that are not admitted to the queue because it is full, i.e., due to pK = 1, during

Bn. In this paper we determine the joint transform E[e−wBnz
Sn

1 z
Lc

n

2 z
Lo

n

3 ], Re(w) ≥ 0,
|z1| ≤ 1, |z2| ≤ 1, and |z3| ≤ 1. We will use the theory of absorbing Markov chains.
This is done by modeling the event that “the queue jumps to the empty state” as
an absorbing event. Tracking the number of customers served and losses before the
absorption occurs gives the desired result.

A word on the notation: throughout x := y will designate that by definition x

is equal to y, 1{E} is the indicator function of any event E (1{E} is equal to one if
E occurs and zero otherwise), xT is the transpose vector of x, ei is the unit row
vector of appropriate dimension with all entries equal to zero except the i-th entry
which is one, and I is the identity matrix of appropriate dimension. We use ⊗ as the
Kronecker product operator defined as follows. Let X and Y be two matrices and
x(i, j) and y(i, j) denote the (i, j)-entries of X and Y respectively. Then X ⊗ Y is
a block matrix where the (i, j)-block is equal to x(i, j)Y. Finally, let det(X) denote
the determinant of the square matrix X.

2 Results

Before reporting our main result, we shall first introduce a set of matrices, then we
define our key absorbing Markov chain (AMC), and finally we order the AMC states
in a proper way that yields a nice structure. The event that the queue becomes empty,
i.e., the end of the busy period, is modeled as an absorbing event which justifies the
need of the theory of AMCs.

Let us define the following K-by-K block matrices: the matrix A that is an up-
per bidiagonal block matrix with i-th upper diagonal element equal to qi(F

o
i fi) ⊗ I

and i-th diagonal element equal to Fi ⊗ I + I ⊗ Si , the matrix B that is a lower di-
agonal matrix with i-th lower diagonal element equal to I ⊗ (So

i si), and the matrix
C that is a diagonal matrix with i-th diagonal element, i = 1, . . . ,K − 1, equal to
pi(F

o
i fi) ⊗ I and K-th element equal to 0, and the matrix D that is a zero block

matrix with (K,K)-block element equal to (F o
KfK) ⊗ I. Note that Fo

i is a column
vector and fi is a row vector; thus Fo

i fi is a matrix. Similarly, So
i si is a matrix. More-

over, note that A + B represents the generator of a level dependent PH/PH/1/K queue
restricted to strictly positive queue length; see, for example, [10, Chap. 3]. Let us
define QK(w, z1, z2, z3) = wI − A − z1B − z2C − z3D. For ease of presentation, we
shall refer to QK(w, z1, z2, z3) as QK . Appendix A gives a detailed description of
the structure of A, B, C, and D.
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Let P (t) := (Phs(t),Pha(t),N(t), S(t),Lc(t),Lo(t)) denote the continuous-
time Markov process with a discrete state space � := {1, . . . ,Ms} × {1, . . . ,Ma} ×
{0,1, . . . ,K} × N × N × N, where Phs(t) represents the phase of the (if any) cus-
tomer in service at time t , and Pha(t) the phase of the interarrival time at time t , N(t)

represents the number of customers in the queue at time t , S(t) the number of served
customers from the queue until t , Lc(t) the number of losses due to the admission
control in the queue until t , Lo(t) the number of overflow losses in the queue until t ,
and N the set of non-negative integers. States with N(t) = 0 are absorbing. We refer
to this absorbing Markov process as AMC. The absorption of the AMC occurs when
the queue becomes empty, i.e., N(t) = 0. We set the AMC initial state at time t = 0 to
P (0) = (ps,pa,n,0,0,0), n ≥ 1, ps ∈ {1, . . . ,Ms} with distribution vector equal to
sn and pa ∈ {1, . . . ,Ma} with distribution vector equal to fn. For this reason, the time
until absorption of the AMC is equal to Bn, the residual busy period length. More-
over, it is clear that Sn (resp. Lo

n and Lc
n), the total number of departures (resp. losses)

during the residual busy period, is equal to S(Bn + ε) = Sn (resp. Lc(Bn + ε) = Lc
n

and Lo(Bn + ε) = Lo
n), ε > 0.

During a residual busy period, the processes S(t), Lc(t), and Lo(t) are count-
ing processes. To take advantage of this property, we order the transient states of the
AMC, i.e., (i, j, k, l,m,o) ∈ �\{(·, ·,0, ·, ·, ·)}, increasingly first according to o, then
m, l, k, j , and finally according to i. In the following we shall express the generator
of the AMC as a function of the aforementioned matrices A, B, C, and D (see Appen-
dix A for further details). The proposed ordering implies that the generator matrix of
the transitions between the transient states of the AMC, denoted by G, is an infinite
upper diagonal block matrix with diagonal blocks equal to G0 and upper diagonal
blocks equal to U0, i.e.,

G =
⎛
⎜⎝

G0 U0 0 · · · · · ·
0 G0 U0 0 · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎠ . (3)

We note that G0 denotes the generator matrix of the transitions which do not in-
duce any modification in the number of overflow losses, i.e., Lo

n(t). Moreover, U0

denotes the transition rate matrix of the transitions that represent an arrival at a full
queue (an overflow), i.e., transitions between the transient states (i, j,K, l,m,o) and
(i, j ′,K, l,m,o + 1), where j ′ is the initial phase of the next interarrival time just
after an overflow loss. For this reason, U0 is a block diagonal matrix with diagonal
blocks equal to U00. The blocks U00 are in turn diagonal block matrices with entries
equal to D. See Appendix A for a detailed description of the matrices D, U00 and U0.
The block matrix G0 is also an infinite upper diagonal block matrix with diagonal
blocks equal to G1, and upper diagonal blocks equal to U1. Therefore, G0 has the
following canonical form:

G0 =
⎛
⎜⎝

G1 U1 0 · · · · · ·
0 G1 U1 0 · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎠ , (4)
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where U1 denotes the transition rate matrix of the transitions that represent a dropped
arriving customer by the admission controller, i.e., transitions between the transient
states (i, j, k, l,m, o) and (i, j ′, k, l,m+1, o). For this reason, U1 is a block matrix of
diagonal entries equal to C. See Appendix A for a full description of the matrices U1
and C. The matrix G1 is the generator matrix of the transition between the transient
states (i, j, k, l,m,o) and (i′, j ′, k′, l′,m,o), i.e., the transitions that do not induce
any modification in the number of overflow losses and of losses due to the admission
controller. Observe that G1 has the following canonical form:

G1 =
⎛
⎜⎝

A B 0 · · · · · ·
0 A B 0 · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎠ . (5)

The upper diagonal blocks of G1 represent the transition between the transient states
(i, j, k, l,m,o) and (i′, j, k − 1, l + 1,m,o), i.e., a transition that models a departure
from the queue. For this reason, the upper diagonal blocks are equal to the afore-
mentioned matrix B. The diagonal blocks of G1 represent the transitions due to a
modification in the interarrival phase, service phase, or an arrival that is admitted
to the queue. For this reason, the diagonal blocks of G1 equal A. Note that a full
description of the matrices A and B is given in Appendix A.

In the following we model the event that the queue becomes empty, i.e., the end of
the busy period, as an absorbing event. The joint transform is deduced by determining
the last state visited before absorption.

We are now ready to formulate our main result.

Theorem 1 (Level dependent queue) Assume that the residual busy period starts
with n customers at time zero, and at time zero the phases of the interarrival time and
the service time are distributed according to fn and sn. The joint transform of Bn,
Sn, and Ln is then given by

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = z1en ⊗ fn ⊗ snQ−1
K (e1 ⊗ e)T ⊗ So

1 .

Proof Let us define

πi,j,k,l,m,o(t) := P
(

P (t) = (i, j, k, l,m,o) | P (0) = (ps,pa,n,0,0,0)
)
.

The Laplace transform of πi,j,k,l,m,o(t) is given by

π̃i,j,k,l,m,o(w) =
∫ ∞

t=0
e−wtπi,j,k,l,m,o(t) dt, Re(w) ≥ 0.

