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Abstract We consider an infinite-server queue, where the arrival and service rates are
both governed by a semi-Markov process that is independent of all other aspects of
the queue. In particular, we derive a system of equations that are satisfied by various
“parts” of the generating function of the steady-state queue-length, while assuming
that all arrivals bring an amount of work to the system that is either Erlang or hy-
perexponentially distributed. These equations are then used to show how to derive all
moments of the steady-state queue-length. We then conclude by showing how these
results can be slightly extended, and used, along with a transient version of Little’s
law, to generate rigorous approximations of the steady-state queue-length in the case
that the amount of work brought by a given arrival is of an arbitrary distribution.

Keywords Infinite-server queues · Semi-Markov process · Random environment
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1 Introduction

Queues with a randomly-varying arrival and service rate have recently received quite
a bit of attention in the queueing literature. The typical setting is as follows: there is
an external stochastic process, known as the environment, that takes values in some
state space E, and these values tend to control various aspects of the queueing system,
such as the arrival rate of customers, and the speed at which their work is processed.

Examples of such models in the single-server setting include the recent work of
Nain and Nunez-Queija [12], along with the work of Takine [16]. In [12], the au-
thors consider an M/M/1 queue that is influenced by a semi-Markovian environment
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which takes values in the state space {0,1}. The amount of time spent in state 0 has
a distribution that possesses a rational Laplace–Stieltjes transform (LST), while the
amount of time spent in state 1 is generally distributed, or in particular heavy-tailed,
in the sense that it has an infinite moment-generating function. There, the main goal
is to compute the z-transform of the steady-state queue-length distribution, by using
techniques from complex analysis. However, things are looked at from a different per-
spective in the work of [16]: in this case the environment process is a continuous-time
Markov chain, but multiple customer classes are considered, and both the arrival and
service rates change according to the environment. Furthermore, in this model each
customer brings an amount of work to the system that is generally distributed, with
the distribution depending on the class of the customer. This paper focuses more on
properties of the busy period, and the waiting time distribution of a customer that
arrives to the system during steady state.

Work has been very recently published in the infinite-server setting as well. In [3],
the authors consider an M/M/∞ queue, where only the service rates are governed
by an external environment process, which in this case is a continuous-time Markov
chain (CTMC) that again takes values in two states. Their main results include show-
ing that the steady-state queue-length can be written as the sum of two independent
random variables, where one of these variables is Poisson, and it can also be in-
terpreted as the number of customers present in a standard M/M/∞ queue. In the
infinite-server setting, we interpret the term “queue-length” as the number of cus-
tomers presently in the system. Later, D’Auria wrote a series of papers [4–6] on this
topic as well. The main point of [5] is to show that by using basic properties of Pois-
son processes on R

2, similar stochastic decomposition results can be obtained for the
steady-state queue-length, without necessarily assuming that the environment process
is a CTMC. In particular, his result allows for virtually any asymptotically station-
ary environment process, so long as that in steady state the environment process is
ergodic. He then obtains the results of [3] by performing a scheme that involves look-
ing at areas of random sets, where these sets are constructed based on the behavior of
the environment process. He then uses this same type of technique in the very recent
paper [6] to analyze an M/M/∞ queue with a semi-Markovian environment.

Very recently, Falin [7] has also shown that for an M/M/∞ queue, where both
the arrival rates and the service rates are influenced by a semi-Markovian environ-
ment, it is possible to apply what is known as a supplementary variable technique
to compute the mean steady-state queue-length. This technique involves looking at a
process that consists of three states: the number of customers in the system, the state
of the environment, and the time until the next environment transition (this last state
descriptor makes the process Markovian). This allows him to get an expression for
the generating function of the number of customers present in the system, and this
can be used to compute the steady-state mean queue-length. Older references focus-
ing on the infinite-server case include O’Cinneide and Purdue [13], and Keilson and
Servi [11].

The goal of this paper is to show how these results can be extended to the case
when all arrivals bring Erlang, or hyperexponential amounts of work to the system.
Once these results are established, it is easy to see that the same technique can be
used for the case when arrivals bring to the system an amount of work that consists
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of a mixture of Erlang distributions. However, it is well known (see, for instance,
Asmussen [1]) that these random variables are dense in the space of nonnegative
random variables under the Prohorov metric (a weak convergence metric), so we
conclude by using this fact, along with a transient version of Little’s law, to show
that some type of analysis is still possible when the service times have a general
distribution.

The main technique we will use in this paper involves looking at the queue-length
process at the transition epochs of the environment process. Once we obtain the
steady-state behavior of the process at these epochs, we will use the inversion for-
mula (see [2]) to relate this to the steady-state behavior of the process at an arbitrary
time. It would also be possible to apply a semi-regenerative argument (see, for exam-
ple Chap. 7, Sect. 5 of [1]) but in this case we would also have to assume the presence
of some sort of non-lattice condition, because these arguments lead to a limiting re-
sult. The reader should keep in mind that the Palm approach only says something
about the stationary process: however, if the process has a limiting distribution, it
will coincide with the marginal distribution of our stationary process.

2 Model description

Our paper will focus on an infinite-server queueing system, where the arrivals and
service rates are governed by a stationary semi-Markov process C := {C(t); t ∈ R},
on a finite state space E: here R is used to denote the set of all real numbers. The
transition times of C will be denoted by {Tn}n∈Z , where Z represents the set of all
integers. It shall be assumed that these random variables, along with all other random
elements found in this paper, exist on a probability space (Ω, F ,P ), where Ω is an
arbitrary space, F is an appropriate σ -field of subsets of Ω , and P is a probability
measure that is defined on F .

