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Abstract To investigate the quality of heavy-traffic approximations for queues with
many servers, we consider the steady-state number of waiting customers in an M/D/s
queue as s → ∞. In the Halfin-Whitt regime, it is well known that this random vari-
able converges to the supremum of a Gaussian random walk. This paper develops
methods that yield more accurate results in terms of series expansions and inequal-
ities for the probability of an empty queue, and the mean and variance of the queue
length distribution. This quantifies the relationship between the limiting system and
the queue with a small or moderate number of servers. The main idea is to view the
M/D/s queue through the prism of the Gaussian random walk: as for the standard
Gaussian random walk, we provide scalable series expansions involving terms that
include the Riemann zeta function.
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1 Introduction

Heavy-traffic analysis is a popular tool to analyze stochastic networks, since the
analysis of a complicated network often reduces to the analysis of a much simpler
(reflected) diffusion, which may be of lower dimension than the original system. This
makes the analysis of complex systems tractable, and from a mathematical point of
view, these results are appealing since they can be made rigorous.

A downside of heavy-traffic analysis is that the results are of an asymptotic nature,
and only form an approximation for a finite-sized system. In a pioneering paper,
Siegmund [26] proposed a corrected diffusion approximation for the waiting time in
a single-server queue (actually, Siegmund formulated his result in terms of a random
walk). In heavy traffic, the workload distribution is approximated by an exponential
distribution. Siegmund gave a precise estimate of the correction term, nowadays a
classic result and textbook material, cf. Asmussen [2], p. 369. Siegmund’s first order
correction has been extended recently by Blanchet and Glynn [5], who give a full
series expansion for the tail probability of the GI/GI/1 waiting time distribution in
heavy traffic.

The results in [5, 26] correspond to the conventional heavy-traffic scaling. The
present paper considers corrected diffusion approximations for a heavy-traffic scal-
ing known as the Halfin-Whitt [12] regime. This regime considers queues where the
number of servers grows large as the system becomes critically loaded. The number
of servers s is chosen according to s = λ + β

√
λ, where β is some positive constant.

As the scaling parameter λ tends to infinity, the traffic intensity tends to one accord-
ing to 1−O(1/

√
λ). The Halfin-Whitt regime is also known as the QED (Quality and

Efficiency Driven) regime, due to the fact that, in the limit, a system can be highly
utilized (efficiency) while the waiting times stay relatively small (quality). Also, set-
ting the number of servers as s = λ + β

√
λ is often called square-root staffing. This

terminology is motivated by the emergence of large customer contact centers which
need to be staffed with agents, thus calling for accurate and scalable approxima-
tions of multi-server queues. We refer to Gans et al. [11] and Mandelbaum [21] for
overviews.

The Halfin-Whitt regime was formally introduced in [12] for a system with expo-
nential service times (G/M/s queue), although in [17] the same type of scaling was
already applied to the Erlang loss model (M/M/s/s queue). The extension of the re-
sults on the G/M/s queue to non-exponential service times turned out to be challeng-
ing. The past few years have witnessed a substantial effort to rise to this challenge,
resulting in several papers on the Halfin-Whitt regime for various types of service
time distributions, cf. Puhalskii and Reiman [24], Jelenković et al. [18], Whitt [35],
Mandelbaum and Momčilovic [20], and Reed [25].

Although these results offer important qualitative insights and are useful to solve
concrete staffing problems, one would like to have a better understanding of the qual-
ity of the asymptotic approximations. For instance, how fast does convergence to
the heavy-traffic limit take place? It would be helpful to have asymptotic estimates
or even inequalities from which we could judge just how close the scaled queue-
ing model is to its heavy-traffic limit. Borst et al. [4] consider optimal staffing of an
M/M/s queue in the Halfin-Whitt regime, and show numerically that optimizing the
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system based on the Halfin-Whitt approximation (with s infinite instead of finite) of
the cost function is rarely off by more than a single agent from systems with as few
as 10 servers. As mentioned in the conclusions of [4], these observations call for a
theoretical foundation—a task we take up in the present paper.

1.1 Goals, results and insights

We now give a general description of the results obtained in this paper. We consider
a multi-server queue with arrival rate λ, s servers and deterministic service times (set
to 1). We let the arrival rate of the system grow large and set s = λ + β

√
λ for some

constant β > 0. Our main performance measure is the probability that the queue is
empty. The model at hand has been considered before by Jelenković et al. [18] who
showed that the scaled number of waiting customers Q̂λ converges to the maximum
Mβ of a Gaussian random walk with drift −β , for which the emptiness probability is
known. As λ → ∞, for β < 2

√
π , there is the result

P(Q̂λ = 0) → P(Mβ = 0) = √
2β exp

{ β√
2π

∞∑
r=0

ζ(1/2 − r)

r!(2r + 1)

(−β2

2

)r}
, (1)

with ζ the Riemann zeta function, see Chang and Peres [6], and Janssen and Van
Leeuwaarden [13, 14]. The limiting result for P(Mβ = 0) has the appealing property
that the time to compute it does not depend on the number of servers, which is the
case for standard computational procedures for the M/D/s queue, see e.g. Tijms [32]
and Franx [10] and references therein.

The main aim of this paper is to obtain series expansions refining this asymptotic
result. These series expansions can be used in two ways. First of all, the series ex-
pansions quantify the relationship between the limiting system and the queue with a
small or moderate number of servers. In addition, the first term (or first few terms) of
these expansions have the correct behavior as the number of servers grows large.

One insight we find particularly interesting is that our approximations are not
based on the parameter β , but on a modification of it, which depends on s and is
given by

α(s) = (−2s(1 − ρ + lnρ))1/2 , (2)

with ρ = λ/s. This function converges to β as s → ∞, cf. Lemma 7. Another insight
we obtain is that the resulting approximation P(Mα(s) = 0) is, in fact, a lower bound
for P(Q̂λ = 0). We also obtain an upper bound, again involving the function α(s).

The model we consider may seem rather specific, but one should realize that ob-
taining series expansions and bounds of this type is by no means a trivial task. The
state of the art for traditional corrected diffusion approximations does not go beyond
the random walk, and relies on the availability of the Wiener-Hopf factorization. In
the Halfin-Whitt regime, the limiting no-wait probability has been found in two cases
only, namely for exponential service times and for deterministic service times. We
believe that the latter case is the most challenging one.

We apply the methods developed in this paper to the M/M/s queue in [15], in
which case the Halfin-Whitt regime results in a non-degenerate limit for the Erlang C
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formula (probability that a customer has to wait). There we obtain the same important
insight: the Halfin-Whitt approximation can be substantially improved when β is
replaced with α(s); this function is the same for both models.

We finally like to point out that the results in this paper are all formulated for the
special case of Poisson arrivals, but the methodology we develop is applicable to more
general models (see Sect. 6). An additional motivation for considering deterministic
service times is that the number of waiting customers in the queue is related to a dis-
crete bulk-service queue, which has proven its relevance in a variety of applications
(see [33], Chap. 5, for an overview).

1.2 Methodology

We now turn to a discussion and motivation of the techniques we use and develop in
this paper. The ratio of P(Q̂λ = 0) and P(Mβ = 0) serves as a primary measure of
convergence and should tend to one as λ grows large. This ratio can be expressed as
(using Spitzer’s identity, cf. (19))

P(Q̂λ = 0)

P(Mβ = 0)
= exp

{ ∞∑
l=1

1

l
(P(Âλl ≤ β

√
l) − P(β

√
l))

}
, (3)

where Âλl = (Alλ − lλ)/
√

lλ and Alλ a Poisson random variable with mean lλ, and

P(x) = 1√
2π

∫ x

−∞
e−u2/2du (4)

the normal distribution function. To estimate (3) one can use Berry-Esseen bounds,
but these do not lead to sharp results (cf. Lemma 1). In order to get more precise
estimates one can use classical approximations for sums of i.i.d. random variables
like saddlepoint approximations or Edgeworth expansions (see [3, 19]). However,
these require each quantity P(Âλl ≤ β

√
l) − P(β

√
l) to be approximated separately

and uniformly in l.
To get convenient asymptotic expansions, we follow a different approach: we bring

P(Âλl ≤ β
√

l) into quasi-Gaussian form, a method that is standard in asymptotic
analysis (for an illuminating discussion see De Bruijn [8], pp. 67–71). The resulting
asymptotic expansion for e.g. the probability of an empty queue then contains terms
of the type

Gk(a) =
∞∑
l=1

lk+1/2
∫ ∞

a

e− 1
2 lsx2

z(x)dx, a, s ∈ R
+, k ∈ Z, (5)

where z(x) is some function that does not depend on l. This approach seems technical
at first sight but we believe it to be elegant and even intuitively appealing, as there is a
clear interpretation in terms of a change-of-measure argument, see the end of Sect. 2.

A large part of this paper deals with obtaining the quasi-Gaussian form, analyzing
z(x), and reformulating and estimating Gk(a) which is done in Sect. 4. A key result is
Theorem 3, which gives a representation of Gk(a) for a large class of functions z(x);
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the only condition that is imposed on z(x) is that z : [0,∞) �→ C is a continuous
function satisfying z(x) = O(exp(εx2)) for any ε > 0 and that z(x) has a Taylor
series around zero. To illustrate the generality of our result, we note that the result (1)
of Chang and Peres on the Gaussian random walk can be viewed as a special case by
taking z(x) ≡ 1.

We focus on the case in which Aλ has a Poisson distribution, which ensures a
particularly tractable form of z(x) yielding convenient computational schemes. This
form is given in Sect. 2.2 and studied in detail in the appendix. The derivative of z(x)

is related to the Lambert W function; our treatment is self-contained, produces some
important auxiliary results, and is based on earlier results obtained by Szegö [28].
We include our analysis in a separate appendix, since we believe it is interesting in
its own right.

Theorem 3 yields a series expansion which can be truncated at a convenient point
to obtain high precision estimates of performance measures. Using classical meth-
ods, we can even estimate the optimal truncation point of the series expansion. We
illustrate these general ideas by specializing them to the M/D/s queue in Sect. 4.3.

1.3 Organization

This paper is organized as follows. In Sect. 2 we introduce our model and provide
short proofs of results which can also be found in [18]. In particular we establish
convergence of the number of waiting customers to the maximum of the Gaussian
random walk, and give a rough Berry-Esseen bound. These results form a point of
departure for the rest of the paper. We also explain in Sect. 2 how our asymptotic
analysis will be carried out. In Sect. 3, for the emptiness probability, and the mean
and variance of the queue length distribution, we rewrite the Spitzer-type expressions
into quasi-Gaussian expressions. The reformulation and estimation of Gk(a) is car-
ried out in Sect. 4. Section 5 focuses on lower and upper bounds which have the
correct asymptotic behavior in the Halfin-Whitt regime. We use the quasi-Gaussian
expression for the emptiness probability obtained in Sect. 3 to derive these bounds.
Conclusions and possible extensions are presented in Sect. 6.