Moreover, let us define the following row vectors:

Π̃j,k,l,m,o(w) = (
π̃1,j,k,l,m,o(w), . . . , π̃Ms,j,k,l,m,o(w)

)
,

Π̃k,l,m,o(w) = (
Π̃1,k,l,m,o(w), . . . , Π̃Ma,k,l,m,o(w)

)
,

Π̃l,m,o(w) = (
Π̃1,l,m,o(w), . . . , Π̃K,l,m,o(w)

)
.
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The Kolmogorov backward equation of the absorbing state (i, j,0, l,m,o) reads

d

dt
πi,j,0,l,m,o(t) = πi,j,1,l−1,m,o(t)S

o
1 (i), (6)

where So
1 (i) is the i-th entry of So

1 . Since (i, j,0, l,m,o) is an absorbing state, it is
easily seen that

πi,j,0,l,m,o(t) = P
(
Bn < t,Phs(Bn) = i,Pha(Bn) = j, Sn = l,Lc

n = m,

Lo
n = o | P (0) = (ps,pa,n,0,0,0)

)
.

Hence, the Laplace transform of the left-hand side (l.h.s.) of (6) is equal to the joint
transform E[e−wBn · 1{Phs(Bn)=i} · 1{Pha(Bn)=j} · 1{Sn=l} · 1{Lc

n=m} · 1{Lo
n=o}]. Taking

the Laplace transform on both sides in (6) and summing over all values of i and j

gives

E
[
e−wBn · 1{Sn=l} · 1{Lc

n=m} · 1{Lo
n=o}

] =
Ma∑
j=1

Π̃j,1,l−1,m,o(w)So
1

= Π̃1,l−1,m,o(w)eT ⊗ So
1

= Π̃l−1,m,o(w)(e1 ⊗ e)T ⊗ So
1 .

Removing the condition on Sn, Lc
n, and Lo

n we deduce that

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] =
∞∑
l=1

∞∑
m=0

∞∑
o=0

zl
1z

m
2 zo

3Π̃l−1,m,o(w)(e1 ⊗ e)T ⊗ So
1

= z1

∞∑
l=0

zl
1

∞∑
m=0

zm
2

∞∑
o=0

zo
3Π̃l,m,o(w)(e1 ⊗ e)T ⊗ So

1 . (7)

We now derive the right-hand side (r.h.s.) of E[e−wBnz
Sn

1 z
Lc

n

2 z
Lo

n

3 ]. Taking the Laplace
transforms of the Kolmogorov backward equations of the AMC, we find that

Π̃l,m,o(w)(wI − A) = 1{l,m,o=0}en ⊗ fn ⊗ sn + 1{l≥1}Π̃l−1,m,o(w)B

+ 1{m≥1}Π̃l,m−1,o(w)C + 1{o≥1}Π̃l,m,o−1(w)D, (8)

where en ⊗ fn ⊗ sn represents the initial state vector of the AMC, and the matrices
A, B, C, and D are given in Appendix A. Multiplying (8) by zl

1z
m
2 zo

3 and summing
the result first over all o, then m, and finally l yields that

∞∑
l=0

zl
1

∞∑
m=0

zm
2

∞∑
o=0

zo
3Π̃l,m,o(w)(wI − A − z1B − z2C − z3D) = en ⊗ fn ⊗ sn. (9)

Note that (wI − A − z1B − z2C − z3D), Re(w) > 0, is invertible since it has a dom-
inant main diagonal. Inserting (9) into (7) completes the proof. �
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Remark 1 Assume that the residual busy period starts with n customers at time zero,
and at time zero the phases of the interarrival time and the service time are distributed
according to some distribution vectors fn0 and sn0. The joint transform of Bn, Sn, and
Ln is then given by

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = z1en ⊗ fn0 ⊗ sn0Q−1
K (e1 ⊗ e)T ⊗ So

1 .

Proposition 1 The joint transform B1, S1, Lc
1, and Lo

1 is given by

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] = z1f1 ⊗ s1(X1)
−1eT ⊗ So

1 ,

where Xi , i = 1, . . . ,K − 1, and satisfies the following (backward) recursion:

Xi = wI − Fi ⊗ I − I ⊗ Si − z2piF
o
i fi ⊗ I − z1qiF

o
i fi ⊗ I(Xi+1)

−1I ⊗ So
i+1si+1,

with

XK = wI − FK ⊗ I − I ⊗ SK − z3F
o
KfK ⊗ I.

Proof According to Theorem 1, the joint transform of B1, S1, Lc
1, and Lo

1 can be
written as

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] = z1f1 ⊗ s1QK(1,1)eT ⊗ So
1 ,

where QK(1,1) is the (1,1)-block entry of Q−1
K . Let us partition the matrix QK as

follows:

QK =
(

Q11 Q12

Q21 QK−1

)
, (10)

where Q11 := wI − F1 ⊗ I − I ⊗ S1 − z2p1F
o
1 f1 ⊗ I, Q12 := −e1 ⊗ q1F

o
1 f1 ⊗ I,

Q21 := −z1(e1)
T ⊗ I⊗So

2 s2, and QK−1 is obtained from the matrix QK by removing
its first blocks row and first blocks column. Some simple linear algebra shows that
the inverse of QK reads

Q−1
K =

(
(Q∗

11)
−1 −Q−1

11 Q12(Q∗
22)

−1

−Q−1
22 Q21(Q∗

11)
−1 (Q∗

22)
−1

)
, (11)

where Q∗
11 := Q11 − Q12Q−1

K−1Q21 and Q∗
22 := QK−1 − Q21Q−1

11 Q12. It is then read-
ily seen that

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] = z1f1 ⊗ s1
(
Q∗

11

)−1
eT ⊗ So

1

= z1f1 ⊗ s1
(
Q11 − Q12(QK−1)

−1Q21
)−1

eT ⊗ So
1

= z1f1 ⊗ s1
(
wI − F1 ⊗ I − I ⊗ S1 − z2p1F

o
1 f1 ⊗ I

− q1F
o
1 f1 ⊗ IQK−1(1,1)I ⊗ So

2 s2
)−1

eT ⊗ So
1 , (12)
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where QK−1(1,1) is the (1,1)-block entry of Q−1
K−1. QK−1 is a tridiagonal block

matrix. Repeating the manner of partitioning the matrix QK to QK−1 one can show
that

QK−1(1,1) = wI − F2 ⊗ I − I ⊗ S2 − z2p2F
o
2 f2 ⊗ I − q2F

o
2 f2 ⊗ IQK−2(1,1)I

⊗ So
3 s3.

QK−2(1,1) is the (1,1)-block entry of Q−1
K−2 and QK−2 is obtained from the matrix

QK−1 by removing its first row and first column. For this reason, we deduce by

induction that E[e−wB1z
S1
1 z

Lc
1

2 z
Lo

1
3 ] satisfies the recursion defined in Proposition 1. �

2.1 M/PH/1/K queue

For the M/PH/1/K we have that −Fi = Fo
i fi = λ, i = 1, . . . ,K , Si = S and So

i si =
Sos, i = 1, . . . ,K . Let ξ(w) = s(wI − S)−1So denote the LST of the service times.
Moreover, we assume that qi = q , i = 1, . . . ,K − 1.

Lemma 1 The function x − z1ξ(w + λ(1 − qx − pz2)) has Ms + 1 distinct non-null
roots r1, . . . , rMs+1, such that 0 < |r1| < |r2| < · · · < |rMs+1|.

Proof It is well known that ξ(w), the LST of the service times which has a phase-type
distribution of Ms phases, is a rational function. Therefore, the denominator of ξ(w)

is a polynomial in w of degree Ms and the numerator is a polynomial of degree < Ms .
For this reason, the numerator of x − z1ξ(w + λ(1 − qx −pz2)) is a polynomial in x

of degree Ms + 1. Therefore, the function x − z1ξ(w +λ(1 − qx −pz2)) has Ms + 1
roots. It is easily checked that zero is not a root of this function.

For clarity of presentation, we will assume that these roots are distinct. In Sect. 3
we shall relax this assumption by considering the case where ri+l = ri + lε, ε > 0,
i ∈ {1, . . . ,Ms +1} and l = 0, . . . ,L−1, and in our final result taking the limit ε → 0.
This means that we have that ri is a root of multiplicity L.