To completely describe how C evolves through time, it will suffice to give a path-
wise description of both how long it spends in each state, and how it makes transi-
tions from one state to the next. Hence, let Ai,j (x) = P(Tn+1 − Tn ≤ x,C(Tn+1) =
j |C(Tn) = i). This represents the probability that, given at time Tn the process C has
just made a transition to state i, it will make another transition before time Tn + x,
and that transition will consist of a jump from state i to state j . Moreover, clearly
ri,j := Ai,j (∞) represents the probability that the environment jumps directly to state
j from state i. We will let αi,j (s) = ∫ ∞

0 e−sx dAi,j (x) denote the LST of Ai,j , and
αi(s) = ∑

j∈E
αi,j (s). Finally, let {πi}i∈E denote the stationary distribution of C at

its transition times, and let υi = E[Tn+1 − Tn|C(Tn) = i], and υ = ∑
i∈E

υiπi . Our
assumption of a finite E ensures that the process C is regular, in that the expected
number of its transitions in any compact set is finite. Such conditions will not explic-
itly be needed throughout our analysis, but they are needed in order to ensure that
our semi-Markov process does not actually terminate at some point. With that being
said, it should be emphasized that a finite state space is not a necessary condition for
regularity: indeed, the reason we need the state space of the environment to be finite
is because we will eventually be interested in solving a system of equations, where
the number of equations and unknowns will equal the number of states.
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We also consider an infinite-server queueing system, which is influenced by the
environment in the following way: while the environment is in state i, the system
serves the remaining amount of work that is possessed by each customer currently
in the system at a rate μi , and new arrivals show up in accordance with a Poisson
process with rate λi , where the nth arrival to the system brings a random amount of
work Bn, with distribution function B(t). Here we follow the convention that, if {Xn}
denotes the arrival times of customers to the system, then X0 ≤ 0 < X1. Throughout
the paper, we will assume that μi > 0 for all i ∈ E, but this assumption is not essential
for the analysis found within the next three sections; it is only used to make the paper
slightly more readable. Finally, we also assume that the service requirements of all
customers are independent of one another.

Thus, one could think of the arrival process in this case as being a “semi-Markov-
modulated Poisson process,” but of course this arrival process is not independent of
how the customers are served in the system. To specify exactly what sort of depen-
dence structure is being assumed here among all of the stochastic elements present in
this model, it suffices to say that conditional on a given sample-path of the environ-
ment process, the customers arrive according to a non-homogeneous Poisson process,
and if someone arrives at time t and brings an amount of work W , it will be in the
system for an amount of time T (t), where

W =
∫ t+T (t)

t

μC(s) ds.

In both [5] and [6], heavy use is made of the following fact from point process
theory.

Theorem 2.1 Suppose N is a non-homogeneous Poisson process on R with points
{Xn}n∈Z , where for each Borel set A,

N(A) =
∑

n∈Z
δXn(A),

where δx(A) = 1 if x ∈ A, and δx(A) = 0 otherwise. If we associate to each point Xn

a random variable Yn that is independent of all other locations of N and their marks,
then the new point process M with points in R

2 that satisfies, for any Borel sets A, B ,

M(A × B) =
∑

n∈Z
δ(Xn,Yn)(A × B)

is a non-homogeneous Poisson process in R
2.

When we say that M is a non-homogeneous Poisson process in R
2, we mean

that the number of points in any Borel set A ∈ R
2 is Poisson-distributed, and

for any disjoint collection of Borel sets A1, . . . ,An ⊆ R
2, the random variables

M(A1), . . . ,M(An) are independent.
Keeping our model in mind, we see that if we associate with each customer arrival

time Xn its service requirement Bn, and we condition on the sample-path of the
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environment, the resulting point process on R
2 is Poisson. This implies that while

conditioning on the environment, the number of customers in the system at time zero
is Poisson as well. Proofs of these well-known facts can be found, for instance, in
Serfozo [15].

This interesting property of Poisson processes was used in [5] to obtain a stochas-
tic decomposition of the queue-length into two independent quantities, where one of
those quantities represents the stationary distribution of a standard M/G/∞ queue.
Indeed, a stochastic decomposition that is similar in type to that discussed in [5] can
also be easily generalized to our setting.

Theorem 2.2 Consider an M/G/∞ system with a semi-Markov-modulated arrival
and service rate, where λ := infi∈E λi > 0, and μ := supi∈E μi > 0. Then the steady-
state number of customers in the system can be decomposed into the sum of two
independent random variables:

Q = Q
M/G/∞
λ,μ + QC,

where Q
M/G/∞
λ,μ represents the steady-state number of customers in the system in a

standard M/G/∞ queue that processes work at a rate μ that is brought by customers
arriving in a Poisson manner at rate λ, and QC is a randomized Poisson random
variable, with a parameter that depends on the environment process C.

The proof of this result is essentially the same as the proof of the decomposi-
tion result found in [5], with only a slight modification: a semi-Markov-modulated
Poisson process can be represented as an independent sum of a homogeneous Pois-
son process with rate λ, along with another semi-Markov-modulated Poisson process
that at times has a rate of zero. Furthermore, as is done in [5], we will follow with a
practical description of the result, by saying that the steady-state population can be
decomposed into two classes: those that would have still been in the system, regard-
less of the increase of arrivals or the decrease in service speed, and the rest.

This result could very well be useful towards determining various properties of
the steady-state queue-length distribution, but our approach will not involve its use.
Rather, we will first derive a system of equations containing functions that can be
interpreted as “parts” of the generating function of the steady-state queue-length,
while further assuming that all customers bring an amount of work that is either
Erlang or hyperexponentially distributed. These results are then used to show how one
can generate a system of equations that consist of unknowns, which once solved for
can be used to compute the mean queue-length in steady state. We will then conclude
by providing a rigorous approximation of the moments of the queue-length in steady
state for the case when the services are allowed to have any type of distribution, by
using Little’s law, along with the fact that mixtures of Erlang distributions can be
used to approximate any type of distribution with nonnegative support, with respect
to the weak convergence metric.