2 The M/D/s queue and the Halfin-Whitt regime

We consider the M/D/s queue and keep track of the number of customers waiting
in the queue (without those in service) at the end of intervals equal to the constant
service time (which we set to one). Customers arrive according to a Poisson process
with rate λ and are served by at most s servers. Let Qλ,n denote the number of
customers waiting in the queue at the end of interval n. The queueing process is then
described by

Qλ,n+1 = (Qλ,n + Aλ,n − s)+, n = 0,1, . . . , (6)

where x+ = max{0, x}, and Aλ,n denotes the number of customers that arrived at
the queue during interval n. Obviously, the Aλ,n are i.i.d. for all n, and copies of
a Poisson random variable Aλ with mean λ. It should be noted that due to the as-
sumption of constant service times, the customers which are being served at the end



266 Queueing Syst (2008) 58: 261–301

of the considered interval should start within this interval, and for the same reason,
the customers whose service is completed during this interval should start before its
beginning.

Assume that EAλ,n = λ < s and let Qλ denote the random variable that follows
the stationary queue length distribution, i.e., Qλ is the weak limit of Qλ,n. Let

s = λ + β
√

λ, β > 0. (7)

Let {Sn : n ≥ 0} be a random walk with S0 = 0, Sn = X1 +· · ·+Xn and X,X1,X2, . . .

i.i.d. random variables with EX < 0, and let M := max{Sn : n ≥ 0} denote the all-
time maximum. When X is normally distributed with mean −β < 0 and variance 1
we speak of the Gaussian random walk and denote its all-time maximum by Mβ . We
often use the following notation which is standard in asymptotic analysis:

f (x) ∼
∞∑

n=0

fn(x), (8)

by which we denote that, for every fixed integer k ≥ 1,

f (x) −
k−1∑
n=0

fn(x) = fk(x)(1 + o(1)). (9)

Let
d→ denote convergence in distribution.

2.1 Basic results

The following theorem can be proved using a similar approach as in Jelenković et
al. [18]. We give a separate proof, because our setting is slightly different and more
specific.

Theorem 1 Define Q̂λ = Qλ/
√

λ. As λ → ∞,

(i) Q̂λ
d→ Mβ ;

(ii) P(Q̂λ = 0) → P(Mβ = 0);
(iii) E[Q̂k

λ] → E[Mk
β ] for any k > 0.

Proof Proof of (i): Note that

Q̂λ
d= (Q̂λ + Âλ − β)+, (10)

with Âλ = (Aλ − λ)/
√

λ. Since Âλ converges in distribution to the standard normal
random variable as λ → ∞, (i) follows from Theorem X.6.1 in Asmussen [2], if the
family (Âλ, λ ≥ 0) is uniformly integrable. But this follows simply from the fact that
E[Â2

λ] = 1 for all λ.
Proof of (ii): The result lim supλ→∞ P(Q̂λ = 0) ≤ P(Mβ = 0) follows from (i). To
show the lim inf, note that from Spitzer’s identity (see (16))

ln P(Q̂λ = 0) = −
∞∑
l=1

1

l
P(Âlλ > lβ). (11)
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Taking the lim inf, applying Fatou’s lemma, and using that P(Âlλ > lβ) → P(−β
√

l)

yields

lim inf
λ→∞ ln P(Q̂λ = 0) ≥ −

∞∑
l=1

1

l
P (−β

√
l) = ln P(Mβ = 0), (12)

which proves (ii). Statement (iii) follows from (i) if we can prove the additional
uniform integrability condition supλ>N E[Q̂k

λ] < ∞ for some constant N and
any k. To prove this, note that the Cramér-Lundberg-Kingman inequality states that

P(Q̂λ > x) ≤ e−sx , for any s > 0 such that E[es(Âλ−β)] ≤ 1. After some straightfor-
ward computation, this inequality can be rewritten into

λ

(
es/

√
λ − 1 − s√

λ

)
− sβ ≤ 0. (13)

Since ex − 1 − x ≤ 1
2x2ex , we see that any s is admissible that satisfies

s2

2
es/

√
λ − sβ ≤ 0. (14)

It is easy to see that s = β satisfies this inequality if λ ≥ N := (β/ ln 2)2. We conclude
that

P(Q̂λ > x) ≤ e−βx (15)

for any x ≥ 0 and any λ > N . The uniform integrability condition

sup
λ>N

E[Q̂k
λ] < ∞

now follows directly using for example the formula

E[Q̂k
λ] =

∫ ∞

0
kxk−1

P(Q̂λ > x)dx. �

As a consequence of Theorem 1 we know that P(Qλ = 0) (which equals
P(Q̂λ = 0)) tends to P(Mβ = 0) as λ tends to infinity. We are interested in how
fast the M/D/s queue in the Halfin-Whitt regime approaches the Gaussian random
walk, and so we take the ratio of P(Qλ = 0) and P(Mβ = 0) as our measure of con-
vergence. From Spitzer’s identity for random walks (see Theorem 3.1 in [27]) we
have

− ln P(M = 0) =
∞∑
l=1

1

l
P(Sl > 0), (16)

which gives for the M/D/s queue

− ln P(Qλ = 0) =
∞∑
l=1

1

l
P(Alλ > ls) =

∞∑
l=1

1

l

∞∑
j=ls+1

e−lλ (lλ)j

j ! , (17)
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where we choose λ such that s = λ + β
√

λ is integer-valued, i.e., λ = 1
2 (2s +

β2 − (4sβ2 + β4)1/2) with s = 1,2, . . . . For the Gaussian random walk we have
ln P(Mβ = 0) as in (12). The following can be proved using a Berry-Esseen bound.

Lemma 1 For ω := 4
5ζ( 3

2 ) ≈ 2.0899 there are the bounds

exp
{−ω√

λ

}
≤ P(Qλ = 0)

P(Mβ = 0)
≤ exp

{ ω√
λ

}
. (18)

Proof Along the same lines as Theorem 2 in [18]. From (17) and (12) we get

P(Qλ = 0)

P(Mβ = 0)
= exp

{ ∞∑
l=1

1

l
(P (−β

√
l) − P(Alλ > ls))

}

≤ exp
{ ∞∑

l=1

1

l
|P(−β

√
l) − P(Alλ > ls)|

}
. (19)

Rewriting

|P(−β
√

l) − P(Alλ > ls)| = |P(Âλl ≤ β
√

l) − P(β
√

l)| (20)

with Âλl = (Aλl − λl)/
√

λl and using the Berry-Esseen bound for the Poisson case
(see Michel [22])

|P(Âλl ≤ β
√

l) − P(β
√

l)| ≤ min
{4

5
,

30.6

1 + β3l3/2

} 1√
lλ

≤ 4

5
√

lλ
(21)

yields, upon substituting (21) into (19), the second inequality in (18). The first in-
equality in (18) follows in a similar way. �

We should stress that the occurrence of ζ( 3
2 ) in Lemma 1 is unrelated to the re-

sult (1) of Chang and Peres [6].

2.2 Quasi-Gaussian form: motivation and outline

The bound in (18) does not reveal much information, except that convergence takes
place at rate O(1/

√
λ). In order to get more precise estimates one can use a saddle-

point approximation or an Edgeworth expansion. However, these are not very con-
venient, as they require each element P(Âλl ≤ β

√
l) − P(β

√
l) to be approximated

separately due to its dependence on l. One example would be the Edgeworth expan-
sion for the Poisson distribution (see [3], (4.18) on p. 96)

P(Âlλ ≤ β
√

l) = P(β
√

l) − 1

6
√

2πlλ
e− 1

2 β2l(β2l − 1) +O(1/λl), (22)
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which leads to the approximation

∞∑
l=1

1

l

(
P(Âλl ≤ β

√
l) − P(β

√
l)

)
≈ − 1

6
√

2πλ

( ∞∑
l=1

β2

l1/2
e− 1

2 β2l −
∞∑
l=1

1

l3/2
e− 1

2 β2l
)
.

(23)
It may not come as a surprise that (23) is not a good approximation because we
neglect all O(1/λl) terms in (22). Although including more terms in the Edgeworth
expansion is an option, we choose to get more convenient asymptotic expansions for
P(Âλl ≤ β

√
l) by bringing it into quasi-Gaussian form.

Specifically, we prove the following theorem in Sect. 3.

Theorem 2

− ln P(Qλ = 0) =
∞∑
l=1

p(ls)

l

1√
2π

∫ ∞

α
√

l

e−x2/2y′(x/
√

ls)dx, (24)

in which

α =
(

− 2s
(

1 − λ

s
+ ln

λ

s

))1/2
, (25)

α → β as λ → ∞,

p(n) = nne−n
√

2πn/n!, (26)

and y′ is a function analytic in |x| < 2
√

π (see (140)).

For p there is Stirling’s formula, see Abramowitz-Stegun [1], 6.1.37 on p. 257,

p(n) ∼ 1 − 1

12n
+ 1

288n2
+ · · · =

∞∑
k=0

pk

nk
, n → ∞, (27)

and for y′ there is the power series representation

y′(x) = 1 − 2

3
x + 1

12
x2 + · · · =

∞∑
i=0

bix
i, |x| < 2

√
π. (28)

From an aesthetic viewpoint, expression (24) conveys much understanding about the
character of the convergence, since we have complete agreement with the Gaussian
random walk (12) when we would have λ → ∞. The deviations from the quasi-
Gaussian random walk are embodied by p 
≡ 1, y′ 
≡ 1 and α 
≡ β . From (24) we see
that there is the asymptotic expansion

− ln P(Qλ = 0) ∼ 1√
2π

∞∑
k=0

pks
−k+1/2G−(k+1)(α/

√
s), (29)

where

Gk(a) =
∞∑
l=1

lk+1/2
∫ ∞

a

e− 1
2 lsx2

y′(x)dx. (30)
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Fig. 1 The function y′(x) for
x ∈ [−2,4]

Similar expressions, though somewhat more complicated than the one in (29),
exist for EQλ and VarQλ (see Sect. 3.2) and these involve Gk with k = 0,−1,−2 . . .

and k = 1,0,−1 . . . , respectively. We shall study Gk thoroughly, leading to series
expansions, asymptotics and bounds.

We close this section by giving an interpretation of the quasi-Gaussian form (24).
Using, see (134),

1

p(n)
=

√
n

2π

∫ ∞

−∞
e− 1

2 nx2
y′(x)dx (31)

and
∫ ∞

α
√

l

e−x2/2y′(x/
√

ls)dx = √
ls

∫ ∞

α/
√

s

e−lsx2/2y′(x)dx (32)

we find from (24) that

− ln P(Qλ = 0) =
∞∑
l=1

1

l

∫ ∞
α

e−lx2/2y′(x/
√

s)dx∫ ∞
−∞ e−lx2/2y′(x/

√
s)dx

. (33)

As mentioned in the introduction, the resulting formula reveals that the summands of
the random walk associated with the M/D/s queue, and the summands of the Gaussian
random walk, are absolutely continuous with respect to each other. The connecting
measure between the two densities has a density as well, and equals y′(·/√s). An-
other interpretation is that P(Q̂λ = 0) is obtained by twisting the Gaussian distrib-
ution associated with Mβ . The associated Radon-Nikodym derivative can again be
described in terms of y′(·/√s).