Let Dη denote the circle with center at the origin and with radius η, and |pz2−z3
q

| <
η < |r1|, where r1 is the root with the smallest absolute value of

x − z1ξ
(
w + λ(1 − qx − pz2)

) = 0. (13)

�

We are now ready to present the main result of the M/PH/1/K queue.

Proposition 2 (M/PH/1/K queue) The joint transform of Bn, Sn, Lo
n, and Lc

n for the
M/PH/1/K queue is given by

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] =
1

2π i

∫
Dη

1
xK−1−n

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

1
2π i

∫
Dη

1
xK−1

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

.
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Proof According to Theorem 1, the transform of Bn, Sn, Lc
n, and Lo

n for the
M/PH/1/K queue can be reduced as follows (due to the Poisson arrivals we have
that fn = 1 and the vector e is of dimension one, i.e., e = 1 in Theorem 1):

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = z1en ⊗ sQ−1
K eT

1 ⊗ So, (14)

where QK in this case is a K-by-K tridiagonal block matrix with upper diagonal
blocks equal to E0 = −qλI, i-th diagonal blocks equal to E1 = wI + λ(1 − pz2)I − S,
i = 1, . . . ,K − 1, and K-th diagonal block equal to E∗

1 = wI + λ(1 − z3)I − S,
and lower diagonal blocks equal to E2 = −z1S

os. Therefore, QK has the following
canonical form:

QK =

⎛
⎜⎜⎜⎜⎜⎜⎝

E1 E0 0 · · · · · ·
E2 E1 E0 0 · · ·
0

. . .
. . .

. . .
. . .

...
. . .

. . . E1 E0
0 · · · 0 E2 E∗

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

Let u = (u1, . . . , uK) := en ⊗ sQ−1
K . Note that each entry of the row vector u is in its

turn a row vector of dimension Ms and is a function of w, z1, z2, and z3. Then (14)
in terms of u can be rewritten as

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = z1u1S
o. (16)

The definition of u gives uQK = en ⊗ s. Developing the latter equation yields

1{i≥2}ui−1E0 + ui

[
1{i≤K−1}E1 + 1{i=K}E∗

1

] + 1{i≤K−1}ui+1E2 = 1{i=n}s, (17)

where i = 1, . . . ,K . Since u1 is analytic, we deduce from (17) that ui , i = 2, . . . ,K ,
are analytic. Multiplying (17) by xi and summing over i we find that

K∑
i=1

uix
i = (

u1E2 + xKuK(xE0 + E1 − E∗
1) + xns

)(
xE0 + E1 + 1

x
E2

)−1

= (
z1u1S

os − xns + λxK(qx + pz2 − z3)uK

)(
S − ρI + z1

x
Sos

)−1

,

(18)

where ρ := w + λ(1 − qx − pz2). Let S∗ := S − ρI. Note that under the condition
that Re(ρ) ≥ 0 the matrix S∗ is nonsingular. Hence, the Sherman–Morrison formula,
see, for example, [3, Fact 2.14.2, p. 67], yields

(
S∗ + z1

x
Sos

)−1

= S−1∗ − z1

x + z1sS−1∗ So
S−1∗ SosS−1∗ . (19)
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The multiplication to the right of (18) by the column vector So and (19) gives

K∑
i=1

uix
iSo = x

x + z1sS−1∗ So

(
z1u1S

os−xns+λxK(qx+pz2 −z3)uK

)
S−1∗ So. (20)

From (2) we know that sS−1∗ So = −ξ(ρ) and S−1∗ So = −(ξ1(ρ), . . . , ξMs(ρ))T ,
where ξ i(ρ) = ei(ρI − S)−1So. Therefore, ξ(ρ) = s(ξ1(ρ), . . . , ξMs(ρ))T is a linear
combination of ξ i(ρ), i = 1, . . . ,Ms . Inserting sS−1∗ So and S−1∗ So into (20) yields

K∑
i=1

uix
iSo = −x

x − z1ξ(ρ)

[(
z1u1S

o − xn
)
ξ(ρ)

+ λxK(qx + pz2 − z3)

Ms∑
j=1

uKj ξ
j (ρ)

]
, (21)

where uK = (uK1, . . . , uKMs ). We recall that uiS
o is an analytic function. For this

reason, the l.h.s. of (21) should be analytical for any finite x. This implies that the
singular points, roots of x − z1ξ(ρ), on the r.h.s. of (21) are removable.

Lemma 1 and the analyticity of
∑K

i=1 uix
iSo give

z1u1S
oξ(ρi) + λrK

i (qri + pz2 − z3)

Ms∑
j=1

uKj ξ
j (ρi) = rn

i ξ(ρi),

i = 1, . . . ,Ms + 1, (22)

where ρi := w + λ(1 − qri − pz2). The system of equations in (22) has Ms + 1
equations with Ms +1 unknowns which are z1u1S

o,uK1, . . . , uKMs . Using Cramer’s
rule, we find that

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = z1u1S
o = det(M∗)

det(M)
, (23)

where det(M) is the determinant of the (Ms + 1)-by-(Ms + 1) matrix M with i-th
row equal to (ξ(ρi)/[λrK

i (qri +pz2 −z3)], ξ1(ρi), . . . , ξ
Ms (ρi)), i = 1, . . . ,Ms +1.

Therefore, M has the following canonical form:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ(ρ1)

λrK
1 (qr1+pz2−z3)

ξ1(ρ1) · · · ξMs (ρ1)

...
...

...
...

ξ(ρi )

λrK
i (qri+pz2−z3)

ξ1(ρi) · · · ξMs (ρi)

...
...

...
...

ξ(ρMs+1)

λrK
Ms+1(qrMs+1+pz2−z3)

ξ1(ρMs+1) · · · ξMs (ρMs+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The matrix M∗ is obtained from M by replacing its first column with

(
ξ(ρ1)

λrK−n
1 (qr1 + pz2 − z3)

, . . . ,
ξ(ρMs+1)

λrK−n
Ms+1(qrMs+1 + pz2 − z3)

)T

.

The Laplace expansion of the determinant along the first column of M and M∗ gives

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] =
∑Ms+1

i=1
ξ(ρi )(−1)i+1

λrK−n
i (qri+pz2−z3)

det(M∗(i,1))

∑Ms+1
i=1

ξ(ρi )(−1)i+1

λrK
i (qri+pz2−z3)

det(M(i,1))

=
∑Ms+1

i=1
(−1)i

rK−1−n
i (qri+pz2−z3)

det(M(i,1))

∑Ms+1
i=1

(−1)i

rK−1
i (qri+pz2−z3)

det(M(i,1))
, (24)

where M(i,1) (resp. M∗(i,1)) is the Ms -by-Ms matrix that results by deleting the
i-th row and the first column of M (resp. M∗), and the second equality follows from
ξ(ρi) = ri/z1 and M∗(i,1) = M(i,1).

Let Dη denote the circle with center at the origin and with radius equal to η.
Assume that |pz2−z3

q
| < η < |r1| with q 
= 0. Let us define fi(x) ∼i gi(x) if

fi(x)/gi(x) = h(x) that is independent of i. Let Resaf (z) denote the residue of the
complex function f (z) at point a. The sum of the residues of the following complex
function:

1

xK−1−n

1

qx + pz2 − z3

1

x − z1ξ(w + λ(1 − qx − pz2))
,

is equal to zero, including the residue at infinity, which is equal to zero (q 
= 0).
Therefore, we deduce that

∑Ms+1
i=1

(−1)i

rK−1−n
i (qri+pz2−z3)

det(M(i,1))

∑Ms+1
i=1

(−1)i

rK−1
i (qri+pz2−z3)

det(M(i,1))

=
1

2π i

∫
Dη

1
xK−1−n

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

1
2π i

∫
Dη

1
xK−1

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

, (25)

if and only if

(−1)idet
(
M(i,1)

) ∼i Resri

1

x − z1ξ(w + λ(1 − qx − pz2))
. (26)

In the following we shall prove condition (26). Since the service times have a
phase-type distribution, ξ(w) is a rational function with denominator, Qξ(w), of
degree Ms and numerator of degree < Ms . Note that by Lemma 1 the roots of
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x − z1ξ(w + λ(1 − qx − pz2)) are distinct. Therefore, we deduce that

Resri

1

x − z1ξ(w + λ(1 − qx − pz2))
= Qξ(w + λ(1 − qri − pz2))

(−λq)Ms
∏Ms+1

j=1,j 
=i (ri − rj )

= Qξ(ρi)∏Ms+1
j=1,j 
=i (ρi − ρj )

.