Throughout the paper, we will use results from stationary point process theory to
relate the stationary distribution of our process at the transition epochs of the envi-
ronment to the stationary distribution of the process at an arbitrary time. In particular,
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this will involve the use of the Palm measure P0 that is induced by the point process
consisting of the transition times of the environment. We will not go into great math-
ematical details to precisely describe how P0 is defined: indeed, the interested reader
has many references to choose from regarding this topic, with recent ones including
[2], Chap. 7, Sect. 6 of [1], and Chap. 6 of [14]. The reader merely needs to be aware
of the following facts: (i) for an event A, P0(A) can be interpreted as the probability
of A, given that the environment process changes state at time zero, and (ii) under the
measure P0, the joint distribution of (Q(Tn),C(Tn)) is the same for all n ∈ Z .

3 Exponential services

We will first consider the case when each customer brings an amount of service that
is exponentially distributed with rate ν, i.e., for each t ≥ 0,

B(t) = 1 − e−νt .

The approach we will use to compute all of the factorial moments of the queue-length
will basically involve coming up with a system of equations that the functions mj(z)

satisfy, where mj(z) = E0[zQ(0)1(C(0) = j)].
Our first result provides an expression for the generating function of the steady-

state queue-length. This will be used to compute the factorial moments E[(Q(0))n]
for n ≥ 1, where for x ∈ R, (x)n = x(x − 1) · · · (x − n + 1).

Theorem 3.1 The functions mj , j ∈ E, satisfy the following system of equations: for
each j ∈ E,

mj(z) =
∑

i∈E

∫ ∞

0
e
− λi (1−e−μiνt )(1−z)

μi ν mi

(
1 − e−μiνt (1 − z)

)
dAi,j (t). (1)

Proof It was mentioned in the previous section that mi(z) is equal to
E0[zQ(T1)1(C(T1) = i)], so to compute this we will first condition on Q(0) and
C(0).

Suppose Q(0) = m and C(0) = i, where m ≥ 0 and i ∈ E. After conditioning on
the event that T1 = t , we see that each of these m customers will be in the system at
time t with probability e−μiνt . Furthermore, there could also be customers present in
the system at time t that originally were not there at time zero. For a given customer
that arrives to the system after time 0 but before time t , we see that the probability he
or she is still in the system at time t is given by

∫ t

0
e−μiν(t−s) 1

t
ds = 1 − e−μiνt

μiνt
.

Since the number of customers that arrive in (0, t] is Poisson with rate λit , we see
that
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E0
[
zQ(T1)1

(
C(T1) = j

)|Q(0) = m,C(0) = i
]

=
∫ ∞

0

∞∑

n=0

(λi t)
ne−λi t

n!
(
1 − e−μiνt (1 − z)

)m
(

1 − 1 − e−μiνt

μiνt
(1 − z)

)n

dAi,j (t)

=
∫ ∞

0
e
− λi (1−e−μiνt )(1−z)

μi ν
(
1 − e−μiνt (1 − z)

)m
dAi,j (t).

After unconditioning, we conclude that

mj(z) =
∑

i∈E

∫ ∞

0
e
− λi (1−e−μiνt )(1−z)

μi ν mi

(
1 − e−μiνt (1 − z)

)
dAi,j (t)

which completes the proof. �

The following corollary then immediately follows from this result.

Corollary 3.1 The moments zn,j = E0[(Q(0))n1(C(0) = j)] satisfy the following
system of equations: for n ≥ 1 and j ∈ E,

zn,j =
∑

i∈E

n∑

k=0

(
n

k

)(
λi

μiν

)n−k
[

n−k∑

l=0

(−1)l
(

n − k

l

)

αi,j

(
(k + l)μiν

)
]

zk,i . (2)

Remark Notice that (2) can be used to compute all embedded factorial moments, in a
recursive fashion: indeed, notice that the first factorial moments can be computed by
solving a system of linear equations, where the number of equations and unknowns is
equal to the cardinality of E. Furthermore, once these are known, they can be plugged
into a second system, and we end up with another system that is of the same size as
the previous one. This procedure can clearly be repeated to produce higher moments
as well.

The reader should also notice that this system of equations will always have a
solution, namely the moments zn,j . Proving that such a system has a unique solution,
however, is an issue. In the special case |E| = 2, this appears to be simple (the solution
is explicitly given in [7]).

Proof The proof of this result merely involves differentiating (1). From Leibniz rule,
we see that for each n ≥ 1,

m
(n)
j (z) =

∑

i∈E

∫ ∞

0
e
− λi (1−e−μiνt )(1−z)

μi ν

n∑

k=0

(
n

k

)

e−kμiνt

(
λi

μiν

(
1 − e−μiνt

)
)n−k

m
(k)
i

× (
1 − e−μiνt (1 − z)

)
dAi,j (t). (3)

By letting z = 1 in (3), we observe that

E0
[
(Q)n1(C = j)

] =
∑

i∈E

∫ ∞

0

n∑

k=0

(
n

k

)

e−kμiνt

(
λi

μiν

)n−k
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×
n−k∑

l=0

(−1)l
(

n − k

l

)

e−lμiνtE0
[
(Q)k1(C = i)

]
dAi,j (t)

=
∑

i∈E

n∑

k=0

(
n

k

)(
λi

μiν

)n−k
[

n−k∑

l=0

(−1)l
(

n − k

l

)

αi,j

(
(k + l)μiν

)
]

× E0
[
(Q)k1(C = i)

]
. �

The following formula can be used to relate the moments at a transition epoch to
the moments at an arbitrary epoch.