3 From Spitzer-type expressions to quasi-Gaussian forms

In this section we show how to obtain the expression (24). In addition, we present
similar results for the mean and variance of the queue length.
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3.1 Proof of Theorem 2

For n = 0,1, . . . we let

sn(z) =
n∑

k=0

zk

k!
, z ∈ C. (34)

With ρ = λ/s and n = ls (so that λl = nρ), and

q(ξ) = e1−ξ ξ, ξ ∈ C, (35)

we then have from Szegö [28], p. 50 (also see Abramowitz-Stegun [1], 6.5.13 on
p. 262),

∞∑
j=n+1

e−lλ (lλ)j

j ! = 1 − e−λlsn(λl) = nn+1e−n

n!
∫ ρ

0
qn(ξ)dξ. (36)

Using this relation we can rewrite the Spitzer-type expression (17) as

− ln P(Qλ = 0) = s1/2
∞∑
l=1

p(ls)√
2πl

∫ ρ

0
qls(ξ)dξ, (37)

with p(n) as defined in (27). We then consider the equation

f (y) := − lnq(1 − y) = 1

2
x2, (38)

with x ∈ C from which y is to be solved. We note that

f (y) = 1

2
y2 + 1

3
y3 + 1

4
y4 + · · · , (39)

whence there is an analytic solution y(x) around x = 0 that satisfies y(x) =
x + O(x2) as x → 0. Furthermore, since f increases from 0 to ∞ as y increases
from 0 to 1, we have that y(x) increases from 0 to ∞, and for any x ≥ 0 there is a
unique non-negative solution y(x) = y of (38). Furthermore, we let

γ = −2(1 − ρ + lnρ), α = (sγ )1/2. (40)

Then it holds that

qls(ρ) = e− 1
2 lsγ = e− 1

2 α2l (41)

and
∫ ρ

0
qls(ξ)dξ =

∫ ∞
√

γ

e− 1
2 lsx2

y′(x)dx = 1√
ls

∫ ∞

α
√

l

e− 1
2 x2

y′(x/
√

ls)dx. (42)

Substituting (42) into (37) yields (24).
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Table 1 Interrelations between
some parameters and functions s = λ + β

√
λ

ρ = λ/s

γ = −2(1 − ρ + lnρ)

α = √
sγ

a = α/
√

s = √
γ

y(x) = x − 1
3 x2 + 1

36 x3 + · · · ; |x| < 2
√

π

β = √
s y(α/

√
s)(1 − y(α/

√
s))−1/2

β = α + 1
6 s−1/2α2 + 5

72 s−1α3 + · · · ; |α/
√

s| < 2
√

π

p(n) = nne−n
√

2πn/n! ∼ 1 + 1
12 n−1 + 1

288 n−2 + · · ·

Lemma 2 The parameters α and β are related according to

β/
√

s = y(α/
√

s)

(1 − y(α/
√

s))1/2
. (43)

Proof Follows from 1 − ρ = y(γ 1/2) = y(α/
√

s), see Table 1, and

1 − ρ = s − λ

s
= s − λ√

λ

(
λ

s

)1/2 1√
s

= β√
s
ρ1/2 = β√

s
(1 − y(α/

√
s))1/2. (44)

�

We have that y(x)(1 − y(x))−1/2 = x + 1
6x2 + 5

72x3 + · · · (see the appendix), and
hence

β = α + 1

6
√

s
α2 + 5

72s
α3 + · · · . (45)

3.2 Mean and variance of the queue length

Our primary characteristic in this paper is the probability of an empty queue. How-
ever, the techniques that we develop can be applied to other characteristics like the
mean and variance of the queue length. From Spitzer’s identity it follows that the
mean and variance of the maximum M are given by

∑∞
l=1

1
l
E((S+

l )k) with k = 1 and
k = 2, respectively. For the M/D/s queue this yields

EQλ =
∞∑
l=1

1

l

∞∑
j=ls+1

(j − ls)e−lλ (lλ)j

j ! , (46)

VarQλ =
∞∑
l=1

1

l

∞∑
j=ls+1

(j − ls)2e−lλ (lλ)j

j ! . (47)

This leads after considerable rewriting to

EQλ = s1/2
∞∑
l=1

p(ls)√
2πl

(
ρqls(ρ) − ls(1 − ρ)

∫ ρ

0
qls(ξ)dξ

)
(48)
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and

VarQλ = s1/2
∞∑
l=1

p(ls)√
2πl

(
− ρ(ls(1 − ρ) − 1)qls(ρ)

+ ((1 − ρ)2l2s2 + lsρ)

∫ ρ

0
qls(ξ)dξ

)
. (49)

In a similar way as for P(Qλ = 0), (48) and (49) can then be brought into the forms

EQλ = √
s
[ ∞∑

l=1

ρp(ls)
e− 1

2 α2l

√
2πl

−
∞∑
l=1

αR(ρ)
p(ls)√

2π

∫ ∞

α
√

l

e−x2/2y′(x/
√

ls)dx
]
, (50)

VarQλ = s
[ ∞∑

l=1

(α2lR2(ρ) + ρ)
p(ls)√

2π

∫ ∞

α
√

l

e−x2/2y′(x/
√

ls)dx

−
∞∑
l=1

(
α
√

lρR(ρ) − ρ/
√

ls
)
p(ls)

e− 1
2 α2l

√
2π

]
, (51)

where

R(ρ) = 1 − ρ√
γ

= 1 − 1

3
(1 − ρ) + · · · . (52)

For the Gaussian random walk we have that (see [13])

EMβ =
∞∑
l=1

(e− 1
2 β2l

√
2πl

− β
1√
2π

∫ ∞

β
√

l

e−x2/2dx
)
, (53)

VarMβ =
∞∑
l=1

(
(β2l + 1)

1√
2π

∫ ∞

β
√

l

e−x2/2dx − β√
2π

l1/2e− 1
2 β2l

)
. (54)

Ignoring the factors
√

s and s, we again have complete agreement with the Gaussian
random walk when λ → ∞. The deviations from the Gaussian random walk are em-
bodied by p 
≡ 1, y′ 
≡ 1, β 
≡ α and the fact that R(ρ) 
≡ 1 when ρ < 1. The intro-
duced notation is summarized in Table 1.

4 Results for Gk

In this section we give a reformulation of the function Gk in terms of a principal
series expansion. The level of generality is higher than needed for the M/D/s queue,
as we consider a large class of functions z(x) of which y′(x) is just a special case.
In Sect. 4.1 we derive the Taylor series for the most general case. We also discuss
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some special cases that lead to considerable reductions in complexity of the expres-
sions. The principal series expansion comprises terms involving s, z, a = α/

√
s and

elementary functions, as well as a constant Lk , not depending on a = α/
√

s, which
is more complicated. For this Lk we present an asymptotic series as s → ∞ that can
be used conveniently when the radius of convergence r0 of z(x) = ∑∞

j=0 bj z
j is not

small (for instance 2
√

π as in the pilot case z(x) = y′(x)). In Sect. 4.1 we derive the
principal series expansion. In Sect. 4.2 we investigate the numerical evaluation of Lk

in terms of the optimal truncation value of the series expansions. In Sect. 4.3 we use
this general result for the specific case of z(x) = y′(x) to derive series expansions
and asymptotics for P(Qλ = 0). There is a clear connection to the Gaussian random
walk. In fact, results for the Gaussian random walk involve the function Gk for the
special case z(x) ≡ 1.

4.1 Principal series expansion

We let z : [0,∞) �→ C be a continuous function satisfying z(x) = O(exp(εx2)) for
any ε > 0, and we assume that there is an r0 > 0 such that z(x) is represented by
its Taylor series

∑∞
j=0 bjx

j for 0 ≤ x < r0. We consider for s > 0 and integer k the
function

Gk(a) =
∞∑
l=1

lk+1/2
∫ ∞

a

e− 1
2 lsx2

z(x)dx, a > 0. (55)

In the case that z(x) = xi we have

Gk(a) = s− i+1
2 Tk,i(a

√
s), (56)

where Tk,i is defined as

Tk,i(b) =
∞∑
l=1

lk+1/2
∫ ∞

b

e− 1
2 lx2

xidx (57)

with i = 0,1, . . . and k ∈ Z. The functions Tk,i have been thoroughly investigated in
[14], Sect. 5, leading to analytic expressions. We now generalize this result to Gk .

Theorem 3 For k ∈ Z and a < 2
√

π/s we have that

Gk(a) =
(

2

s

)k+3/2

�(k + 3/2)
{ 2k+1∑

j=0

bja
j−2k−2

2k + 2 − j

− b2k+2 lna −
∫ a

0

z(x) − ∑2k+2
j=0 bjx

j

x2k+3
dx

}

+ Lk −
∞∑

r=0

ζ(−k − r − 1/2)
(− 1

2 s)r

r!
∫ a

0
x2rz(x)dx, (58)
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where

Lk =
∞∑
l=1

lk+1/2
∫ ∞

0
e− 1

2 lsx2
(
z(x) −

2k+2∑
j=0

bjx
j
)

dx

+ 1

2

2k+1∑
j=0

bj�

(
j + 1

2

)(
2

s

) j+1
2

ζ(−k + j/2)

+ b2k+2

(
2

s

)k+3/2

�(k + 3/2)
( k∑

j=0

1

2j + 1
− ln

√
2s

)
. (59)

Proof We have

G′
k(a) = −z(a)

∞∑
l=1

lk+1/2e− 1
2 lsa2

. (60)

The right-hand side of (60) can be expressed in terms of Lerch’s transcendent 
,
defined as the analytic continuation of the series


(z, t, v) =
∞∑

n=0

(v + n)−t zn, (61)

which converges for any real number v 
= 0,−1,−2, . . . if z and t are any complex
numbers with either |z| < 1, or |z| = 1 and Re(t) > 1. Note that ζ(t) = 
(1, t,1).
Thus,

G′
k(a) = −z(a)e− 1

2 sa2



(
e− 1

2 sa2
,−k − 1

2
,1

)
. (62)

We then use the important result derived by Bateman [9], Sect. 1.11(8) (with
ζ(t, v) := 
(1, t, v) the Hurwitz zeta function)


(z, t, v) = �(1 − t)

zv
(ln 1/z)t−1 + z−v

∞∑
r=0

ζ(t − r, v)
(ln z)r

r! , (63)

which holds for | ln z| < 2π , t 
= 1,2,3, . . . , and v 
= 0,−1,−2, . . . , as to obtain

G′
k(a) = −z(a)

[
�(k + 3/2)

(
2

s

)k+3/2

a−2k−3 +
∞∑

r=0

ζ(−k − r − 1/2)
(− 1

2 sa2)r

r!
]
.