M(i,1) is an Ms -by-Ms matrix with j -th row equal to (ξ1(ρj ), . . . , ξ
Ms (ρj )) for

j = 1, . . . ,Ms + 1 and j 
= i. We have (see Appendix B for the proof)

det
(
M(i,1)

) = C(−1)i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk − ρj )

∏Ms+1
j=1 Qξ(ρj )

× Qξ(ρi)∏Ms+1
j=1,j 
=i (ρj − ρi)

.

The latter two equations give (26) right away, which completes the proof. �

Remark 2 In the case where |r1| < |pz2 − z3|q−1, we choose the radius η such that
η < min(|r1|, |pz2 − z3|q−1). To capture this modification, it is necessary to correct
the joint transform in Proposition 2 as follows:

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

]

=
1

2π i

∫
Dη

1
xK−1−n

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

+ Resz0f1(z)

1
2π i

∫
Dη

1
xK−1

1
qx+pz2−z3

dx
x−z1ξ(w+λ(1−qx−pz2))

+ Resz0f2(z)
,

where z0 = |pz2 −z3|q−1, and the functions f1(z) and f2(z) are the integrands of the

contour integrations in the numerator and the denominator of E[e−wBnz
Sn

1 z
Lc

n

2 z
Lo

n

3 ].

Remark 3 For the M/G/1/K queue, note that Rosenlund [13] obtained the trivariate
transform of B1, S1, and L1. Recall that L1 is the total number of losses during the
busy period. Restricting Rosenlund’s result to the M/PH/1/K queue, Proposition 2
extends his result in two ways. First, it gives the four-variate joint transform of Bn, Sn,
Lc

n, and Lo
n, for the case when n ≥ 1. Secondly, it allows the dropping of customers

even when the queue is not full.

2.2 M/PH/1/K queue under threshold policy

Let m ∈ {1, . . . ,K} denote the threshold of the M/PH/1/K queue length. According
to the threshold policy, if the queue length at time t is i, the interarrival times and
service times are then defined as follows. For i ≤ m − 1, we have −Fi = Fo

i f = λ0,
Si = S0, si = s, and pi = p0. For m ≤ i ≤ K −1, we have −Fi = Fo

i f = λ1, Si = S1
and si = s, and pi = p1 and pK = 1.

Let ξi(w) = s(wI − Si )
−1So

i = Pi(w)/Qi(w) denote the LST of the service times
when the queue length is below the threshold (i = 0) or above it (i = 1). Moreover, we
let ξ l

i (w) = el(wI − Si )
−1So

i = P ∗l
i (w)/Ql

i(w). Note that since Q0(w) is the com-
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mon denominator of ξ l
0(w) we see that ξ l

0(w) = P l
0(w)/Q0(w) is a rational function

where P l
0(w) is a polynomial of degree < Ms . Let C0 denote the matrix with (j, l)-

entry equal to the coefficient of wj−1 of the polynomial P l
0(w). In the following, we

shall assume that the matrix C0 is invertible. Note that the Erlang, hyperexponential,
and Coxian distributions satisfy the latter assumption.

Lemma 2 The function x −z1ξl(w+λ(1−qlx −plz2)) has Ms +1 distinct non-null
roots r1l , . . . , r(Ms+1)l , such that 0 < |r1l | < · · · < |r(Ms+1)l |, l = 0,1.

Proof The proof results by analogy with the proof of Lemma 1. �

Before reporting our main result on the M/PH/1/K under Threshold Policy in
Proposition 3, let us first introduce some notation.

Let Dη1 denote the circle with center at the origin and with radius η1, |p1z2−z3|
q1

<

η1 < |r11|. According to Lemma 2, r11 is the root with the smallest absolute value.
The contour integration v(l), l = 1, . . . ,Ms , is given by

v(l) = z1

1
2π i

∫
Dη1

1
xK−m

ξl
1(w+λ(1−q1x−p1z2))

q1x+p1z2−z3

dx
x−z1ξ1(w+λ(1−q1x−p1z2))

1
2π i

∫
Dη1

1
xK−m

1
q1x+p1z2−z3

dx
x−z1ξ1(w+λ(1−q1x−p1z2))

. (27)

Let ρi0 = w + λ0(1 − q0ri0 − p0z2). Let us define v0(k,m) as follows:

v0(k,m) = (−1)k−1

∏Ms

l=1,l 
=m νl − νm

∑
νm1 × · · · × νmMs−k

, k,m = 1, . . . ,Ms, (28)

where 1 ≤ m1 < · · · < mMs−k ≤ Ms , m1, . . . ,mMs−k 
= k, and (ν1, . . . , νMs ) =
(ρ10, . . . , ρ(i−1)0, ρ(i+1)0, . . . , ρ(Ms+1)0). Note that for k = Ms ,

∑
νm1 ×· · ·×νmMs−k

is equal to one by definition. Finally, let β(i) denote the following sum:

β(i) =
Ms∑
l=1

v(l)

Ms+1∑
m=1,m 
=i

Q0(ρm0)

Ms∑
k=1

c0(l, k)v0(k,m), (29)

where c0(l, k) is the (l, k)-entry of C−1
0 .

We are now ready to report our main result on the M/PH/1/K under Threshold
Policy.

Proposition 3 (M/PH/1/K under threshold policy) The joint transform of B1, S1, Lc
1,

and Lo
1 in the M/PH/1/K queue operating under the threshold policy is given by

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] =
∑Ms+1

i=1
z1−β(i)

rm−2
i0

Q0(ρi0)∏Ms+1
j=1,j 
=i (ρj0−ρi0)∑Ms+1

i=1
z1−β(i)

rm−1
i0

Q0(ρi0)∏Ms+1
j=1,j 
=i (ρj0−ρi0)

, (30)

where ri0 and ri1 are given in Lemma 2, Q0(w) is the denominator of ξ0(w), and
β(i) is given in (29).
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Proof By analogy with Proposition 2, the joint transform B1, S1, Lc
1, and Lo

1 for the
M/PH/1/K queue can be written as follows:

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] = z1e1 ⊗ sQ−1
K eT

1 ⊗ So
0 , (31)

where in this case QK has the following structure:

QK =
(

F00 F01

F10 F11

)
.

The matrix Fll , l = 0,1, is a block tridiagonal matrix with upper diagonal blocks
equal to E0l = −qlλlI, diagonal blocks equal to E1l = wI + λl(1 − plz2)I − Sl and
lower diagonal blocks equal to E2l = −z1S

o
l s. Note that F00 is an (m−1)-by-(m−1)-

block matrix and F11 is a (K − m + 1)-by-(K − m + 1) block matrix. Moreover, the
(K −m+ 1,K −m+ 1)-block entry of F11 is equal to E∗

11 = wI +λ1(1 − z3)I − S1.
The matrix F01 is a block matrix with all its blocks equal to the zero matrix except the
(m − 1,1)-block, which is E00 = −q0λ0I. Finally, the matrix F10 is a block matrix
with all blocks equal to the zero matrix except the (1,m − 1)-block, which is E21 =
−z1S

o
1 s. Therefore, F00, F10, F10, and F11 have the following canonical form:

F00 =

⎛
⎜⎜⎜⎜⎜⎜⎝

E10 E00 0 · · · · · ·
E20 E10 E00 0 · · ·
0

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . E00

0 · · · 0 E20 E10

⎞
⎟⎟⎟⎟⎟⎟⎠

,

F01 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · · · · · · · 0
E00 0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

F10 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0 E21
0 · · · · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

F11 =

⎛
⎜⎜⎜⎜⎜⎜⎝

E11 E01 0 · · · · · ·
E21 E11 E01 0 · · ·
0

. . .
. . .