Theorem 3.2 For each j ∈ E,

E
[
zQ(0)1

(
C(0) = j

)] = 1

υ

∫ ∞

0
e
− λj (1−e

−μj νt
)(1−z)

μj ν mj

× (
1 − eμj νt (1 − z)

)
Aj(t)πj dt, (4)

where Aj(t) = P(Tn+1 − Tn > t |C(Tn) = j).

Proof From the inversion formula (see [2]), we also find that

E
[
zQ(0)1

(
C(0) = j

)] = 1

υ
E0

[∫ T1

0
zQ(t)1

(
C(t) = j

)
dt

]

= 1

υ

∫ ∞

0
E0

[
zQ(t)|T1 > t,C(t) = j

]
Aj(t)πj dt.

However, under the measure P0, T0 = 0 almost surely, and furthermore,

E0
[
zQ(t)|T1 > t,C(t) = j

]
πj = πje

− λj
μj ν

(1−e
−μj νt

)(1−z)
mj

(
1 − e−μj νt (1 − z)

)
.

Therefore,

E
[
zQ(0)1

(
C(0) = j

)] = 1

υ

∫ ∞

0
e
− λj (1−e

−μj νt
)(1−z)

μj ν mj

× (
1 − eμj νt (1 − z)

)
Aj(t)πj dt.

This proves the claim. �

Corollary 3.2 The nth factorial moment of the steady-state queue-length distribution
is

E
[(

Q(0)
)
n

] =
∑

i∈E

πi

υ

n∑

k=0

(
n

k

)(
λi

μiν

)n−k n−k∑

l=0

(−1)l
(

n − k

l

)
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×
[

1

(k + l)μiν

(
1 − αi

(
(k + l)μiν

))
1(k + l > 0)

+ υi1(k + l = 0)

]

zk,i .

Proof After applying Leibniz rule to (4), we also see that

E
[(

Q(0)
)
n
zQ(0)−n1

(
C(0) = j

)]

= 1

υ

∫ ∞

0
e
− λj (1−e

−μj νt
)(1−z)

μj ν

n∑

k=0

(
n

k

)

e−kμj νt

(
λj

μjν

(
1 − e−μj νt

)
)n−k

× m
(k)
j

(
1 − e−μj νt (1 − z)

)
Aj(t)πj dt

and so, putting z = 1, gives

E
[(

Q(0)
)
n
1
(
C(0) = j

)]

= 1

υ

∫ ∞

0

n∑

k=0

(
n

k

)

e−kμj νt

(
λj

μjν

)n−k n−k∑

l=0

(−1)l
(

n − k

l

)

e−lμj νt

× E0
[
(Q)k1(C = j)

]
Aj(t)πj dt

= πj

υ

n∑

k=0

(
n

k

)(
λj

μjν

)n−k n−k∑

l=0

(−1)l
(

n − k

l

)

×
[
(1 − αj ((k + l)μjν))

(k + l)μj ν
1(k + l > 0) + υj 1(k + l = 0)

]

× E0
[
(Q)k1(C = j)

]
.

This concludes the proof. �

4 Hyperexponential services

We continue by considering the case where the amount of service each customer
brings to the system is hyperexponentially distributed, i.e., for each t ≥ 0,

B(t) =
n0∑

k=1

pi

(
1 − e−νi t

)
,

where n0 is a positive integer, pi , 1 ≤ i ≤ n0 are probabilities summing to 1 and
νi > 0, for 1 ≤ i ≤ n0. In our model, we can say that a given customer that arrives
to the system is a type-i customer with probability pi , and type-i customers bring
an exponentially distributed (with rate νi ) amount of work to the system. For ease of
exposition, we will focus on the case when n0 = 2, but it will become clear that the
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same type of reasoning can be used for arbitrary n0. The reader will lately see that the
key to calculating all of the moments of the queue-length will depend on solving a
system of linear equations, and so in order to gain his confidence in our statement we
will provide, in the form of a remark, the linear systems required for an arbitrary n0.

We will track the customers present in the system by using the processes
{Qi(t); t ∈ R}, for 1 ≤ i ≤ n0, where Qi(t) represents the number of customers
present in the system at time t that are of type i.

Again, our first step will involve deriving a system of equations, which are satisfied
by the functions mj(z1, z2) = E0[zQ1(0)

1 z
Q2(0)
2 1(C(0) = j)].

Theorem 4.1 The functions mj , j ∈ E, satisfy the following system of equations: for
each j ∈ E,

mj(z1, z2) =
∑

i∈E

∫ ∞

0
e
−p1

λi
μi ν1

(1−e−μiν1 t )(1−z1)
e
−p2

λi
μi ν2

(1−e−μiν2t )(1−z2)

× mi

(
1 − e−μiν1t (1 − z1),1 − e−μiν2t (1 − z2)

)
dAi,j (t). (5)

Proof We recall that (Q1(0),Q2(0),C(0))
d= (Q1(T1),Q2(T1),C(T1)), so to com-

pute each mj it will again be helpful to condition on Q1(0), Q2(0), and C(0). Once
we have conditioned on these variables, it will be useful to also condition on the num-
ber of new arrivals in the interval (0, T1], which we also condition on by assuming
that it is of length t . Therefore, assuming C(0) = i, there are four different popula-
tions to consider: (1) type-1 customers currently in the system at 0, that leave before
time T1 with probability 1 − ηi , (2) type-2 customers currently in the system at 0,
that leave before T1 with probability 1 − δi , (3) new type-1 customers that arrive in
(0, T1], which leave before T1 with probability 1 − βi , and finally (4) new type-2
customers that arrive in (0, T1], which leave before T1 with probability 1 − γi . Thus,
ηi = e−μiν1t , δi = e−μiν2t ,

βi =
∫ t

0
e−μiν1(t−s) 1

t
ds = 1 − e−μiν1t

μiν1

and

γi =
∫ t

0
e−μiν2(t−s) 1

t
ds = 1 − e−μiν2t

μiν2
.