(64)
Therefore

G′
k(a) + �(k + 3/2)

(
2

s

)k+3/2 2k+2∑
j=0

bja
j−2k−3
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= −�(k + 3/2)

(
2

s

)k+3/2 (
z(a) −

2k+2∑
j=0

bja
j
)
a−2k−3

− z(a)

∞∑
r=0

ζ(−k − r − 1/2)
(− 1

2 sa2)r

r! . (65)

The series on the second line of (65) converges uniformly in a with s1/2a ∈ [0, c] and
c < 2

√
π , so upon integrating the identity in (65) we get for 1

2 sa2 ≤ c < 2π

Gk(a) + �(k + 3/2)

(
2

s

)k+3/2 { 2k+1∑
j=0

bja
j−2k−2

j − 2k − 2
+ b2k+2 lna

}

= Lk − �(k + 3/2)

(
2

s

)k+3/2 ∫ a

0

(
z(x) −

2k+2∑
j=0

bjx
j
)
x−2k−3dx

−
∞∑

r=0

ζ(−k − r − 1/2)
(− 1

2 s)r

r!
∫ a

0
x2r z(x)dx, (66)

where

Lk = lim
a↓0

[
Gk(a) + �(k + 3/2)

(
2

s

)k+3/2 { 2k+1∑
j=0

bja
j−2k−2

j − 2k − 2
+ b2k+2 lna

}]
. (67)

We shall determine Lk . It holds that, as a ↓ 0,

Gk(a) =
∞∑
l=1

lk+1/2
∫ ∞

a

e− 1
2 lsx2

(
z(x) −

2k+2∑
i=0

bix
i
)

dx

+
2k+2∑
i=0

bi

∞∑
l=1

lk+1/2
∫ ∞

a

e− 1
2 lsx2

xidx

=
∞∑
l=1

lk+1/2
∫ ∞

0
e− 1

2 lsx2
(
z(x) −

2k+2∑
i=0

bix
i
)

dx

+ o(1) +
2k+2∑
i=0

bis
− i+1

2 Tk,i(a
√

s). (68)

Here (56) has been used and the o(1) comes from the fact that z(x) − ∑2k+2
i=0 bix

i =
O(x2k+3) so that

∫ a

0
e− 1

2 lsx2
(
z(x) −

2k+2∑
i=0

bix
i
)

dx = O
( 1

(ls)k+2

)
. (69)
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Now from Janssen and Van Leeuwaarden [14], Sect. 5,

s− i+1
2 Tk,i(a

√
s) = s− i+1

2

[�(k + 3/2)

2k + 2 − i
2k+3/2(a

√
s)i−2k−2 + Lk,i +O(a)

]

= �(k + 3/2)

(
2

s

)k+3/2
ai−2k−2

2k + 2 − i
+ s− i+1

2 Lk,i +O(a) (70)

for i = 0,1, . . . ,2k + 1 and

s− 2k+3
2 Tk,2k+2(a

√
s) = s− 2k+3

2

[
− �(k + 3/2)2k+3/2 ln(a

√
s) + Lk,2k+2 +O(a)

]

= −�(k + 3/2)

(
2

s

)k+3/2

ln(a
√

s)

+ s−(k+3/2)Lk,2k+2 +O(a). (71)

Here

Lk,i = 1

2
�

( i + 1

2

)
2

i+1
2 ζ(−k + i/2), i = 0,1, . . . ,2k + 1, (72)

Lk,2k+2 = �(k + 3/2)2k+3/2
( k∑

j=0

1

2j + 1
− 1

2
ln 2

)
. (73)

Therefore, as a ↓ 0, we get

Gk(a) =
∞∑
l=1

lk+1/2
∫ ∞

0
e− 1

2 lsx2
(
z(x) −

2k+2∑
i=0

bix
i
)

dx + o(1)

+
2k+1∑
i=0

bi

[
�(k + 3/2)

(
2

s

)k+3/2
ai−2k−2

2k + 2 − i

+ 1

2
�

(
i + 1

2

)(
2

s

) i+1
2

ζ(−k + i/2)

]

+ b2k+2�(k + 3/2)

(
2

s

)k+3/2

×
[
− lna − ln

√
s +

k∑
j=0

1

2j + 1
− ln

√
2
]
. (74)

Adding

�(k + 3/2)

(
2

s

)k+3/2 { 2k+1∑
j=0

bja
j−2k−2

j − 2k − 2
+ b2k+2 lna

}
(75)
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Table 2 Some values of the
Riemann zeta function ζ x ζ(x) x ζ(x)

−5.5 −0.00267145801990 0.0 −0.50000000000000

−5.0 −0.00396825396825 0.5 −1.46035450880959

−4.5 −0.00309166924722 1.5 2.61237534868549

−4.0 0 2.0 1.64493406684823

−3.5 0.00444101133548 2.5 1.34148725725092

−3.0 0.00833333333333 3.0 1.20205690315959

−2.5 0.00851692877785 3.5 1.12673386731706

−2.0 0 4.0 1.08232323371114

−1.5 −0.02548520188983 4.5 1.05470751076145

−1.0 −0.08333333333333 5.0 1.03692775514337

−0.5 −0.20788622497735 5.5 1.02520457995469

at either side of (74) and letting a ↓ 0, we find that Lk has the required value (59).
Then (58) follows from (66). �

Some values of the Riemann zeta function ζ are given in Table 2.
We now give several special cases of Theorem 3. The next two corollaries focus

on negative values of k.

Corollary 1 For 1
2 sa2 < 2π and k = −2,−3, . . . we have that

Gk(a) = −
(

2

s

)k+3/2

�(k + 3/2)

∫ a

0
x−2k−3z(x)dx

+ Lk −
∞∑

r=0

ζ(−k − r − 1/2)
(− 1

2 s)r

r!
∫ a

0
x2rz(x)dx, (76)

where Lk = ∑∞
l=1 lk+1/2

∫ ∞
0 e− 1

2 lsx2
z(x)dx (which follows from the definition of Lk

in (59) in which all series over j vanish for k = −2,−3, . . .).

Corollary 2 For 1
2 sa2 < 2π and k = −1 we have that

G−1(a) = −
(

2π

s

)1/2 {
lna +

∫ a

0

z(x) − b0

x
dx

}

+ L−1 −
∞∑

r=0

ζ(−r + 1/2)
(− 1

2 s)r

r!
∫ a

0
x2rz(x)dx, (77)

where L−1 = ∑∞
l=1 l−1/2

∫ ∞
0 e− 1

2 lsx2
(z(x) − b0)dx − ( 2π

s
)1/2 ln

√
2s.

Theorem 3 is meant for the case that a and the convergence radius r0 of∑∞
j=0 bjx

j are general. In the case that a < r0 the expressions can be simplified
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considerably, as demonstrated below. If a < r0 we have

∫ a

0

z(x) − ∑2k+2
j=0 bjx

j

x2k+3
dx =

∞∑
j=2k+3

bja
j−2k−2

j − 2k − 2
, (78)

∫ a

0
x2rz(x)dx =

∞∑
j=0

bja
j+2r+1

j + 2r + 1
. (79)

As a consequence of (78) we have that the expression on the first line of (58)

2k+1∑
j=0

bja
j−2k−2

2k + 2 − j
− b2k+2 lna −

∫ a

0

z(x) − ∑2k+2
j=0 bjx

j

x2k+3
dx (80)

simplifies to

∞∑
j=0,j 
=2k+2

bja
j−2k−2

2k + 2 − j
− b2k+2 lna. (81)

Together with (79) this gives expressions for Gk(a) that are, apart from the Lk to
which we turn next, convenient for computation when a is small.

Lemma 3 For the first line of (59)

∞∑
l=1

lk+1/2
∫ ∞

0
e− 1

2 lsx2
(
z(x) −

2k+2∑
j=0

bjx
j
)

dx

+ 1

2

2k+1∑
j=0

bj�

(
j + 1

2

)(
2

s

) j+1
2

ζ(−k + j/2) (82)

there is the asymptotic expression

∼ 1

2

∞∑
j=0,j 
=2k+2

bj�

(
j + 1

2

)(
2

s

) j+1
2

ζ(−k + j/2), s → ∞. (83)

In case that bj�(
j+1

2 ) = O(Bj ) for some B > 0, the asymptotic series in (83) is
convergent when s > 2B2, with sum equal to (82).

Proof Using

∫ ∞

0
e− 1

2 lsx2
xj dx = 1

2

(
2

ls

)(j+1)/2 ∫ ∞

0
e−uu(j−1)/2du

= 1

2

(
2

ls

)(j+1)/2

�

(
j + 1

2

)
, (84)
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we find that

∞∑
l=1

lk+1/2
∫ ∞

0
e− 1

2 lsx2
(
z(x) −

2k+2∑
j=0

bjx
j
)

dx

∼
∞∑

j=2k+3

bj

∞∑
l=1

lk+1/2
∫ ∞

0
e− 1

2 lsx2
xj dx

= 1

2

∞∑
j=2k+3

bj

(
2

s

)(j+1)/2

�

(
j + 1

2

) ∞∑
l=1

l−j/2+k. (85)

This yields (83) since ζ(j/2 − k) = ∑∞
l=1 l−j/2+k . �

Remark 4 The series expansion (58) for Gk(a) comprises, as a ↓ 0, leading order
terms involving aj−2k−2, j = 0,1, . . . ,2k + 1, and lna when k = −1,0,1, . . . , and
Gk(a) stays bounded as a ↓ 0 for k = −2,−3,−4, . . . . In most cases we are inter-
ested in, the value of a is quite small (say ≤ 0.1). The formula in (58) can be used
conveniently for computation of Gk(a) for values of a from 0 to as large as

√
π .

For larger values of a, we present in the appendix formula (165) as an attractive
alternative to compute Gk(a). This alternative shows, for instance, quite clearly an
exp(− 1

2 (s + 1)a2)-behavior of Gk(a) as a gets large.

Remark 5 Chang and Peres [6], Theorem 1.1, proved that

P(Mβ = 0) = √
2β exp

{ β√
2π

∞∑
r=0

ζ(1/2 − r)

r!(2r + 1)

(−β2

2

)r}
, (86)

for 0 < β < 2
√

π . This result follows from Theorem 3, for the case z(x) ≡ 1, a =
β/

√
s and k = −1.

For general k, setting z(x) ≡ 1 and a = β/
√

s in Theorem 3 leads to the following
result.

Lemma 4 For β < 2
√

π and k ∈ Z we have that

∞∑
l=1

lkP (−β
√

l) = − β√
2π

∞∑
r=0

ζ(−k − r − 1
2 )

r!(2r + 1)

(−β2

2

)r + Rk(β), (87)

where R−1(β) = − ln
√

2β and

Rk(β) = 1√
2π

�(k + 3
2 )

2k + 2
2k+ 3

2 β−2k−2 + 1

2
ζ(−k), k 
= −1. (88)
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4.2 Optimal truncation value

Lemma 3 can be deployed in two ways. We can take only the first few terms to get a
good idea of how things behave (see Sect. 4.3), or for the numerical evaluation of Lk ,
we take as many terms as needed using optimal truncation. The optimal truncation
value J of (83) is so large (see developments below) that we can replace ζ(−k+J/2)

by 1. The truncation error made by approximating (82) by

1

2

J∑
j=0,j 
=2k+2

bj�

(
j + 1

2

)(
2

s

)(j+1)/2

ζ(−k + j/2) (89)

is of the order

1

2
bJ+1�

(
J + 2

2

)(
2

s

)(J+2)/2

. (90)

We replace, furthermore, bJ+1 = (J + 2)aJ+2 by its asymptotic bound, see the ap-
pendix, Lemma 13,

|bJ+1| ≤
(

J + 2

2

)−1/2 (
1

2
√

π

)J+2

. (91)

Thus

∣∣∣1

2
bJ+1�

(
J + 2

2

)(
2

s

) J+2
2 ∣∣∣ ≤

(
1

2(J + 2)

)1/2

�

(
J + 2

2

)(
1

2πs

)(J+2)/2

. (92)

The factor (1/2(J + 2))1/2 is rather unimportant for determination of the optimal
truncation value J , and we focus on

DJ = �

(
J + 2

2

)(
1

2πs

)(J+2)/2

. (93)

Noting that �(J/2 + 3/2)/�(J/2 + 1) ≈ (J/2 + 1)1/2, we see that

DJ+1

DJ

≈
(

J + 2

2

)1/2 (
1

2πs

)1/2

. (94)

The right-hand side of (94) decreases in J until J/2 + 1 = 2πs; this J is (near to)
the optimal truncation point. At this point we estimate the right-hand side of (92) by
Stirling’s formula as

(
1

8πs

)1/2

�(2πs)

(
1

2πs

)2πs

≈
(

1

8πs

)1/2

(2πs)2πs−1/2e−2πs
√

2π

(
1

2πs

)2πs

= e−2πs

s
√

8π
. (95)

For instance, for s = 10 this equals 10−29.
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Remark 6 Observe how important it is that we have managed to show the good bound
(91) on |bJ+1|. If, for instance, the 1/2

√
π in this bound were to be replaced by 1,

the e−2πs on the far right of (95) would have to be replaced by e−s/2 and the resulting
quantity

√
2πe−s/2/s would be 0.0017 for s = 10.

