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Abstract We propose a new queueing model named the ac-
quisition queue. It differs from conventional queueing mod-
els in that the server not only serves customers, but also per-
forms acquisition of new customers. The server has to divide
its energy between both activities. The number of newly ac-
quired customers is uncertain, and the effect of the server’s
acquisition efforts can only be seen after some fixed time
period δ (delay).

The acquisition queue constitutes a (δ + 1)-dimensional
Markov chain. The limiting queue length distribution is de-
rived in terms of its probability generating function, and an
exact expression for the mean queue length is given. For
large values of δ the numerical procedures needed for cal-
culating the mean queue length become computationally
cumbersome. We therefore complement the exact expres-
sion with a fluid approximation.

One of the key features of the acquisition queue is that the
server performs more acquisition when the queue is small.
Together with the delay, this causes the queue length process
to show a strongly cyclic behavior. We propose and investi-
gate several ways of planning the acquisition efforts. In par-
ticular, we propose an acquisition scheme that is designed
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1 Introduction

In conventional queueing systems customers arrive at a ser-
vice entity according to some renewal process that is inde-
pendent of the service process. In this paper we introduce
a model that requires the server to perform itself the ac-
quisition of customers. The server has to divide its energy
between serving customers presently waiting and perform-
ing acquisition of new customers. The number of newly ac-
quired customers is uncertain, and the effect of the server’s
acquisition efforts can only be seen after some fixed period
of time.

We divide time into slots of equal length, and we assume
that in each slot the server has η units of energy to spend,
where one unit of energy is needed to serve one customer.
The server divides its energy according to s units for serving
customers, and α units for performing acquisition. Hence
η = s + α with η, s, α non-negative integers. Let Xn de-
note the number of customers waiting in the queue at the
beginning of time slot n. We assume that the server does
not waste energy, so when there are fewer than s customers
present at the beginning of a time slot n, the server will use
αn = α + max{0, s − Xn} units of energy for acquisition.
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Let A denote the random variable that represents the num-
ber of customers acquired with one unit of energy spent on
acquisition. We assume that customers acquired due to an
acquisition effort in slot n arrive at the queue at the begin-
ning of slot n + δ + 1 (with δ some non-negative integer).
The queue length process can then be described as X0 = 0
and

Xn+1 = (Xn − s)+ +
αn−δ∑

k=1

An,k, n = 0,1, . . . , (1)

where x+ = max{0, x} and the An,k are random variables
i.i.d. according to A. We refer to the queueing model defined
by (1) as the acquisition queue.

1.1 Motivation

The acquisition queue is motivated from data transfer in ca-
ble networks organized via a request-grant procedure. In
these networks, a user should first send a request to some
central server, and once this request gets granted, the user
waits in the data queue until the data of his actual message
gets transmitted. The central server schedules the available
network capacity among the processes of handling requests
and transmitting data.

In cable networks, there is typically a substantial trans-
mission delay, defined as the time required to transmit a sig-
nal from the user to the central server and vice versa. Due to
this delay, scheduling decisions must be taken in advance so
that they can be communicated to the users. Consequently,
there is a time lag between granting a request and transmit-
ting the data associated with the request. Therefore, one is
naturally led to consider periodical scheduling, for which
slots are grouped together into frames of consecutive slots,
η say. The nature of each slot in the frame is periodically
determined by the central server and broadcast to all users.

Let Xn now denote the size of the data queue at the be-
ginning of frame n. Let δ represent the transmission delay
such that a request made in frame n can be scheduled at
the earliest in frame n + δ + 1. Further assume that every
frame, α slots are used for handling new requests. Then, the
acquisition queue (1) serves as a model for the data queue.
The quantity αn can be interpreted as the number of slots in
frame n that are used for handling requests, and the sum in
(1) equals the total number of new data packets for which
transmission is granted. For more background on this appli-
cation, we refer to [2, 3].

1.2 Key features

One of the key features of (1) is that there is some nat-
ural form of input balancing. When there is little work
(i.e. Xn < s), more energy is spent on acquisition, which

Fig. 1 Sample path of the process defined by (1), for η = 10, δ = 10,
α = 0, and A Poisson distributed with μA = 3

is expected to result in more work in the future. Another key
feature is the delay δ between the acquisition effort and the
actual arrival of the acquired customers. This not only makes
the analysis harder (note that (1) is a (δ + 1)-dimensional
Markov chain), but it might also corrupt the input balanc-
ing. Indeed, when newly acquired customers arrive at the
queue, the situation might be totally different from that of
δ + 1 slots ago. A third feature of (1) is the cyclic behavior.
It is intuitively clear that the delay δ may result in a strongly
correlated arrival process, and therefore in a cyclic behavior
of the queue length process. Figure 1 displays a sample path
for slot 1,000 until slot 1,300 for η = 10, δ = 10, α = 0, and
A Poisson distributed with μA = 3.

We see in Fig. 1 that the sample path has settled on a
cyclic pattern. Each cycle can be subdivided into three con-
secutive periods. First, there is a period of length δ + 1 in
which the queue length is approximately zero. Then there is
a period of length δ + 1 in which the queue length increases.
Finally, in a third period, the queue is drained until it hits
zero, upon which a new cycle starts. Figures 2, 3 display
results for α = 1,2. The larger α, the less restrictive the pat-
tern. Figure 4 displays results for δ = 0, in which case the
cyclic pattern is no longer there.