Now we are ready to begin our computations. Here

E0
[
z
Q1(T1)
1 z

Q2(T1)
2 1

(
C(T1) = j

)|Q1(0) = i1,Q2(0) = i2,C(0) = i
]

=
∫ ∞

0

∞∑

n1=0

∞∑

n2=0

(p1λit)
n1e−p1λi t

n1.

(p2λit)
n2e−p2λi t

n2.
(1 − ηi + ηiz1)

n1

× (1 − δi + δiz2)
n2(1 − βi + βiz1)

i1(1 − γi + γiz2)
i2 dAi,j (t)

=
∫ ∞

0
e−p1λi tηi (1−z1)e−p2λi tδi (1−z2)(1 − β + βz1)

i1(1 − γ + γ z2)
i2 dAi,j (t)
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=
∫ ∞

0
e
−p1

λi
μi ν1

(
1−e−μi ν1t

)
(1−z1)

e
−p2

λi
μi ν2

(
1−e−μiν2 t

)
(1−z2)

(
1 − e−μiν1t (1 − z1)

)i1

× (
1 − e−μiν2t (1 − z2)

)i2 dAi,j (t).

After unconditioning, we then see that

mj(z1, z2) =
∑

i∈E

∫ ∞

0
e
−p1

λi
μi ν1

(1−e−μiν1 t )(1−z1)
e
−p2

λi
μi ν2

(1−e−μiν2t )(1−z2)

× mi

(
1 − e−μiν1t (1 − z1),1 − e−μiν2t (1 − z2)

)
dAi,j (t)

and so (5) holds. �

This immediately gives the following corollary.

Corollary 4.1 The first moments zi,j = E0[Qi(0)1(C(0) = j)] satisfy the following
system of equations: for each j ∈ E,

z1,j =
∑

i∈E

[

πip1
λi

μiν1

(
ri,j − αi,j (μiν1)

) + z1,iαi,j (μiν1)

]

and

z2,j =
∑

i∈E

[

πip2
λi

μiν2

(
ri,j − αi,j (μiν2)

) + z2,iαi,j (μiν2)

]

.

Proof After taking partial derivatives in (5) and setting (z1, z2) = (1,1), we end up
with the following system of equations:

E0
[
Q1(0)1

(
C(0) = j

)] =
∑

i∈E

[

πip1
λi

μiν1

(
ri,j − αi,j (μiν1)

)

+ E0
[
Q1(0)1(C(0) = i)

]
αi,j (μiν1)

]

and

E0
[
Q2(0)1

(
C(0) = j

)] =
∑

i∈E

[

πip2
λi

μiν2

(
ri,j − αi,j (μiν2)

)

+ E0
[
Q2(0)1

(
C(0) = i

)]
αi,j (μiν2)

]

,

which is the same as the equations given in the second part of the corollary. Notice
that these equations are no more difficult to solve than the ones found in [7], which
are the same as system (2); as a matter of fact, they can be split into two sets, with
each set being of the same form as the system of equations in [7]. �
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Remark From this argument, it is easy to see what the system of equations will look
like if we consider an arbitrary number n0 of types of customers. In particular, for
each customer type-m, 1 ≤ m ≤ n0, we have the corresponding system of equations
and unknowns:

zm,j =
∑

i∈E

[

πipm

λi

μiνm

(
ri,j − αi,j (μiνm)

) + zm,iαi,j (μiνm)

]

.

Again, we can relate these moments to the moments at an arbitrary time.

Theorem 4.2 For each j ∈ E,

E
[
z
Q1(0)
1 z

Q2(0)
2 1

(
C(0) = j

)]

= 1

υ

∫ ∞

0
e
−p1

λj
μj ν1

(1−e
−μj ν1 t

)(1−z1)
e
−p2

λj
μj ν2

(1−e
−μj ν2 t

)(1−z2)

× mj

(
1 − e−μj ν1t (1 − z1),1 − e−μj ν2t (1 − z2)

)
Aj(t) dt.

Proof To compute the LST of the steady-state queue-length at an arbitrary instant,
we can again use the inversion formula to conclude that

E
[
z
Q1(0)
1 z

Q2(0)
2 1

(
C(0) = j

)]

= 1

υ
E0

[∫ ∞

0
z
Q1(t)
1 z

Q2(t)
2 1

(
C(t) = j

)
1(T1 > t)dt

]

= 1

υ

∫ ∞

0
E0

[
z
Q1(t)
1 z

Q2(t)
2 |T1 > t,C(t) = j

]
Aj(t)πj dt.

But T0 = 0 almost surely under P0, and furthermore,

E0
[
z
Q1(t)
1 z

Q2(t)
2 |T1 > t,C(t) = j

]
πj

= πje
−p1

λj
μj ν1

(1−e
−μj ν1t

)(1−z1)
e
−p2

λj
μj ν2

(1−e
−μj ν2t

)(1−z2)

× mj

(
1 − e−μiν1t (1 − z1),1 − e−μiν2t (1 − z2)

)
.