4.3 Accurate approximations for the M/D/s queue

We can apply Theorem 3 to obtain accurate approximations for the emptiness prob-
ability and the mean and variance of the queue length. By way of illustration, we do
this in some detail for P(Qλ = 0) and briefly indicate at the end of this section how
one can proceed for the other cases.

We have from (27) and (29) that

− ln P(Qλ = 0) ∼ 1√
2π

∞∑
k=0

pks
−k+1/2G−(k+1)(α/

√
s)

= 1√
2π

(
s1/2G−1(α/

√
s) − 1

12
s−1/2G−2(α/

√
s)

+ 1

288
s−3/2G−3(α/

√
s) + · · ·

)
. (96)

The G−2, G−3, . . . are bounded functions of a = α/
√

s while G−1(a) behaves like

−
(2π

s

)1/2
lna

√
2s as a ↓ 0. (97)

Accurate approximations to − ln P(Qλ = 0) are obtained by including 1,2,3, . . .

terms of the second line of (96) in which the G’s must be approximated. For the
number of terms of the asymptotic series in (96) to be included one could follow
a truncation strategy (based on (141), (154) and the bound G−k(a) ≤ ( π

2s
)1/2ζ(k),

k = 2,3, . . .) pretty much as was done in Sect. 4.2. We shall not pursue this point
here.

We shall compute accurate approximations to G−k(a) for k = 1,2, . . . . We have
from (76) and (77) for α < 2

√
π

G−1(α/
√

s) = −
(

2π

s

)1/2 {
lnα/

√
s +

∫ α/
√

s

0

y′(x) − 1

x
dx

}

+ L−1 −
∞∑

r=0

ζ

(
−r + 1

2

)
(− 1

2 s)r

r!
∫ α/

√
s

0
x2ry′(x)dx, (98)

and for k = 2,3, . . . ,

G−k(α/
√

s) = −
(

2

s

)−k+3/2

�(−k + 3/2)

∫ α/
√

s

0
x2k−3y′(x)dx

+ L−k −
∞∑

r=0

ζ

(
k − r − 1

2

)
(− 1

2 s)r

r!
∫ α/

√
s

0
x2ry′(x)dx. (99)
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Here,

L−1 =
∞∑
l=1

l−1/2
∫ ∞

0
e− 1

2 lsx2
(y′(x) − 1)dx −

(
2π

s

)1/2

ln
√

2s, (100)

and for k = 2,3, . . . ,

L−k =
∞∑
l=1

l−k+1/2
∫ ∞

0
e− 1

2 lsx2
y′(x)dx. (101)

Below we specify the missing ingredients in (98)–(101).

• We have
∫ α/

√
s

0

y′(x) − 1

x
dx =

∫ α/
√

s

0

∞∑
j=1

bjx
j−1dx =

∞∑
j=1

bj

j

(
α√
s

)j

, (102)

and the computation of the series is feasible when 0 ≤ α/
√

s ≤ 2
√

π , the bj being
computable and O(1/(2

√
π)j ).

• We have
∫ α/

√
s

0
xny′(x)dx =

∫ α/
√

s

0

∞∑
j=0

bjx
n+j dx =
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j=0

bj

n + j + 1

(
α√
s

)n+j+1

,

(103)
and the computation of the series is feasible when 0 ≤ α/

√
s ≤ 2

√
π . Furthermore

(
−1

2
s

)r ∫ α/
√

s

0
x2ry′(x)dx =

(
−1

2
α2

)r ∞∑
j=0

bj

2r + j + 1

(
α√
s

)j+1

. (104)

Since, see [13], Sect. 6, ζ(−r + 1
2 )/r! = O(1/(2π)r), the computation of the series

over r at the right-hand side of (98) is feasible when α < 2
√

π . A similar result
holds for the series over r at the right-hand side of (99).

• We have by Lemma 3

∞∑
l=1

l−1/2
∫ ∞

0
e− 1

2 lsx2
(y′(x) − 1)dx

∼ 1

2
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j=1

bj�

(
j + 1

2

)(
2

s

) j+1
2

ζ(1 + j/2), (105)

L−k ∼ 1

2

∞∑
j=0

bj�

(
j + 1

2

)(
2

s

) j+1
2

ζ(k + j/2), k = 2,3, . . . , (106)

for the series expressions at the right-hand sides of (100) and (101). The left-hand
sides of (105) and (106) can be accurately approximated by using the optimal trun-
cation approach of Sect. 4.2. Alternatively, assume that we include all three terms
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on the second line of (96) (so that the truncation error is O(s−7/2)). We then in-
clude in the right-hand side of (105) the terms with j = 1,2,3,4, and in the right-
hand side of (106) the terms with j = 1,2.

When we want to compute accurate approximations to EQλ and VarQλ, we can
use (50) and (51), and then it becomes necessary to approximate Gk(a) with k = 0
and k = 1 as well. This can still be done by using Theorem 3 with its simplifications
as pointed out in Corollary 2 since z(x) = y′(x) has bj = O((2

√
π)−j ). Of course,

there are various ways to proceed here, just like in case of − ln P(Qλ = 0) treated
above. For the latter case, we have just worked out one of the more straightforward
methods.

Table 3 displays approximations to P(Qλ = 0) based on the series expansion (96).
Results are given for 1, 2, and 3 terms of the second line of (96), and the G’s are
approximated as described in this subsection. Clearly, the expansions provide sharp
approximations, and in most cases, one term suffices to get accurate results, i.e.,

P(Qλ = 0) ≈ exp
{

−
√

s√
2π

G−1(α/
√

s)
}
. (107)

5 Bounds and approximations for the emptiness probability

The Gaussian form (24) for P(Qλ = 0) is rather complicated due to the presence of
p(ls) and z(x) = y′(x), which both can be expressed as infinite series. In this section
we obtain bounds on P(Qλ = 0) by using inequalities for p(ls) and y′(x).

Lemma 5

P(Qλ = 0) ≥ exp
{

− s1/2
∞∑
l=1

1√
2πl

∫ ∞
√

γ

e− 1
2 lsx2

y′(x)dx
}

=: LB, (108)

P(Qλ = 0) ≤ exp
{

− s1/2
∞∑
l=1

1√
2πl

(
1 − 1

12ls

)∫ ∞
√

γ

e− 1
2 lsx2

y′(x)dx
}

=: UB. (109)

Proof Follows directly from rewriting (24) as

P(Qλ = 0) = exp
{

− s1/2
∞∑
l=1

p(ls)√
2πl

∫ ∞
√

γ

e− 1
2 lsx2

y′(x)dx
}

(110)

and applying

n−n−1/2 en

√
2π

(
1 − 1

12n

)
≤ 1

n! ≤ n−n−1/2 en

√
2π

. (111)

�
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Table 3 Series expansions for P(Qλ = 0) based on (96). The values of P(Mβ = 0) are given in parenthe-
ses

s α β = 0.01 (0.0141) α β = 0.1 (0.1334)

True (96)-1 (96)-2 (96)-3 True (96)-1 (96)-2 (96)-3

1 0.0100 0.0268 0.0256 0.0267 0.0267 0.0983 0.2351 0.2265 0.2345 0.2343

2 0.0100 0.0225 0.0219 0.0225 0.0225 0.0988 0.2022 0.1980 0.2021 0.2021

5 0.0100 0.0190 0.0188 0.0190 0.0190 0.0993 0.1747 0.1730 0.1747 0.1746

10 0.0100 0.0174 0.0173 0.0174 0.0174 0.0995 0.1617 0.1609 0.1617 0.1617

20 0.0100 0.0164 0.0163 0.0164 0.0164 0.0996 0.1529 0.1525 0.1529 0.1529

50 0.0100 0.0155 0.0155 0.0155 0.0155 0.0998 0.1455 0.1453 0.1455 0.1455

100 0.0100 0.0151 0.0150 0.0151 0.0151 0.0998 0.1419 0.1418 0.1419 0.1419

200 0.0100 0.0148 0.0148 0.0148 0.0148 0.0999 0.1393 0.1393 0.1393 0.1393

500 0.0100 0.0145 0.0145 0.0145 0.0145 0.0999 0.1371 0.1371 0.1371 0.1371

s α β = 0.2 (0.2518) α β = 0.5 (0.5293)

True (96)-1 (96)-2 (96)-3 True (96)-1 (96)-2 (96)-3

1 0.1932 0.4105 0.3979 0.4092 0.4089 0.4573 0.7182 0.7049 0.7137 0.7134

2 0.1952 0.3613 0.3549 0.3611 0.3610 0.4699 0.6656 0.6586 0.6642 0.6641

5 0.1970 0.3185 0.3159 0.3185 0.3185 0.4811 0.6156 0.6125 0.6151 0.6151

10 0.1979 0.2979 0.2966 0.2979 0.2978 0.4867 0.5899 0.5883 0.5897 0.5897

20 0.1985 0.2838 0.2831 0.2837 0.2837 0.4906 0.5719 0.5710 0.5717 0.5717

50 0.1991 0.2716 0.2714 0.2716 0.2716 0.4941 0.5560 0.5557 0.5560 0.5560

100 0.1993 0.2657 0.2655 0.2657 0.2657 0.4958 0.5481 0.5479 0.5481 0.5481

200 0.1995 0.2615 0.2615 0.2615 0.2615 0.4970 0.5426 0.5425 0.5425 0.5425

500 0.1997 0.2579 0.2579 0.2579 0.2579 0.4981 0.5377 0.5376 0.5377 0.5377

s α β = 1 (0.8005) α β = 2 (0.9762)

True (96)-1 (96)-2 (96)-3 True (96)-1 (96)-2 (96)-3

1 0.8299 0.9055 0.8973 0.8948 0.8945 1.3670 0.9835 0.9793 0.9636 0.9633

2 0.8790 0.8787 0.8746 0.8737 0.8736 1.5296 0.9799 0.9787 0.9674 0.9672

5 0.9236 0.8511 0.8493 0.8489 0.8489 1.6948 0.9774 0.9770 0.9703 0.9703

10 0.9462 0.8364 0.8354 0.8352 0.8352 1.7835 0.9766 0.9764 0.9723 0.9723

20 0.9622 0.8259 0.8253 0.8252 0.8252 1.8473 0.9763 0.9762 0.9738 0.9738

50 0.9762 0.8165 0.8163 0.8162 0.8162 1.9040 0.9762 0.9761 0.9750 0.9750

100 0.9832 0.8118 0.8117 0.8117 0.8117 1.9324 0.9762 0.9761 0.9755 0.9755

200 0.9881 0.8085 0.8084 0.8084 0.8084 1.9524 0.9762 0.9762 0.9759 0.9759

500 0.9925 0.8056 0.8055 0.8055 0.8055 1.9700 0.9762 0.9762 0.9761 0.9761

Lemma 6 There is the inequality

UB

LB
≤ exp

{ 1

12s

∞∑
l=1

1

l2

1√
2π

∫ ∞

α
√

l

e− 1
2 x2

dx
}
. (112)
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Proof Follows from (108)–(109) and y′(x) ≤ 1 (see Lemma 15). �

We next show that the right-hand side of (112) is a decreasing function of λ when
β > 0 is kept fixed. Indeed, this is a direct consequence of the following lemma.