. . .
. . .

...
. . .

. . . E11 E01
0 · · · 0 E21 E∗

11

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Equations (11) and (31) yield

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] = z1e1 ⊗ s
(
F00 − F01F−1

11 F10
)−1

eT
1 ⊗ So

0

= z1e1 ⊗ s
(
F00 − q0λ0z1F−1

11 (1,1)So
1 sUT U

)−1
eT

1 ⊗ So
0 ,

(32)

where U is a row vector of blocks with all entries equal to zero except the last, which
is I, and F−1

11 (1,1) is the (1,1)-block entry of F−1
11 .

We shall now derive an expression for z1F−1
11 (1,1)So

1 . Note that z1F−1
11 (1,1)So

1 is
a column vector with size Ms . Let v := z1F−1

11 (1,1)So
1 . First, observe that F11 has the

same structure as the matrix QK in (15) with K replaced by K − m + 1, λ by λ1, S
by S1, and Sos by So

1 s. Second, note that the l-th entry of v can be written as follows:

v(l) = z1e1 ⊗ el(F11)
−1eT

1 ⊗ So
1 , l = 1, . . . ,Ms. (33)

Therefore, by analogy with the proof of Proposition 2, we find that v(l) satisfies (27).
Note that F00 − q0λ0vsUT U has the same structure as the matrix QK in (15) with

K = m − 1, E0 = E00, E1 = E10, E2 = E20, and E∗
1 = E10 − q0λ0vs. Moreover, (32)

has the same form as (14). By analogy with the proof of Proposition 2, we find that

m−1∑
i=1

aix
iSo

0 = −x

x − z1ξ0(ρ0)

[
(z1a1S

o
0 − x)ξ0(ρ0)

+ λ0q0x
m−1

Ms∑
j=1

am−1j

(
xξ

j

0 (ρ0) − v(j)ξ0(ρ0)
)]

,

where a = (a1, . . . , am−1) := e1 ⊗ s(F00 − q0λ0vsUT U)−1, am−1 = (a(m−1)1, . . . ,

a(m−1)Ms ), and ρ0 = w + λ0(1 − q0x − p0z2). Recall that ri0, i = 0, . . . ,Ms + 1, are
the roots of x − z1ξ0(w +λ0(1 −q0x −p0z2)). The analyticity of

∑K
i=1 aix

iSo
0 gives

that

z1a1S
o
0ξ0(ρi0) + λ0q0r

m−1
i0

Ms∑
j=1

am−1j

(
ri0ξ

j

0 (ρi0) − v(j)ξ0(ρi0)
) = ri0ξ0(ρi0),

where i = 1, . . . ,Ms + 1 and ρi0 = w + λ0(1 − q0ri0 − p0z2). Cramer’s rule yields
that

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] = z1a1S
o
0 =

∑Ms+1
i=1

ξ0(ρi0)(−1)i

rm−1
i0

det(N)

∑Ms+1
i=1

ξ0(ρi0)(−1)i

rm
i0

det(N)

=
∑Ms+1

i=1
(−1)i

rm−2
i0

det(N)

∑Ms+1
i=1

(−1)i

rm−1
i0

det(N)
, (34)
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where N is an Ms -by-Ms matrix that has the following canonical form:

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1
0 (ρ10) − v(1)/z1 · · · ξ

Ms

0 (ρ10) − v(Ms)/z1
...

...
...

ξ1
0 (ρ(i−1)0) − v(1)/z1 · · · ξ

Ms

0 (ρ(i−1)0) − v(Ms)/z1

ξ1
0 (ρ(i+1)0) − v(1)/z1 · · · ξ

Ms

0 (ρ(i+1)0) − v(Ms)/z1
...

...
...

ξ1
0 (ρ(Ms+1)0) − v(1)/z1 · · · ξ

Ms

0 (ρ(Ms+1)0) − v(Ms)/z1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let M0(i,1) denote the following matrix:

M0(i,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1
0 (ρ10) · · · ξ

Ms

0 (ρ10)
...

...
...

ξ1
0 (ρ(i−1)0) · · · ξ

Ms

0 (ρ(i−1)0)

ξ1
0 (ρ(i+1)0) · · · ξ

Ms

0 (ρ(i+1)0)
...

...
...

ξ1
0 (ρ(Ms+1)0) · · · ξ

Ms

0 (ρ(Ms+1)0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easily seen that N can be decomposed as follows:

N = M0(i,1) − 1

z1
eT v.

Since ξ l
0(w) = P l

0(w)/Q0(w), l = 1, . . . ,Ms , are rational functions with common
denominator Q0(w) the decomposition of M0(i,1) gives

M0(i,1) = D(i)V0(i)C0,

where D(i) is an Ms -by-Ms diagonal matrix with j -th diagonal element, j =
1, . . . ,Ms + 1 and j 
= i, equal to 1/Q0(ρj0), V0(i) is a Vandermonde matrix of
the following canonical form:

V0(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ10 . . . (ρ10)
Ms

...
...

...

1 ρ(i−1)0 . . . (ρ(i−1)0)
Ms

1 ρ(i+1)0 . . . (ρ(i+1)0)
Ms

...
...

...

1 ρ(Ms+1)0 . . . (ρ(Ms+1)0)
Ms

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and C0 is a matrix with (j, l)-entry equal to the coefficient of wj−1 of the polynomial
P l

0(w).
By Sylvester’s determinant we have

det(N) = 1

z1
det

(
M0(i,1)

)(
z1 − vM0(i,1)−1eT

)
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= 1

z1
det

(
M0(i,1)

)(
z1 − vC−1

0 V0(i)
−1D(i)−1eT

)
. (35)

By analogy with Lemma 4 in Appendix B, we find that

det
(
M0(i,1)

) = det(C0)(−1)i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk0 − ρj0)

∏Ms+1
j=1 Q0(ρj0)

Q0(ρi0)∏Ms+1
j=1,j 
=i (ρj0 − ρi0)

.

Let β(i) := vC−1
0 V0(i)

−1d , where d = D(i)−1eT . Therefore, d is a column vector
of dimension Ms with j -th entry equal to Q0(ρj0), j = 1, . . . ,Ms + 1 and j 
= i. Let
v0(k, l) denote the (k, l)-entry of V0(i)

−1. Note that the inverse of a Vandermonde
matrix is known in closed form; see, e.g., [9]. We deduce from [9] the values of
v0(k, l) that are given in (28). Let us denote c0(i, j) the (i, j)-entry of C−1

0 ; then it
is easily seen that β(i) is given by (29). Substituting β(i) and det(M0(i,1)) into (35)
gives det(N). Inserting det(N) into (34) completes the proof. �

2.3 PH/M/1/K queue

For the level independent PH/M/1/K queue we have −Si = So
i si = μ, i = 1, . . . ,K ,

Fi = F and Fo
i fi = Fof , i = 1, . . . ,K . Let φ(w) = f (wI − F)−1Fo denote the LST

of the interarrival times. Moreover, we assume that qi = q , i = 1, . . . ,K − 1, and
qK = 0.

Lemma 3 The function x − (q + xpz2)φ(w + μ(1 − z1x)) has Ma + 1 distinct non-
null roots o1, . . . , oMa+1, such that 0 < |o1| < |o2| < · · · < |oMa+1|.

Proof The proof results by analogy with Lemma 1. �

Before reporting our result on the PH/M/1/K queue, let us introduce some notation.
Let Dδ denote the circle with center at the origin and with radius equal to δ with

q
p|z2| < δ < |o1|. o1 is the root with the smallest absolute value defined in Lemma 3.