Therefore,

E
[
z
Q1(0)
1 z

Q2(0)
2 1

(
C(0) = j

)]

= 1

υ

∫ ∞

0
e
−p1

λj
μj ν1

(1−e
−μj ν1 t

)(1−z1)
e
−p2

λj
μj ν2

(1−e
−μj ν2 t

)(1−z2)

× mj

(
1 − e−μj ν1t (1 − z1),1 − e−μj ν2t (1 − z2)

)
Aj(t) dt. �

We can then get an expression for any moment we would like of the queue-length
at an arbitrary time, by taking the appropriate derivatives.
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Corollary 4.2 The mean steady-state queue-length is given by

E
[
Q(0)

] =
∑

j∈E

1

υ

[

πj

λjp1

μjν1
υj +

[

z1,j − λjp1

μjν1
υj

]
1 − αj (μjν1)

μjν1

]

+
∑

j∈E

1

υ

[

πj

λjp2

μjν2
υj +

[

z2,j − λjp2

μjν2
υj

]
1 − αj (μjν2)

μjν2

]

. (6)

Proof After taking derivatives, we see that

E
[
Q1(0)1

(
C(0) = j

)] = 1

υ

[

πj

λjp1

μjν1
υj +

[

E0
[
Q1(0)1

(
C(0) = j

)]

− λjp1

μjν1
υj

]
1 − αj (μjν1)

μjν1

]

and

E
[
Q2(0)1

(
C(0) = j

)] = 1

υ

[

πj

λjp2

μjν2
υj +

[

E0
[
Q2(0)1

(
C(0) = j

)]

− λjp2

μjν2
υj

]
1 − αj (μjν2)

μjν2

]

.

These expressions can then be used to derive (6). �

Remark As was mentioned in the proof, higher moments of the queue-length can
also be computed as well, by taking as many derivatives as needed. For instance, the
system of equations that can be used to compute E[Q1(0)Q2(0)] is as follows:

E0
[
Q1(0)Q2(0)1

(
C(0) = j

)]

=
∑

i∈E

p1

ν1

λi

μi

p2

ν2

λi

μi

πi

(
ri,j − αi,j (μiν1) − αi,j (μiν2) + αi,j

(
μi(ν1 + ν2)

))

+
∑

i∈E

p2

ν2

λi

μi

(
αi,j (μiν1) − αi,j

(
μi(ν1 + ν2)

))
E0

[
Q1(0)1

(
C(0) = i

)]

+
∑

i∈E

p1

ν1

λi

μi

(
αi,j (μiν2) − αi,j

(
μi(ν1 + ν2)

))
E0

[
Q2(0)1

(
C(0) = i

)]

+
∑

i∈E

αi,j

(
μi(ν1 + ν2)

)
E0

[
Q1(0)Q2(0)1

(
C(0) = i

)]
.
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5 Erlang services

We now consider the case where the services are Erlang-distributed, with n0 ≥ 1
phases. In this case,

B(t) = 1 −
n0−1∑

k=0

(νt)ke−νt

k! .

Again, we will assume that n0 = 2, but it will be clear as to how to proceed for
large n0.

Let Qi(t) denote the number of queueing customers present in the system that are
in phase i, for i = 1,2. Here a phase refers to a characteristic of the customer’s ser-
vice. In particular, each customer’s service amount is Erlang-distributed, and this can
be broken up into two exponential random variables. A given customer is said to be in
phase 1 during the times when the server is processing work from this first exponen-
tial amount, and he or she is in phase 2 during the processing of the second amount.
Throughout the rest of the paper, customers that are in phase i will be referred to as
type-i customers.

Again, we can derive the same type of equations for the functions mj(z1, z2) =
E0[zQ1(0)

1 z
Q2(0)
2 1(C(0) = j)].

Theorem 5.1 The functions mj satisfy the following system of equations: for each
j ∈ E,

mj(z1, z2) =
∑

i∈E

∫ ∞

0
e−λi tηi,1(1−z1)e−λi tηi,2(1−z2)mi

× (1 − βi,1 − βi,2 + βi,1z1 + βi,2z2,1 − γi,2 + γi,2z2) dAi,j (t),

where ηi,n = 1
μiνt

[1 − ∑n−1
k=0

(μiνt)ke−μiνt

k! ], βi,n = (μiνt)n−1e−μiνt

(n−1)! , and γi,n =
(μiνt)n−2e−μiνt

(n−2)! .

Proof Clearly, we see that

E0
[
z
Q1(T1)
1 z

Q2(T1)
2 1

(
C(T1) = j

)|Q1(0) = i1,Q2(0) = i2,C(0) = i
]

=
∫ ∞

0
E0

[
z
Q1(t)
1 z

Q2(t)
2 |Q1(0) = i1,Q2(0) = i2,C(0) = i,C(t) = j

]
dAi,j (t)

=
∫ ∞

0

∞∑

n=0

E
[
z
Q1(t)
1 z

Q2(t)
2 |Q1(0) = i1,Q2(0) = i2,C(0) = i,C(t) = j,

Nλj
(0, t] = n

] (λi t)
ne−λi(t)

n.
dAi,j (t),

where Nλj
represents a homogeneous Poisson process with rate λj .
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At this point we have to consider three different types of populations: type-1 cus-
tomers that were present in the system at time 0, type-2 customers present at 0, and
new arrivals in (0, t]. If, at the time of a transition the environment is in state i, each
type-1 customer will, at time t , either be a type-1 customer, a type-2 customer, or it
will leave the system, with probabilities βi,1, βi,2, and 1 − βi,1 − βi,2, respectively.
A type-2 customer will stay as a type-2 with probability γi,2, and a new arrival will
be type-1, type-2, or will leave with probabilities ηi,1, ηi,2, or 1 − ηi,1 − ηi,2, respec-
tively. The behavior of each customer is independent of all other customers present
in the system, and because of this we are able to just use multinomial transforms to
compute the above expression. Therefore,