Lemma 7 α = (−2s(1 − ρ + lnρ))1/2 increases as a function of λ when β > 0 is
kept fixed. In fact, α increases from 0 to β as λ increases from 0 to ∞.

Proof Letting ν = 1
2α2 we have

ν = −s(1 − ρ + lnρ) = −(λ + β
√

λ)
(

1 − λ

λ + β
√

λ
+ ln

λ

λ + β
√

λ

)

= −β
√

λ − (λ + β
√

λ) ln
λ

λ + β
√

λ
= −x

(
β + (x + β) ln

( x

x + β

))
, (113)

where we have set x = √
λ. Now

dν

dx
= −β − (x + β) ln

( x

x + β

)
− x

(
ln

( x

x + β

)
+ (x + β) · x + β

x
· β

(x + β)2

)

= −2β − (2x + β) ln
( x

x + β

)
= 2x

(
−t +

(
1 + 1

2
t

)
ln(1 + t)

)
, (114)

where we have set t = β/x > 0. Since it holds that

ln(1 + t) ≥ t

1 + 1
2 t

, t ≥ 0, (115)

(equality at t = 0) and thus

(ln(1 + t))′ = 1

1 + t
≥ 1

(1 + 1
2 t)2

=
( t

1 + 1
2 t

)′
, t ≥ 0, (116)

the proof is complete. �

Lemma 8 The following inequalities hold:

(i) For α > 0,

UB

LB
≤ exp

{ π2

144s

}
. (117)

(ii) For 0 < α < 2
√

π ,

UB

LB
≤ exp

{ 1

12s

[π2

12
+ 1

2
α2 − 1√

2π
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r=0

ζ(3/2 − r)(−1/2)r

r!(2r + 1)
α2r+1

]}
. (118)
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Proof (i) Follows from (112) and observing that

∞∑
l=1

1

l2

1√
2π

∫ ∞

α
√

l

e− 1
2 x2

dx ≤ 1

2

∞∑
l=1

1

l2
= 1

2
ζ(2) = 1

12
π2. (119)

(ii) Follows from rewriting the right-hand side of (112) in terms of Lerch’s tran-
scendent and applying the Bateman series (63). �

Lemma 9 There are the inequalities

LB ≥ exp
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l

1√
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α
√
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, (120)

LB ≤ exp
{

−
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1

l

1√
2π
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α
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dx + 2

3
√

2πs
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1

l3/2
e− 1

2 α2l
}
. (121)

Proof Follows from (108) and 1 − 2
3x ≤ y′(x) ≤ 1 (see Lemma 15). �

Note that the right-hand side of (120) equals P(Mα = 0), i.e., the probability that
the maximum of a Gaussian random walk with drift −α (instead of −β) equals zero.

Lemma 10

UB ≤ exp
{

−
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1√
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}
. (122)

Proof Follows from (109) and 1 − 2
3x ≤ y′(x) (see Lemma 15). �

The right-hand side of (122) can be written as
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Using Lemma 4 for k = −1,−2, and (63), we find that (123) satisfies, for α < 2
√

π ,

√
2α exp

{
π2

144
+ ζ

(
3

2

)(
12s − 1

18s
√

2πs

)

+ α

[
ζ( 1

2 )√
2π

− ζ( 3
2 )

12
√

2π
− √

2π

(
12s − 1

18s
√

2πs

)]
+O(α2)

}
, (124)
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which yields a sharp approximation for (123) for small values of α.
Considering the leading component in the exponents of (121) and (122), it makes

sense to use the approximation

P(Qλ = 0) ≈ exp
{

−
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1
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. (125)

We note that the approximations (107) and (125) are strongly related. In fact, approx-
imation (125) follows from (107) by approximating y′(x) by 1 − 2

3x.
From (1), (63) and (125) we then get, for β < 2

√
π (and hence α < 2

√
π ),

P(Qλ = 0)
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For small values of α we then propose the approximation

P(Qλ = 0)

P(Mβ = 0)
≈ α

β
· exp

{ ζ( 1
2 )√
2π

(α − β) + 2

3

( ζ( 3
2 )√

2π
− α

) 1√
s

}
. (127)

5.1 Numerical experiments

We now evaluate the approximations and bounds derived in this section. True val-
ues of P(Qλ = 0) are computed from (17). Some numerical results are displayed in
Tables 4 and 5. In Table 4, the values of P(Mβ = 0) are given in parentheses.

Both the lower bound P(Mα = 0) and the upper bound (122) may seem conserva-
tive approximations, but the quality of approximation (125) is striking for small and
moderate values of β . For large values, it seems that the limiting value is reached
quite rapidly. In particular, for the case β = 2, the Halfin-Whitt limit P(Mβ = 0)

is reached almost immediately, which suggests to use P(Mβ = 0) as an approxima-
tion for P(Qλ = 0). Indeed, as such, the Halfin-Whitt limit outperforms all other
approximations, including the series expansions in Table 3. For all other values of β

(especially small values), all alternative approximations of the emptiness probability
are closer to the true values than the Halfin-Whitt limit.
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Table 4 Bounds, approximations and true values of P(Qλ = 0)

s α β = 0.01 (0.0141) α β = 0.1 (0.1334)

(120) True (125) (122) (120) True (125) (122)

1 0.0100 0.0140 0.0268 0.0279 0.0282 0.0983 0.1313 0.2351 0.2468 0.2488

2 0.0100 0.0140 0.0225 0.0228 0.0240 0.0988 0.1319 0.2022 0.2061 0.2149

5 0.0100 0.0140 0.0190 0.01910 0.0203 0.0993 0.1325 0.1747 0.1756 0.1857

10 0.0100 0.0141 0.0174 0.0175 0.0187 0.0995 0.1328 0.1617 0.1620 0.1718

20 0.0100 0.0141 0.0164 0.0164 0.0175 0.0996 0.1329 0.1529 0.1531 0.1625

50 0.0100 0.0141 0.0155 0.0155 0.0166 0.0998 0.1331 0.1455 0.1455 0.1546

100 0.0100 0.0141 0.0151 0.0151 0.0161 0.0998 0.1332 0.1419 0.1419 0.1507

200 0.0100 0.0141 0.0148 0.0148 0.0158 0.0999 0.1333 0.1393 0.1393 0.148

500 0.0100 0.0141 0.0145 0.0145 0.0155 0.0999 0.1333 0.1371 0.1371 0.1457

s α β = 0.2 (0.2518) α β = 0.5 (0.5293)

(120) True (125) (122) (120) True (125) (122)

1 0.1932 0.2442 0.4105 0.4332 0.4356 0.4573 0.4961 0.7182 0.7628 0.7635

2 0.1952 0.2464 0.3613 0.3693 0.3829 0.4699 0.5061 0.6656 0.6831 0.6994

5 0.1970 0.2484 0.3185 0.3207 0.3367 0.4811 0.5148 0.6156 0.6208 0.6413

10 0.1979 0.2494 0.2979 0.2987 0.3145 0.4867 0.5192 0.5899 0.5921 0.6127

20 0.1985 0.2501 0.2838 0.2841 0.2994 0.4906 0.5222 0.5719 0.5728 0.5930

50 0.1991 0.2507 0.2716 0.2717 0.2865 0.4941 0.5248 0.5560 0.5563 0.5760

100 0.1993 0.2510 0.2657 0.2657 0.2801 0.4958 0.5262 0.5481 0.5483 0.5676

200 0.1995 0.2512 0.2615 0.2616 0.2757 0.4970 0.5271 0.5426 0.5426 0.5618

500 0.1997 0.2514 0.2579 0.2579 0.2719 0.4981 0.5279 0.5377 0.5377 0.5566

s α β = 1 (0.8005) α β = 2 (0.9762)

(120) True (125) (122) (120) True (125) (122)

1 0.8299 0.7294 0.9055 0.9574 0.9554 1.3670 0.9019 0.9835 1.0202 1.0177

2 0.8790 0.7518 0.8787 0.9002 0.9106 1.5296 0.9302 0.9799 0.9938 0.9966

5 0.9236 0.7709 0.8511 0.8581 0.8718 1.6948 0.9514 0.9774 0.9814 0.9847

10 0.9462 0.7800 0.8364 0.8395 0.8533 1.7835 0.9603 0.9766 0.9782 0.9812

20 0.9622 0.7863 0.8259 0.8273 0.8408 1.8473 0.9657 0.9763 0.9770 0.9797

50 0.9762 0.7917 0.8165 0.8170 0.8302 1.9040 0.9700 0.9762 0.9764 0.9788

100 0.9832 0.7943 0.8118 0.8120 0.8250 1.9324 0.9720 0.9762 0.9763 0.9785

200 0.9881 0.7962 0.8085 0.8086 0.8214 1.9524 0.9733 0.9762 0.9762 0.9784

500 0.9925 0.7978 0.8056 0.8056 0.8183 1.9700 0.9745 0.9762 0.9762 0.9783

6 Conclusions and outlook

The approach in this paper consists of three major steps:

1. Quasi-Gaussian form. Section 3 is the bridge that permits us to pass from the
general form of Spitzer’s formula (16) to the more convenient quasi-Gaussian
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Table 5 Bounds, approximations and true values of P(Qλ = 0)/P(Mβ = 0)

s True β = 0.01 True β = 0.1

(126) lb(18) ub(18) (23) (126) lb(18) ub(18) (23)

1 1.9047 1.9870 0.1224 8.1692 1.1868 1.7622 1.8500 0.1111 8.9980 1.1608

2 1.5993 1.6251 0.2270 4.4062 1.1285 1.5154 1.5447 0.2163 4.6226 1.1095

5 1.3537 1.3595 0.3919 2.5516 1.0794 1.3092 1.3164 0.3845 2.6007 1.0670

10 1.2406 1.2426 0.5159 1.9385 1.0554 1.2119 1.2145 0.5110 1.9570 1.0466

20 1.1653 1.1661 0.6264 1.5965 1.0389 1.1463 1.1473 0.6234 1.6041 1.0326

50 1.1018 1.1021 0.7440 1.3442 1.0244 1.0905 1.0908 0.7426 1.3467 1.0204

100 1.0710 1.0712 0.8113 1.2326 1.0172 1.0633 1.0634 0.8106 1.2337 1.0144

200 1.0497 1.0499 0.8626 1.1593 1.0121 1.0444 1.0444 0.8622 1.1599 1.0101

500 1.0312 1.0313 0.9108 1.0980 1.0077 1.0279 1.0279 0.9106 1.0982 1.0064

s True β = 0.2 True β = 0.5

(126) lb(18) ub(18) (23) (126) lb(18) ub(18) (23)