Let f (δ), g(δ), h(δ), and I (δ) denote the following contour integrations:

f (δ) = 1

2π i

∫
Dδ

1

xn−1

1

q + pz2x

1

w + μ(1 − z1x)

× dx

x − (q + pz2x)φ(w + μ(1 − z1x))
, (36)

g(δ) = 1

2π i

∫
Dδ

1

xn−1

1

q + pz2x

dx

x − (q + pz2x)φ(w + μ(1 − z1x))
, (37)

h(δ) = 1

2π i

∫
Dδ

q + (pz2 − z3)x

xK(q + pz2x)

dx

x − (q + pxz2)φ(w + μ(1 − z1x))
, (38)
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I (δ) = 1

2π i

∫
Dδ

q + (pz2 − z3)x

xK(q + pz2x)

× 1

w + μ(1 − z1x)

dx

x − (q + pxz2)φ(w + μ(1 − z1x))
. (39)

Finally, let R be defined by

R = − (μz1)
n

(w + μ)n−1

1

qμz1 + p(w + μ)z2

1

(w + μ)(1 − pz2) − qμz1
. (40)

We are now ready to report our result on the PH/M/1/K queue.

Proposition 4 (PH/M/1/K queue) The joint transform of Bn, Sn, Lo
n, and Lc

n for the
PH/M/1/K queue with p > 0 (p = 1 − q) and n = 1, . . . ,K is given by

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = (
(w + μ)(1 − pz2) − qμz1

)(
R + f (δ) + g(δ)I (δ)

h(δ)

)
,

where f (δ), g(δ), h(δ), I (δ), and R are given in (36)–(40).

Proof Due to the exponential service times, we have that sn = 1 and So
1 = μ. Then,

according to Theorem 1, the joint transform Bn, Sn, Lc
n, and Lo

n in this case can be
written as follows:

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = μz1en ⊗ f Q−1
K eT

1 ⊗ e, (41)

where QK in this case has the same structure as in (15) with E0 = −qFof , E1 =
(w + μ)I − F − pz2F

of , E∗
1 = (w + μ)I − F − z3F

of , and E2 = −z1μI. Let b =
(b1, . . . , bK) := en ⊗ f Q−1

K . Note that each of the entries of the row vector b is in its
turn a row vector of dimension Ma and is a function of w, z1, z2, and z3. Equation (41)
in terms of b can be rewritten as

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = μz1b1e
T = μz1

Ma∑
j=1

b1j . (42)

By analogy with the derivation of (18), we find that

K∑
i=1

bix
i = (

μz1b1 − xnf + xK(qx + pz2 − z3)bKFof
)

× (
F − θI + (qx + pz2)F

of
)−1

,

where θ := w + μ(1 − z1/x). Let F∗ := F − θI. Note that under the condition that
Re(θ) ≥ 0 the matrix F∗ is nonsingular. Hence, the Sherman-Morrison formula, see,
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for example, [3, Fact 2.14.2, p. 67], yields

(
F∗ + (qx + pz2)F

of
)−1 = F−1∗ − qx + pz2

1 + (qx + pz2)tF
−1∗ Fo

F−1∗ Fof F−1∗ . (43)

Multiplying to the right of
∑K

i=1 bix
i with the column vector Fo and using (43) gives

K∑
i=1

bix
iF o = 1

1 + (qx + pz2)f F−1∗ Fo

× (
μ1z1b1 − xnf + xK(qx + pz2 − z3)bKFof

)
F−1∗ Fo. (44)

From (1) we have that f F−1∗ Fo = −φ(θ) and F−1∗ Fo = −(φ1(θ), . . . , φMa (θ))T ,
where φi(θ) = ei(θI − F)−1Fo. Therefore, φ(θ) = f (φ1(θ), . . . , φMa (θ))T is a lin-
ear combination of φi(θ), i = 1, . . . ,Ma . Inserting f F−1∗ Fo and F−1∗ Fo into (44)
yields

K∑
i=1

bix
iF o = −xK(qx + pz2 − z3)φ(θ)bKFo + μ1z1

∑Ma

j=1 b1jφ
j (θ) − xnφ(θ)

1 − (qx + pz2)φ(θ)
,

(45)
where b1 = (b11, . . . , b1Ma). Note that biF

o is a joint transform function. For this
reason, the l.h.s. of (45) is analytical for any finite x, and the poles on the r.h.s. of (45)
are removable. Note that the roots of 1 − (qx + pz2)φ(w + μ(1 − z1/x)) are equal
to the inverse of the roots of x − (q + xpz2)φ(w +μ(1 − z1x)). Therefore, Lemma 3
and the analyticity of

∑K
i=1 bix

iF o give

q + (pz2 − z3)oi

oK+1
i

φ(θi)bKFo + μ1z1

Ma∑
j=1

b1jφ
j (θi) = 1

on
i

φ(θi),

i = 1, . . . ,Ma + 1, (46)

where θi := w + μ(1 − z1oi). The system of equations in (46) has Ma + 1 equations
with Ma + 1 unknowns which are bKFo, b11, . . . , b1Ma . Using Cramer’s rule we find
that

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = μz1b1e
T = μz1

Ma∑
j=1

b1j = −det(H)

det(K)
, (47)

where K is given by

K =

⎛
⎜⎜⎜⎝

q+(pz2−z3)o1

oK+1
1

φ(θ1) φ1(θ1) · · · φMa (θ1)

...
...

...
...

q+(pz2−z3)oMa+1

oK+1
Ma+1

φ(θMa+1) φ1(θMa+1) · · · φMa (θMa+1)

⎞
⎟⎟⎟⎠ ,
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and H is given by

H =

⎛
⎜⎜⎜⎜⎜⎝

q+(pz2−z3)o1

oK+1
1

φ(θ1) φ1(θ1) · · · φMa (θ1)
1
on

1
φ(θ1)

...
...

...
...

...
q+(pz2−z3)oMa+1

oK+1
Ma+1

φ(θMa+1) φ1(θMa+1) · · · φMa (θMa+1)
1

on
Ma+1

φ(θMa+1)

0 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

.

The Laplace expansion of the determinant along the first column of K and H
gives

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = −
∑Ma+1

i=1
q+(pz2−z3)oi

oK+1
i

φ(θi)(−1)i+1det(H(i,1))

∑Ma+1
i=1

q+(pz2−z3)oi

oK+1
i

φ(θi)(−1)i+1det(K(i,1))

= −
∑Ma+1

i=1
1

oK
i

q+(pz2−z3)oi

q+pz2oi
(−1)i+1det(H(i,1))

∑Ma+1
i=1

1
oK
i

q+(pz2−z3)oi

q+pz2oi
(−1)i+1det(K(i,1))

, (48)

where the matrices H(i,1) and K(i,1) are obtained by deleting the i-th row and
the first column of the matrices H and K, and the second equality follows from
φ(θi) = oi/(q + pz2oi).

Note that φ(w) is a rational function with denominator, Qφ(w), of degree equal to
Ma and numerator of degree <Ma . By analogy with the determinant of M(i,1) that
is given in Lemma 4 in Appendix B, we find that

det
(
K(i,1)

) = Ck(−1)i−1

∏Ma

j=1

∏Ma+1
k=j+1(θk − θj )

∏Ma+1
j=1 Qφ(θj )

Qφ(θi)∏Ma+1
j=1,j 
=i (θj − θi)

= Ck(−1)Ma+i−1

∏Ma

j=1

∏Ma+1
k=j+1(θk − θj )

∏Ma+1
j=1 Qφ(θj )

× Resoi

1

x − (q + xpz2)φ(w + μ(1 − z1x))
, (49)

where Ck is a constant that is a function of the polynomial parameters of the numer-
ators of φi(w), i = 1, . . . ,Ma . Assume that q/|pz2| < δ < |o1|. We find that

Ma+1∑
i=1

1

oK
i

q + (pz2 − z3)oi

q + pz2oi

(−1)i+1det
(
K(i,1)

)

= Ck(−1)Ma

∏Ma

j=1

∏Ma+1
k=j+1(θk − θj )

∏Ma+1
j=1 Qφ(θj )

(−h(δ)
)
,
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where h(δ) is given in (38). Note that the minus sign that is next to h(δ) is due to the
fact that the sum of all residues of the function

q + (pz2 − z3)x

xK(q + pz2x)

1

x − (q + pxz2)φ(w + μ(1 − z1x))
,

including the residue at infinity, which is equal to zero (K ≥ 1), is zero. We shall refer
to the latter property of complex functions as the Inside-Outside property.