E0
[
z
Q1(T1)
1 z

Q2(T1)
2 1

(
C(T1) = j

)|Q1(0) = i1,Q2(0) = i2,C(0) = i
]

=
∫ ∞

0

∞∑

n=0

(λi t)
ne−λi t

n! (1 − ηi,1 − ηi,2 + ηi,1z1 + ηi,2z2)
n

× (1 − βi,1 − βi,2 + βi,1z1 + βi,2z2)
i1

× (1 − γi,2 + γi,2z2)
i2 dAi,j (t)

=
∫ ∞

0
e−λi t (ηi,1(1−z1)+ηi,2(1−z2))(1 − βi,1 − βi,2 + βi,1z1 + βi,2z2)

i1

× (1 − γi,2 + γi,2z2)
i2 dAi,j (t).

Again, after unconditioning we find that

mj(z1, z2) =
∑

i∈E

∫ ∞

0
e−λi tηi,1(1−z1)e−λi tηi,2(1−z2)

× mi(1 − βi,1 − βi,2 + βi,1z1 + βi,2z2,1 − γi,2 + γi,2z2) dAi,j (t).

All we need to do now is compute the η’s, β’s and γ ’s. When computing each
ηi,n, we can apply the Campbell–Mecke formula (see [2]) to quickly deduce that, for
each n,

ηi,n =
∫ t

0
P

(
Nμiν(t − s) = n − 1

)1

t
ds

= 1

μiνt

[

1 −
n−1∑

k=0

(μiνt)ke−μiνt

k!

]

.

Here Nχ is used to represent a homogeneous Poisson process with rate χ , for all
χ > 0. Furthermore,

βi,n = P
(
Nμiν(t) = n − 1

) = (μiνt)n−1e−μiνt

(n − 1)!



80 Queueing Syst (2009) 61: 65–84

and

γi,n = P
(
Nμiν(t) = n − 2

) = (μiνt)n−2e−μiνt

(n − 2)! .

This concludes the proof. �

Corollary 5.1 The first moments zi,j = E[Qi(0)1(C(0) = j)] can be found by solv-
ing the following systems of equations: for j ∈ E,

z1,j =
∑

i∈E

[

πi

λi

μiν

(
ri,j − αi,j (μiν)

) + αi,j (μiν)z1,i

]

and

z2,j =
∑

i∈E

[

πi

λi

μiν

(
ri,j − αi,j (μiν) + μiνα′

i,j (μiν)
)

− μiνα′
i,j (μiν)z1,i + αi,j (μiν)z2,i

]

.

Proof After taking derivatives, setting z = 1 and plugging-in the correct expressions
for ηn, βn and γn, we conclude that

E0
[
Q1(0)1

(
C(0) = j

)] =
∑

i∈E

[

πi

λi

μiν

(
ri,j − αi,j (μiν)

)

+ αi,j (μiν)E0
[
Q1(0)1

(
C(0) = i

)]
]

and

E0
[
Q2(0)1

(
C(0) = j

)] =
∑

i∈E

[

πi

λi

μiν

(
ri,j − αi,j (μiν) + μiνα′

i,j (μiν)
)

− μiνα′
i,j (μiν)E0

[
Q1(0)1

(
C(0) = i

)]
]

+
∑

i∈E

αi,j (μiν)E0
[
Q2(0)1

(
C(0) = i

)]
.

�

Remark If there are an arbitrary number of phases n0, it is not difficult to see that for
each l, j , where 1 ≤ l ≤ n0 and j ∈ E,

zl,j =
∑

i∈E

πiλi

νμi

[

ri,j −
l−1∑

k=0

(−μiν)kα
(k)
i,j (μiν)

k!

]

+
∑

i∈E

l∑

m=1

zm,i

(−μiν)l−mα
(l−m)
i,j (μiν)

(l − m)! .
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The moments at an arbitrary time can also be computed through the use of exactly
the same methods as were used before.

Theorem 5.2 For each j ∈ E, we see that

E
[
z
Q1(0)
1 z

Q2(0)
2 1

(
C(0) = j

)] = 1

υ

∫ ∞

0
e−λj tηj,1(1−z1)e−λj tηj,2(1−z2)

× mj(1 − βj,1 − βj,2 + βj,1z1 + βj,2z2,1 − γj,2

+ γj,2z2)Aj (t) dt.

Proof In order to convert from the embedded steady-state distribution to the steady-
state distribution at an arbitrary time, we will again use the inversion formula:

E
[
z
Q1(0)
1 z

Q2(0)
2 1

(
C(0) = j

)]

= 1

υ
E0

[∫ ∞

0
z
Q1(t)
1 z

Q2(t)
2 1

(
T > t,C(t) = j

)
dt

]

= 1

υ

∫ ∞

0
e−λj tηj,1(1−z1)e−λj tηj,2(1−z2)

× E0
(
(1 − βj,1 − βj,2 + βj,1z1 + βj,2z2)

Q1(0)

× (1 − γj,2 + γj,2z2)
Q2(0)1

(
C(0) = j

))
Aj(t) dt

= 1

υ

∫ ∞

0
e−λj tηj,1(1−z1)e−λj tηj,2(1−z2)

× mj(1 − βj,1 − βj,2 + βj,1z1 + βj,2z2,1 − γj,2 + γj,2z2)Aj (t) dt. �

Again, computing any steady-state moments of interest will involve plugging-in
the appropriate values for the ηj,k , βj,k and γj,k probabilities, and then differentiat-
ing. Thus,

Corollary 5.2 The mean number of customers in the system during steady state is
just

E
[
Q(0)

] =
∑

j∈E

[
E

[
Q1(0)1

(
C(0) = j

)] + E
[
Q2(0)1

(
C(0) = j

)]]
,

where

E
[
Q1(0)1

(
C(0) = j

)] = 1

υ

[
λjπj

μjν

[

υj − 1 − αj (μjν)

μjν

]

+ 1 − αj (μjν)

μjν
z1,j

]

and
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E
[
Q2(0)1

(
C(0) = j

)]

= 1

υ

[
λjπj

μjν

[

υj − 1 − αj (μjν)

μjν
− 1 − αj (μjν)

μjν
+ α′

j (μjν)

]]

+ 1

υ

[(
1 − αj (μjν)

μjν
− α′

j (μjν)

)

z1,j

]

+ 1

υ

1 − αj (μjν)

μjν
z2,j .