1 1.6307 1.7207 0.0993 10.0675 1.1328 1.3568 1.4411 0.0688 14.537 1.0565

2 1.4351 1.4669 0.2047 4.8840 1.0894 1.2575 1.2905 0.1717 5.8237 1.0368

5 1.2652 1.2738 0.3763 2.6574 1.0542 1.1629 1.1729 0.3517 2.8433 1.0217

10 1.1831 1.1865 0.5055 1.9781 1.0375 1.1145 1.1187 0.4891 2.0446 1.0148

20 1.1271 1.1284 0.6201 1.6127 1.0261 1.0803 1.0822 0.6101 1.6391 1.0102

50 1.0789 1.0794 0.7410 1.3495 1.0163 1.0504 1.0511 0.7362 1.3582 1.0063

100 1.0553 1.0555 0.8097 1.2350 1.0115 1.0355 1.0358 0.8071 1.2390 1.0044

200 1.0388 1.0389 0.8617 1.1605 1.0081 1.0250 1.0251 0.8604 1.1623 1.0031

500 1.0244 1.0244 0.9104 1.0984 1.0051 1.0158 1.0158 0.9098 1.0991 1.0019

s True β = 1 True β = 2

(126) lb(18) ub(18) (23) (126) lb(18) ub(18) (23)

1 1.1311 1.1960 0.0340 29.4157 0.9645 1.0074 1.0450 0.0064 155.3166 0.9292

2 1.0976 1.1245 0.1237 8.0841 0.9779 1.0037 1.0179 0.0576 17.3720 0.9593

5 1.0632 1.0719 0.3114 3.2114 0.9876 1.0011 1.0052 0.2365 4.2284 0.9792

10 1.0448 1.0487 0.4614 2.1675 0.9918 1.0003 1.0020 0.4057 2.4649 0.9870

20 1.0316 1.0334 0.5931 1.6862 0.9944 1.0000 1.0007 0.5580 1.7920 0.9915

50 1.0199 1.0206 0.7282 1.3733 0.9966 1.0000 1.0001 0.7116 1.4054 0.9951

100 1.0141 1.0144 0.8028 1.2457 0.9977 1.0000 1.0000 0.7938 1.2598 0.9966

200 1.0099 1.0101 0.8580 1.1654 0.9984 1.0000 1.0000 0.8533 1.1719 0.9977

500 1.0063 1.0063 0.9088 1.1003 0.9990 1.0000 1.0000 0.9069 1.1027 0.9986

form (24). The key facilitator is, see (42),

P(Aλ ≤ s) = p(s)
√

s√
2π

∫ α/
√

s

−∞
e− 1

2 sx2
y′(x)dx, (128)

where, as before, Aλ denotes a Poisson random variable with mean λ.
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2. Analysis of the function y. The appendix contains a detailed study of the function
y (and y′). It is shown that there is a strong connection with the Gamma function,
the reciprocal Gamma function and the Lambert W function. For this paper, the
most important result is the power series for y, see (149), which is shown to have
rapidly decaying coefficients. The latter property makes the quasi-Gaussian form
(128) extremely effective, because only the first few terms of y′ have to be taken
into account.

3. Principal series expansions. Starting from the quasi-Gaussian form, we derive in
Section 4 principal series expansions for P(Qλ = 0). The expansions comprise
elementary functions and are used to derive asymptotic expressions and bounds
for P(Qλ = 0). The power series for y leads to even more explicit expansions.

Steps 1 and 2 are very case-specific, requiring properties of the Poisson distribu-
tion and the associated function y′. Step 3 is far more general. The expansions pre-
sented hold for a large class of functions z, of which z = y′ (Poisson case) and z ≡ 1
(Gaussian random walk) are just special cases. We now briefly indicate some ideas
that enable the extension of the first two steps. A more general version of our model is

Qλ
d= (Qλ + A∗

λ − s)+.

If we can write the random variable A∗
λ as the sum of s i.i.d. random variables, which

each converge weakly to a random variable with unit mean as λ → ∞, then un-
der some additional assumptions (for example a Lindeberg-type condition) one has
still weak convergence of (A∗

λ − s)/
√

s to a Gaussian random variable with negative
mean. To write the associated performance measure, such as the emptiness proba-
bility, in a convenient form, our method of attack would still work if the cumulative
distribution function P(A∗

λ ≤ s) is of type (128) with y′(x) replaced by some function
that depends on A∗

λ. Temme [30] describes a large class of distributions that can be
brought in this shape.
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Appendix: Analysis of the function y

We shall present an analysis to obtain some results on the function y(x) that ap-
peared in Sect. 2.2, especially in (24). As before, y(x) is, for |x| sufficiently small,
the solution y of the equation

f (y) := −y − ln(1 − y) = 1

2
x2 (129)

that is real and positive when x is real, positive and sufficiently small. We note that
for |y| < 1,

f (y) = 1

2
y2 + 1

3
y3 + 1

4
y4 + · · · , (130)
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whence we can write (129) for small x and y as

y

(
1 + 2

3
y + 1

2
y2 + · · ·

)1/2

= x (131)

with the principal value of the square root. Hence,

y(x) = x − 1

3
x2 +O(x3). (132)

From (129) we furthermore see that y(x) increases from 0 to ∞ as x increases from
0 to 1, and that y(x) increases from −∞ to 0 as x increases from −∞ to 0.

The function y(x) occurs in connection with the asymptotic expansions of �(t +1)

and 1/�(t) as t → ∞. Thus one substitutes in the integral representation

�(t + 1) =
∫ ∞

0
e−uutdu (133)

subsequently u = t (1 + v), v = −y and y = y(x) to obtain

�(t + 1) = e−t t t+1
∫ ∞

−1
et(−v+ln(1+v))dv

= e−t t t+1
∫ 1

−∞
e−tf (y)dy = e−t t t+1

∫ ∞

−∞
e− 1

2 tx2
y′(x)dx. (134)

We refer to [8], Sect. 4.5 on pp. 69–71, and to [23], Chap. 3, Sect. 8 on pp. 85–86.
By (131), we have that y(x) has a power series

y(x) =
∞∑

n=1

anx
n, (135)

converging for |x| sufficiently small. Then by Watson’s lemma, see e.g. [23], pp. 112–
116, the asymptotics of �(t + 1) follows from (134) as

�(t + 1) ∼ e−t t t+1
∞∑

n=1

nan

∫ ∞

−∞
xn−1e− 1

2 tx2
dx

= e−t t t+1
√

2π

∞∑
k=0

(2k + 1)(2k − 1) · · ·1

tk
a2k+1, (136)

as t → ∞. Note that the terms with odd n in the first series in (136) vanish. In a simi-
lar fashion the asymptotics of 1/�(t) can be obtained from the Hankel representation

1

�(t)
= i

2π

∫

C
(−u)−t e−udu, (137)

where C is a contour that starts at ∞ + i0, encircles the origin in positive sense
and ends at ∞ − i0. This is carried out in [31], Sect. 3.6.3 on pp. 69–70. Thus by
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substitutions as in (134) we now get

1

�(t)
= i

2π

1

e−t t t−1

∫

1+C
etf (y)dy, (138)

where it is observed that Ref (y) → −∞ as y → ∞ ± i0. Now the integration path
1 + C is deformed so as to pass through the saddle point y = 0 where the real axis is
crossed perpendicularly from the upper half plane into the lower half plane. Around
the saddle point we make the substitution f (y) = − 1

2x2 = 1
2 (ix)2 where x ∈ R de-

creases from +δ to −δ, with δ > 0 sufficiently small, and we get, as t → ∞,

1

�(t)
∼ 1

2π

1

e−t t t−1

∫ δ

−δ

e− 1
2 tx2

y′(ix)dx

∼ 1

2π

1

e−t t t−1

∞∑
n=1

nani
n−1

∫ δ

−δ

xn−1e− 1
2 tx2

dx

∼ 1

e−t t t−1/2
√

2π

∞∑
k=0

(−1)k
(2k + 1)(2k − 1) · · ·1

tk
a2k+1. (139)

In particular, we have that the asymptotics of the p(n) of (27) is given by

p(n) = nn−1e−n
√

2πn

�(n)
∼

∞∑
k=0

(−1)k
(2k + 1)(2k − 1) · · ·1

nk
a2k+1, n → ∞,

(140)
so that the pk’s in (27) are given as

pk = (−1)k(2k + 1)(2k − 1) · · ·1 · a2k+1, k = 0,1, . . . . (141)

We shall now present and establish some results for the coefficients an of the power
series

∑∞
n=1 anx

n of y(x). In [34], p. 16, there is given the result

1

�(t + 1)
∼ et

πt t+1/2

∞∑
k=0

ck�(k + 3/2)

tk
, t → ∞, (142)

with ck the coefficients of a function φ(τ) that is regular inside the circle |τ | = 2π .
Apparently, since t�(t) = �(t + 1) and �(k + 3/2) = (k + 1/2)(k − 1/2) · · · 1

2 · √π ,
we have that

a2k+1 = (−1)k2−k−1/2ck, k = 0,1, . . . , (143)

so that a2k+1 decays like ( 1
4π

+ ε)k for any ε > 0. However, with the asymmetric
integration ranges (unlike those in (134) and (139)) that occur in the integrals at
the right-hand side of (24), the decay behaviour of the coefficients a2k is equally
important. We shall thus conduct an analysis for y(x) that is somewhat similar to the
analysis in [34], Sects. 7–9 on pp. 9–15, for the function φ(τ) = ∑∞

k=0 ckτ
k . This

analysis is greatly facilitated by the study of the properties of the mapping

z ∈ C �→ e1−zz = w (144)
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as given in Szegö [28]. Note that exp(f (y)) = (1 − y)ey so that many of the ob-
servations of Szegö directly apply to our function f . The mapping given in (144)
is clearly related to the Lambert W function, which is the inverse of the mapping
W ∈ C �→ WeW , see [7, 16]. Explicitly, our y(x) and Lambert’s W function are
related according to

y(x) = 1 + W(−e−(1+ 1
2 x2)), x > 0. (145)

It appears that Szegö’s analysis of the mapping in (144) has largely escaped the atten-
tion of the Lambert W community. In the proof of the lemma below, we heavily rely
on this analysis and omit some of the details that are contained implicitly or explicitly
in [28], Sect. 2.

Lemma 11 The functions y(x) extends to an analytic function on all of C with the

exception of two branch cuts from 2
√

π · e± 1
4 πi to ∞ · e± 1

4 πi .