The expansion of the determinant of H(i,1) along the last column yields

det
(
H(i,1)

) =
Ma+1∑

j=1,j 
=i

1

on−1
j

(−1)Ma+j+1

q + pz2oj

det(J), (50)

where J is obtained by deleting the j -th row and the last column of the matrix
H(i,1). It is easily seen that J is an Ma-by-Ma matrix with the l-th row equal to
(φ1(θl), . . . , φ

Ma (θl)), l = 1, . . . ,Ma + 1 and l 
= i, j , and the last row is equal to e.
By analogy with the determinant of M(i,1) we find that

det(J) = CJ

Qφ(0)

Ma+1∏
l=1,l 
=i,j

θl

Qφ(θl)

Ma∏
l=1,l 
=i,j

Ma+1∏
k=l+1,k 
=i,j

(θk − θl)

= CJ

Qφ(0)

Ma+1∏
l=1,l 
=i,j

θl

Qφ(θl)
(−1)i+j−1

∏Ma

l=1

∏Ma+1
k=l+1(θk − θl)∏Ma+1

l=1,l 
=i (θl − θi)
∏Ma+1

l=1,l 
=i,j (θl − θj )

= CJ (−1)i+j−1

Qφ(0)

(
Ma+1∏
l=1

θl

)∏Ma

l=1

∏Ma+1
k=l+1(θk − θl)∏Ma+1

l=1 Qφ(θl)

Qφ(θi)

θi

∏Ma+1
l=1,l 
=i (θl − θi)

× Qφ(θj )

θj

∏Ma+1
l=1,l 
=i,j (θl − θj )

,

where Qφ(0) is due to the last row of J which is equal to e = (1, . . . ,1) =
(P 1

φ (0)/Q1
φ(0), . . . ,P

Ma

φ (0)/Q
Ma

φ (0)). It follows from the definitions of the matri-
ces J and K that CJ = Ck . We note that

Ma+1∏
l=1

θl = (μz1)
Ma+1

Ma+1∏
l=1

(
w + μ

μz1
− ol

)

= (μz1)
Ma+1

w+μ
μz1

Qφ(0) − (q + pz2
w+μ
μz1

)Pφ(0)

(−μz1)Ma

= (−1)MaQφ(0)
[
(w + μ)(1 − pz2) − qμz1

]
,

where the second equality follows from the fact that ol , l = 1, . . . ,Ma + 1, are the
roots of x − (q + xpz2)φ(w + μ(1 − z1x)) and φ(w) = Pφ(w)/Qφ(w), and the last
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from φ(0) = 1. Inserting det(J) and
∏Ma+1

l=1 θl into (50) yields

det
(
H(i,1)

) =
Ma+1∑

j=1,j 
=i

1

on−1
j

(−1)Ma+j+1

q + pz2oj

det(J)

= CJ (−1)i
[
(w + μ)(1 − pz2) − qμz1

]

×
∏Ma

l=1

∏Ma+1
k=l+1(θk − θl)∏Ma+1

l=1 Qφ(θl)

Qφ(θi)

θi

∏Ma+1
l=1,l 
=i (θl − θi)

×
Ma+1∑

j=1,j 
=i

1

on−1
j

1

q + pz2oj

Qφ(θj )

θj

∏Ma+1
l=1,l 
=i,j (θl − θj )

. (51)

Note that, for p > 0 and n = 1, . . . ,K , we have

Ma+1∑
j=1,j 
=i

1

on−1
j

1

q + pz2oj

Qφ(θj )

θj

∏Ma+1
l=1,l 
=i,j (θl − θj )

= (−1)Ma

Ma+1∑
j=1

1

on−1
j

1

q + pz2oj

(θi − θj )Qφ(θj )

θj

∏Ma+1
l=1,l 
=j (θj − θl)

= (−1)Ma

[
θi

Ma+1∑
j=1

1

on−1
j

1

q + pz2oj

1

θj

Resoj

1

x − (q + pz2x)φ(w + μ(1 − z1x))

−
Ma+1∑
j=1

1

on−1
j

1

q + pz2oj

Resoj

1

x − (q + pz2x)φ(w + μ(1 − z1x))

]

= (−1)Ma+1(θi

(
f (δ) + R

) + g(δ)
)
,

where the last equality follows for p > 0 from the Inside–Outside property of the
integrands of f (δ) and g(δ) that are given in (36) and (37),

R = Res w+μ
μz1

1

xn−1

1

q + pz2x

1

w + μ(1 − z1x)

1

x − (q + pz2x)φ(w + μ(1 − z1x))

= − (μz1)
n

(w + μ)n−1

1

qμz1 + p(w + μ)z2

1

(w + μ)(1 − pz2) − qμz1
. (52)

Substituting (49) and (51) into (47) yields

E
[
e−wBnz

Sn

1 z
Lc

n

2 z
Lo

n

3

] = (
(w + μ)(1 − pz2) − qμz1

)(
R + f (δ) + g(δ)I (δ)

h(δ)

)
,

where I (δ) is given in (39), which completes the proof. �
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Remark 4 For the G/M/1/K queue, note that Rosenlund [14] obtained the four-variate
transform of B1, S1, L1, and the busy cycle defined as the time duration between
two consecutive arrivals to an empty system. Restricting Rosenlund’s result to the
PH/M/1/K queue, Proposition 4 extends his result in two ways. First, it gives the four-
variate joint transform of Bn, Sn, Lc

n, and Lo
n, for the case when n ≥ 1. Secondly, it

allows the dropping of customers even when the queue is not full. Note that in the
particular case with n = 1 and p = 1 − q = 0, we have f (δ) = 0, g(δ) = 1, and R =
−1/(w + μ(1 − z1)). Inserting these values into the joint transform in Proposition 4
yields

E
[
e−wB1z

S1
1 z

Lc
1

2 z
Lo

1
3

] =
μz1

∑Ma+1
i=1

1−z3oi

oK
i

1−φ(w+μ(1−z1oi ))
w+μ(1−z1oi )

Qφ(θi )∏Ma+1
l=1,l 
=i θl−θi

∑Ma+1
i=1

1
oK
i

Qφ(θi )∏Ma+1
l=1,l 
=i θl−θi

=
∫
Dδ

μz1(1−z3x)

xK

1−φ(w+μ(1−z1x))
w+μ(1−z1x)

dx
x−φ(w+μ(1−z1x))∫

Dδ

1−z3x

xK
dx

x−φ(w+μ(1−z1x))

.

We note that the last equation is in agreement with (11) in [14].

3 Discussion: non-distinct roots

Until now we have assumed that the roots in Lemmas 1, 2 and 3 are distinct. We shall
now relax these assumptions and show that the results in Propositions 2, 3 and 4 still
hold. In the following, we shall focus on extending the result in Proposition 2. This
can be done similarly for Proposition 3 and 4.

Let us consider that ri+l = ri + lε, ε > 0, i ∈ {1, . . . ,Ms +1} and l = 0, . . . ,L − 1,
and take the limit in our final result for ε → 0. This means that ri is a root of mul-
tiplicity L. In order to show that the results in Proposition 2 hold in this case, it is
readily seen that one must prove that

Resri

1

xK−1

1

qx + pz2 − z3

1

x − z1ξ(w + λ(1 − qx − pz2))

= lim
ε→0

L−1∑
l=0

1

rK−1
i+l

1

qri+l + pz2 − z3

Qξ(ρi+l )∏Ms+1
j=1,j 
=i+l (ρi+l − ρj )

. (53)

First, note that when ri is a root of multiplicity L, the complex residue reads

Resri

1

xK−1

1

qx + pz2 − z3

1

x − z1ξ(w + λ(1 − qx − pz2))

= 1

(L − 1)!
dL−1

dxL−1

(
1

xK−1(qx + pz2 − z3)

(x − ri)
L

x − z1ξ(w + λ(1 − qx − pz2))

)∣∣∣∣
x=ri

= 1

(−λq)L−1(L − 1)!
dL−1

dxL−1
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×
(

1

xK−1(qx + pz2 − z3)

Qξ (ρ)∏Ms+1
j=1,j 
=i,...,i+L−1(ρ − ρj )

)∣∣∣∣
x=ri

= 1

(−λq)L−1(L − 1)! lim
ε→0

1

εL−1

L−1∑
l=1

( (
L−1

l

)
(−1)L−1−l

(ri + lε)K−1(q(ri + lε) + pz2 − z3)

× Qξ(ρi − λqlε)∏Ms+1
j=1,j 
=i,...,i+L−1(ρi − λqlε − ρj )

)
, (54)

where ρ = w + λ(1 − qx − pz2), ρi = w + λ(1 − qri − pz2), and the last equality
follows from the following identity for the analytical function f (x) around x0:

dn

dxn
f (x)

∣∣∣∣
x0

= lim
ε→0

1

εn

n∑
i=0

(
n

i

)
(−1)n−if (x0 + iε).