Proof After taking derivatives and letting z = 1, we get

E
[
Q1(0)1

(
C(0) = j

)] = 1

υ

[
λjπj

μjν

[

υj − 1 − αj (μjν)

μjν

]

+ 1 − αj (μjν)

μjν
E0

[
Q1(0)1

(
C(0) = j

)]
]

and

E
[
Q2(0)1

(
C(0) = j

)]

= 1

υ

[
λjπj

μjν

[

υj − 1 − αj (μjν)

μjν
− 1 − αj (μjν)

μjν
+ α′

j (μjν)

]]

+ 1

υ

[(
1 − αj (μjν)

μjν
− α′

j (μjν)

)

E0
[
Q1(0)1

(
C(0) = j

)]
]

+ 1

υ

1 − αj (μjν)

μjν
E0

[
Q2(0)1

(
C(0) = j

)]
.

This concludes the proof. �

6 General services

At this point it is also clear that expressions for the steady-state moments of the
queue-length can be computed in the case when B(t) is a mixture of Erlang distrib-
utions, and from a result in Asmussen [1] we also know that these distributions are
dense in the space of distributions with nonnegative support. Our goal now is to prove
a continuity theorem, which will allow us to approximate all steady-state moments
of the queue-length by approximating arbitrary services with Erlang mixtures. In this
section it will be necessary to assume that μi > 0, for i ∈ E; we assumed it as well in
previous sections, but there the assumption was not strictly needed.

Theorem 6.1 Let {Qm(t); t ∈ R} denote a stationary version of the queue-length
process described above, where each customer brings an amount of work Bm

n , n ∈ Z .
If, for each n, Bm

n converges weakly to Bn as m → ∞, then for each integer k,

lim
m→∞E

[
Qm(0)k

] = E
[
Q(0)k

]
.
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Proof To prove this result, we will first show that, as m → ∞, E[Qm(0)|C] →
E[Q(0)|C], where C = {C(t); t ∈ R} represents the entire path of our semi-
Markovian environment. Proving this will immediately imply that E[Qm(0)k|C] →
E[Q(0)k|C] for all k ≥ 2 as well, since conditional on C, the random variables
Qm(0) and Q(0) are all Poisson-distributed (from Theorem 2.1), and the kth factor-
ial moment of a Poisson random variable is just the mean raised to the kth power.

Unfortunately, conditioning on the sample-path of C no longer allows us to use
any stationary properties of our system, so we will have to introduce a small amount
of notation. Let {W(s); s ∈ R} denote a stochastic process, where W(s) denotes the
amount of work brought to the system by the last customer to arrive at or before
time s. Then, from a transient version of Little’s law (see Fralix et al. [8]), we see that

E
[
Qm(0)|C] =

∫ 0

−∞
Ps

(

Wm(s) >

∫ 0

s

μC(x) dx

)

λC(s) ds.

Here P : R × F → [0,1] is the Palm probability kernel induced by the non-
homogeneous Poisson arrival process (keep in mind that we are still conditioning
on C). We will not go into great detail to explain how these probabilities are derived:
rather, we will simply state that for a given event A ∈ F , Ps(A) can be interpreted
as the probability of A, given that there is an arrival at time s. Details behind the
construction of these measures can be found in, for instance, Chap. 10 of [9].

Clearly, for each s, Ps(Wm(s) >
∫ 0
s

μC(x) dx) represents the probability that the
person arriving at time s is still in the system at time zero. It is a simple exercise to
verify that the distribution of W(s) under Ps is indeed the distribution of an arbitrary
service time, so under Ps , Wm(s) ⇒ W(s) as m → ∞, where ⇒ is used to denote
weak convergence.

We will eventually want to apply the dominated convergence theorem, so with
this in mind we will let λ∗ = supi∈E λi and μ∗ = infi∈E μi . Thus, since Ps(Wm(s) >
∫ 0
s

μC(x) dx)λC(s) ≤ Ps(Wm(s) > −μ∗s)λ∗, the dominated convergence theorem
allows us to conclude that the conditional first moments converge. To show that
the unconditional moments converge, notice that for each k, E[Qm(0)k|C] ≤
E[Qm,λ∗,μ∗(0)k], which represents the kth moment of an M/G/∞ queue with ar-
rival rate λ∗ and service speed μ∗, that observes the same work sequence as the mth
queue. Furthermore, from a slight extension of the dominated convergence theorem
(see Theorem 1.21 of Kallenberg [10]), we can conclude that all moments converge
as well. �

7 Conclusions

We have shown that an embedded process approach can be used to both provide
yet another method of computing the moments and the generating function of the
steady-state queue-length of a semi-Markov-modulated M/M/∞ queue. Moreover,
the approach can also be used when mixtures of Erlang services are considered, and
this immediately gives an approximation of all moments of the steady-state queue-
length in such a system that has generally distributed service times.
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