Proof (sketch) Our approach is to take any angle θ with −π ≤ θ ≤ π , and to see
how far y(x) admits analytic continuation when x moves in the direction eiθ from 0.
Clearly, from (132), y(x) starts moving from 0 in the direction eiθ when x does
so. We thus plot curves Cθ in the y-plane that start at the origin and leave from
there under an angle θ ∈ [−π,π] with the positive real axis and on which arg[−y −
ln(1 − y)] = 2θ . Writing y = 1 − z and z = ηeiϕ with η > 0 and real ϕ, there should
hold

η cosϕ − 1 − lnη + i(η sinϕ − ϕ) = r cos 2θ + ir sin 2θ (146)

with r ≥ 0 for y to lie on Cθ . Consequently, we should have

η sinϕ − ϕ

η cosϕ − 1 − lnη
= tan 2θ. (147)

With reference to Fig. 2, we have that the cases with tan 2θ = 0 give rise to the
curves with θ = 0,±π/2,±π . The cases that tan 2θ = ∞ give rise to the four curves
with θ = ±π/4,±3π/4. We note that f ′(y) = y/(1 − y) so around any y0 
= 0,1,
the mapping y → f (y) is locally invertible as an analytic function. Furthermore,
|f (y)| increases along any of the curves Cθ . Indeed, this is so, by (132), when y is
close to 0, and |f (y)| cannot have stationary points as y 
= 0,1 moves along Cθ , for
otherwise lnf (y) = ln |f (y)|+2iθ +2πin (n some integer) would have a stationary
point, contradicting f ′(y) 
= 0. Along the curves we define ln(1 − y) as the integral
of −1/(1 − z) with z moving along Cθ from 0 to y, and thus obtain a log(1 − y) that
is analytic around Cθ . The curves with θ = ±π/4 are particular since they re-enter
the origin (where f ′ = 0), and therefore do not admit an analytic continuation of
y(x) beyond there. The values of x at y = 0 in these re-entrance cases are i±1/2

√
2π

for θ = ±π/4, respectively, since −y − ln(1 − y) has the respective values ±2πi

at re-entry to zero along C±π/4. The C±π/4 constitute mirrored versions of Szegö’s
curve, see [28], Fig. 1 on p. 51, passed with negative orientation (+π/4) and positive
orientation (−π/4), respectively. In the cases that 0 ≤ |θ | < π/4, we have that Cθ

is bounded by the closed curves C±π/4, and that y → 1. The asymptotic behavior
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Fig. 2 Curves Cθ in the
y-plane. ε = 0.1

of y is described in these cases in terms of η,ϕ (see (146), (147)) by the spiral η =
exp(−1 + ϕ/ tan 2θ) when ϕ · sgn(θ) → ∞ (observe that in these cases θ and ϕ have
opposite signs). Consequently, when 0 < |θ | < π/4, we have that |x| = |2f (y)|1/2 →
∞ along the curve Cθ . In the cases that π

4 < |θ | < π , we have that Cθ lies completely
outside the region enclosed by C±π/4, and along these curves we have that |y| → ∞.
Therefore | ln(1 − y)/y| → 0 along these curves, and since we have required that
arg[−y − ln(1 − y)] = 2θ , we have that

ϕ∞ := lim|y|→∞,y∈Cθ

arg(y) = 2θ − π (mod[−π,π]). (148)

Also, |x| = |2f (y)|1/2 → ∞ in these cases. We thus conclude that y(x) can be con-
tinued analytically along all rays x = reiθ , r ≥ 0, when θ ∈ [−π,π], except for
θ = ±π/4. In the latter cases the analytic continuation can only be carried out until
r = 2

√
π . �

Lemma 12 We have

y(x) =
∞∑

n=1

anx
n, |x| < 2

√
π, (149)



296 Queueing Syst (2008) 58: 261–301

with a1 = 1 and the an’s recursively defined as

ak+2 = −1

k + 3

(
ak+1 +

k∑
n=1

(n + 1)an+1ak+2−n

)
, k = 0,1, . . . . (150)

Proof From Lemma 11 we have that y(x) is analytic in the disk |x| < 2
√

π , with
branch points at x = 2

√
π · i±1/2. This gives (149). From (129) we get by differenti-

ation with respect to x and some rewriting the equation

y′(x)y(x) = x − xy(x). (151)

Using a1 = 1, this can be written in terms of the an’s as

k−1∑
n=0

(n + 1)an+1ak−n = −ak−1, k = 2,3, . . . , (152)

and this gives (150). Also see [23], Ex. 8.3 on p. 88 and [31], p. 70. �

The first five coefficients an are given by

a1 = 1, a2 = −1

3
, a3 = 1

36
, a4 = 1

270
, a5 = 1

4320
, (153)

and this rapid decay is further substantiated by the following result.

Lemma 13 There is the asymptotic form (rapid decay to 0)

an = sin π
4 (n − 1) − 2π

6n−9 cos π
4 (n − 1)

( 1
2n)3/2(2

√
π)n

(
1 +O(1/n)

)
. (154)

Proof The precise asymptotic behavior of the an can be determined by Darboux’s
method, see Szegö [29], Sect. 8.4 on pp. 206–208. For this we examine y(e±πi/4v)

with 0 ≤ v < 2
√

π as the solution y near 0 and on C±π/4 of the equation

2πi − y − ln(1 − y) = 2πi + 1

2
y2 + 1

3
y3 + · · · = 1

2
iv2. (155)

Thus

y(eπi/4v) = e−πi/4
√

4π − v2 +O(2
√

π − v), v ↑ 2
√

π, (156)

and similarly,

y(e−πi/4v) = eπi/4
√

4π − v2 +O(2
√

π − v), v ↑ 2
√

π. (157)

When we use Darboux’s method in a first order form, we get the leading asymptotics
of an as

an = sin π
4 (n − 1)

( 1
2n)3/2(2

√
π)n

+ lower order. (158)
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Fig. 3 The ratio of an and the
approximation in (154),
minus 1, for the first 40
coefficients

Note that the leading term at the right-hand side of (158) vanishes when n = 4k + 1,
k = 0,1, . . . , and so more precise information is required. This can be obtained when
we write

−y(eπi/4v) − ln(1 − y(eπi/4v)) = 1

2
(e−πi/4(4π − v2)1/2)2, (159)

so that from y(x) = ∑∞
n=1 anx

n we get

y(eπi/4v) =
∞∑

n=1

an(e
−πi/4(4π − v2)1/2)n, (160)

and a similar expression for y(e−πi/4v). We are now in a position to use the full
strength of Darboux’s theorem, see Theorem 8.4 in [29] (noting that it should be
−e−iϕk instead of −eiϕk at the right-hand side of (8.4.8)). For instance, from the
fact that a2 = −1/3, we get (154). The particular form 2π/(6n − 9) of the coef-
ficient in front of cos π

4 (n − 1) arises when the binomials occurring in Darboux’s

results are manipulated; also it has been used that (−1)n
(1/2

n

)
is well approximated

by −1/((2n−1)
√

π(n + 1/2)). Note that the leading factor in (154) is non-vanishing
for any n = 1,2, . . . . �

The accuracy of the approximation (154) is demonstrated by Fig. 3.

Lemma 14 It holds that

y(x) = 1 −
∞∑

m=1

mm−1

m!em
e− 1

2 mx2
, |arg(x)| ≤ π/4. (161)
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Proof Letting z = 1−y and u = exp(−1− 1
2x2), we can write −y − ln(1−y) = 1

2x2

as

ze−z = u, (162)

so that by the Bürmann-Lagrange inversion formula

z(u) =
∞∑

m=1

1

m!
(

d

dz

)m−1 (
z

ze−z

)m ∣∣∣
z=0

um =
∞∑

m=1

mm−1

m! um. (163)

The right-hand side of (163) is analytic in |u| < 1/e and continuous in |u| ≤ 1/e.
This leads to the formula in (161), with x restricted to |arg(x)| ≤ π/4. �

An interesting consequence of (161) is that

∫ ∞

a

e− 1
2 lsx2

y′(x)dx =
∫ ∞

a

e− 1
2 lsx2

∞∑
m=1

mm−1

m!em
· mx · e− 1

2 mx2
dx

=
∞∑

m=1

mm

m!em

∫ ∞

a

e− 1
2 (m+ls)x2

xdx

=
∞∑

m=1

mme− 1
2 (m+ls)a2

m!em(m + ls)
. (164)

This series expansion can be then be inserted into (55) to yield

Gk(a) =
∞∑

m=1

mm

m! e− 1
2 m(a2+2)

∞∑
l=1

lk+1/2

m + ls
e− 1

2 lsa2
. (165)

For somewhat larger values of a, this seems to offer an attractive alternative to eval-
uate the Gk(a) numerically. Furthermore, (161) can be used to establish a formal
connection between the function y and Lerch’s transcendent. Indeed, we have

kk−1

k!ek
= p(k)

k
√

2πk
∼ 1√

2π

( 1

k3/2
− 1

12k5/2
+ 1

288k7/2
+ · · ·

)
. (166)

Inserting this asymptotic expansion into (161) and using the definition (61) of Lerch’s
transcendent, we find a formal identity between 1 − y(x) and

e− 1
2 x2

√
2π

(



(
e− 1

2 x2
,

3

2
,1

)
− 1

12



(
e− 1

2 x2
,

5

2
,1

)
+ 1

288



(
e− 1

2 x2
,

7

2
,1

)
+ · · ·

)
.

(167)
Observe that each of the 
-functions in (167) has a convergent power series in x,
|x| < 2

√
π , per formula (63).

We conclude our analysis of y with the following result.
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Lemma 15 There is the inequality

1 − 2

3
x ≤ y′(x) ≤ 1, x ≥ 0. (168)

Proof Solve f (y) = −y − ln(1 − y) = 1
2x2 for the unique solution y(x) ∈ [0,1).

From the inequalities, to be proved below,

− x

1 + x/3
− ln

(
1− x

1 + x/3

)
≥ 1

2
x2 ≥ − x

1 + x
− ln

(
1− x

1 + x

)
, x ≥ 0, (169)

and monotonicity of f we infer that

x

1 + x/3
≥ y(x) ≥ x

1 + x
, x ≥ 0. (170)

From (151) we get

y′(x) = x
( 1

y(x)
− 1

)
, x ≥ 0. (171)

Inserting the inequalities (170) into (171), we find

1 − 2

3
x = x

(1 + x/3

x
− 1

)
≤ y′(x) ≤ x

(1 + x

x
− 1

)
= 1, x ≥ 0, (172)

as required. We now prove the two inequalities in (169). As to the second one, we
need to show that

g2(x) := −x + (1 + x) ln(1 + x) ≤ 1

2
x2 + 1

2
x3 =: h2(x), x ≥ 0. (173)

Noting that g2(0) = h2(0) = 0, g′
2(0) = h′

2(0) = 0, and

g′′
2 (x) = 1

1 + x
≤ 1 + 3

2
x = h′′

2(x), x ≥ 0, (174)

we get (173). Note that the second inequality in (169) is the sharpest in its kind: when
α > 0, the inequality y(x) ≥ x/(1 + (1 − α)x) fails to hold for large x ≥ 0, since this
would require

− x

1 + (1 − α)x
− ln

( 1 − αx

1 + (1 − α)x

)
≤ 1

2
x2, 0 ≤ x < ∞, (175)

to hold. We next show the first inequality in (169). To that end we must prove that

g1(x) := −x − (1 + x/3)(ln(1 − 2x/3) − ln(1 + x/3))

≥ 1

2
x2 + 1

6
x3 =: h1(x), x ≥ 0. (176)
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It holds that g1(0) = h1(0) = 0, g′
1(0) = h′

1(0) = 0, g′′
1 (0) = h′′

1(0) = 1, while

g′′′
1 (x) = 4/27

(1 − 2x/3)2
− 1/27

(1 + x/3)2
+ 8/9

(1 − 2x/3)3
≥ 1 = h′′′

3 (x), x ≥ 0, (177)

again with equality at x = 0. This proves the lemma. �
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