Note that the latter equation follows right away using the Taylor series of f (x0 + iε)

around x0 and the binomial series of (x − 1)n and its derivatives.
The r.h.s. of (53) can be rewritten as

lim
ε→0

L−1∑
l=0

1

rK−1
i+l

1

qri+l + pz2 − z3

Qξ(ρi+l )∏Ms+1
j=1,j 
=i+l (ρi+l − ρj )

= lim
ε→0

L−1∑
l=0

1

(ri + lε)K−1

1

q(ri + lε) + pz2 − z3

Qξ(ρi − λqlε)∏Ms+1
j=1,j 
=i+l (ρi − λqlε − ρj )

,

(55)

where

Qξ(ρi + lε0)∏Ms+1
j=1,j 
=i+l (ρi + lε0 − ρj )

= (−1)L−1−lQξ (ρi + lε0)

εL−1
0 l!(L − 1 − l)!∏Ms+1

j=1,l 
=0,...,L−1(ρi + lε0 − ρj )

=
(
L−1

l

)

(L − 1)!
(−1)L−1−lQξ (ρi + lε0)

εL−1
0

∏Ms+1
j=1,l 
=0,...,L−1(ρi + lε0 − ρj )

,

with ε0 = −λqε. Inserting the last equation into (55) shows that the r.h.s. and l.h.s. of
(53) are equal, which completes the proof.
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Appendix A

In this appendix, we give the definition and the structure of some key matrices that
we shall refer to frequently.

The matrix A is a K-by-K upper bidiagonal block matrix with i-th upper diagonal
element equal to qi(F

o
i fi)⊗ I and i-th diagonal element equal to Fi ⊗ I+ I⊗Si , i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎝

F1 ⊗ I + I ⊗ S1 q1(F
o
1 f1) ⊗ I 0 . . . . . . 0

0 F2 ⊗ I + I ⊗ S2 q2(F
o
2 f2) ⊗ I 0 . . . 0

.

.

.
. . .

. . .
. . .

. . .
.
.
.

qK−1(F
o
K−1fK−1) ⊗ I

0 · · · · · · · · · 0 FK ⊗ I + I ⊗ SK

⎞
⎟⎟⎟⎟⎟⎠

.

The matrix B is a K-by-K lower diagonal matrix with i-th lower diagonal element
equal to I ⊗ (So

i si). Therefore, B has the following canonical form:

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . 0
I ⊗ (So

2 s2) 0 . . . 0

0 I ⊗ (So
3 s3) 0 . . .

...
...

. . .
...

0 . . . 0 I ⊗ (So
KsK) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix C is a K-by-K diagonal matrix with i-th diagonal element, i =
1, . . . ,K − 1, equal to pi(F

o
i fi) ⊗ I and K-th element equal to 0, i.e.,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1(F
o
1 f1) ⊗ I 0 . . . . . . 0

0 p2(F
o
2 f2) ⊗ I 0 . . .

...
...

. . .
...

0 . . . 0 pK−1(F
o
K−1fK−1) ⊗ I 0

0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix D is a K-by-K zero block matrix with (K,K)-block element equal to
(F o

KfK) ⊗ I. Therefore, D has the following canonical form:

D =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0
0 · · · · · · 0
...

...
...

0 · · · 0 0
0 · · · 0 (F o

KfK) ⊗ I

⎞
⎟⎟⎟⎟⎟⎠

.

The matrix U1 is an infinite size block diagonal matrix with diagonal blocks equal
to C, i.e.,

U1 =
⎛
⎜⎝

C 0 · · · · · · 0
0 C 0 · · · 0
...

. . .
. . .

. . .
...

⎞
⎟⎠ .
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The matrix U00 is an infinite size block diagonal matrix with diagonal blocks equal
to D. Therefore, U00 has the following canonical form:

U00 =
⎛
⎜⎝

D 0 · · · · · · 0
0 D 0 · · · 0
...

. . .
. . .

. . .
...

⎞
⎟⎠ .

The matrix U0 is an infinite size block diagonal matrix with diagonal blocks equal
to U00, i.e.,

U0 =
⎛
⎜⎝

U00 0 · · · · · · 0
0 U00 0 · · · 0
...

. . .
. . .

. . .
...

⎞
⎟⎠ .

Appendix B

The matrix M(i,1) is an Ms -by-Ms matrix with j -th row equal to (ξ1(ρj ), . . . ,

ξMs (ρj )) for j = 1, . . . ,Ms + 1 and j 
= i. Therefore, M(i,1) has the following
canonical form:

M(i,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1(ρ1) · · · ξMs (ρ1)
...

...
...

ξ1(ρi−1) · · · ξMs (ρi−1)

ξ1(ρi+1) · · · ξMs (ρi+1)
...

...
...

ξ1(ρMs+1) · · · ξMs (ρMs+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Recall that ξ(ρ) = s(ρI − S)−1So and ξ i(ρ) = ei(ρI − S)−1So. Moreover, ξ(ρ) is a
linear combination of ξ1(ρ), . . . , ξMs(ρ), and it is a rational function with denom-
inator, Qξ(ρ), of degree equal to Ms and numerator of degree <Ms . In addition,
ξ i(ρ), i = 1, . . . ,Ms , are also rational functions with denominator of degree ≤Ms

and numerator of degree smaller than the denominator. Therefore, it is easily seen
that ξ i(ρ) = P i(ρ)/Qξ (ρ), i = 1, . . . ,Ms , where Qξ(ρ) is the denominator of ξ(ρ).
Let C denote the matrix with (j, i)-entry equal to the coefficient of ρj−1 of the poly-
nomial P i(ρ).

Lemma 4 The determinant of M(i,1) is given by

det
(
M(i,1)

) = C(−1)i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk − ρj )

∏Ms+1
j=1 Qξ(ρj )

Qξ (ρi)∏Ms+1
j=1,j 
=i (ρj − ρi)

, (56)

where C = det(C).
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Proof We decompose M(i,1) as follows:

M(i,1) = D · V(i) · C,

where D is the diagonal matrix with j -th diagonal entry equal to 1/Qξ (ρj ), j =
1, . . . ,Ms and j 
= i, V(i) is the Vandermonde matrix of the following form:

V(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ1 . . . (ρ1)
Ms

...
...

1 ρi−1 . . . (ρi−1)
Ms

1 ρi+1 . . . (ρi+1)
Ms

...
...

1 ρMs+1 . . . (ρMs+1)
Ms

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the determinant of M(i,1) reads

det
(
M(i,1)

) = det(D)det
(
V(i)

)
det(C).

It is well known that the determinant of the Vandermonde matrix is given by, see, for
example, [5],

det
(
V(i)

) =
Ms∏

j=1,j 
=i

Ms+1∏
k=j+1,k 
=i

(ρk − ρj ) = (−1)i−1

∏Ms

j=1

∏Ms+1
k=j+1(ρk − ρj )

∏Ms+1
j=1,j 
=i (ρj − ρi)

.

Since D is the diagonal matrix with j -th diagonal entry equal to 1/Qξ (ρj ), j =
1, . . . ,Ms and j 
= i, it is readily seen that

det(D) = 1∏Ms+1
j=1,j 
=i Qξ (ρj )

.

Substituting the latter two equations into det(M(i,1)) immediately yields (56), which
completes the proof. �
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