This cyclic behavior might have severe consequences for
performance measures like the mean and variance of the
queue length, and we aim at smoothing the arrival process
and reducing the correlation of the arrival process by plan-
ning the server’s acquisition efforts in an appropriate way.

1.3 Acquisition planning

The parameter α in αn = α + (s − Xn)
+, see (1), can be in-

terpreted as the amount of energy guaranteed for acquisition.
In each slot at least α energy units are used for acquisition.
Since the value of α is fixed, we refer to this type of acqui-
sition planning as static acquisition planning. The value of
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Fig. 2 Sample path of the process defined by (1), for η = 10, δ = 10,
α = 1, and A Poisson distributed with μA = 3

Fig. 3 Sample path of the process defined by (1), for η = 10, δ = 10,
α = 2, and A Poisson distributed with μA = 3

α has an impact on the queue length process. The heuristic
rationale is that a larger value of α makes the arrival process
more stable, but less adaptive to the current queue length.
That is, the larger α, the less room, i.e. (η −α −Xn)

+, there
is for input balancing.

There are thus two, unfortunately conflicting, heuristics
that guide a judicious choice of α. On the one hand, set-
ting α small ensures that customers are served as quickly as
possible, and one would expect that this keeps the queue of
waiting customers small. On the other hand, setting α large
stabilizes the arrival process, which could possibly lead to
smaller queue lengths. In choosing the right value of α, one
should strike the proper balance between these two consid-
erations.

One could also consider a model in which the server is
totally free to choose the acquisition effort in slot n, ᾱn units

Fig. 4 Sample path of the process defined by (1), for η = 10, δ = 0,
α = 0, and A Poisson distributed with μA = 3

say. This type of free acquisition planning then leads to the
following modification of the acquisition queue

X̄n+1 = (X̄n − (η − ᾱn))
+ +

ᾱn−δ∑

k=1

An,k, (2)

with ᾱn ∈ {0,1, . . . , η} for every n. We derive a scheme for
choosing the value ᾱn based on the queue length at the be-
ginning of the slot and the acquisition effort in the previous
δ slots (of which the result is still not known).

The goals of this paper are to derive the limiting queue
length distribution for the acquisition queue (1) and to de-
velop rules and heuristics for choosing α and ᾱn in (2). We
primarily aim at dealing with the cyclic behavior caused by
the delay δ.

1.4 Outline of the paper

For δ = 0, (1) defines a one-dimensional Markov chain,
and the pgf of the limiting queue length distribution is ob-
tained in van Leeuwaarden et al. [9]. For δ = 1,2, . . . the
approach from [9] does not carry over. Yet, we are able to
derive an exact solution, presented in Sect. 2. The solution,
though, is rather complex, since it requires the determina-
tion of s(s + 1)δ boundary probabilities. We therefore de-
rive in Sect. 3 an exact expression for the mean limiting
queue length that is of more compact form and does allow
for an intuitive interpretation, although it still contains terms
that can only be calculated from the boundary probabilities.
Since this calculation becomes prohibitively cumbersome
for somewhat larger values of δ, we develop in Sect. 4 an
approximation for the mean queue length based on a fluid
approximation. This approximation provides valuable infor-
mation on the (cyclic) behavior of the delayed acquisition
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queue, which we use for developing rules as to choose an ap-
propriate value for ᾱn (free acquisition planning) in Sect. 5.
In Sect. 6, a simulation-based comparison is made between
the performance of the various types of acquisition planning.
We end in Sect. 7 with some conclusions.

2 Exact solution

Let A(z) = ∑∞
k=0 P(A = k)zk be the pgf of A and define

a
j
k = P(A1 + · · · + Aj = k), where Ai i.i.d. as A for all i.

Denote by μA and σ 2
A the mean and variance of A. Let Mn =

(s −Xn)
+. From (1) it is clear that {(Xn,Mn−1, . . . ,Mn−δ)}

is a Markov chain. The variables Mn−1, . . . ,Mn−δ consti-
tute our memory, in the sense that these variables keep
track of all acquisition efforts of which the outcome is still
not known. We henceforth assume that this Markov chain
is irreducible and aperiodic; for example, this holds when
P(A = k) > 0 for all k ≥ 0. The ergodicity condition is for-
mulated in the following lemma.

Lemma 1 The Markov chain {(Xn,Mn−1, . . . ,Mn−δ)} is
ergodic if

αμA − s < 0. (3)

Proof By partitioning the state space of the Markov chain
{(Xn,Mn−1, . . . ,Mn−δ)} into levels i, where level i is the
subset of states for which the queue length is i, i = 0,1, . . . ,
it is readily seen that the probability transition matrix is an
M/G/1-type stochastic matrix, see [10]. Hence, the ergodic-
ity condition is the usual condition stating that the average
drift should be negative, which in this case reduces to in-
equality (3). For an alternative proof of (3), based on Fos-
ter’s criterion, the reader is referred to [2]. �

In the sequel we assume that (3) is satisfied. The Markov
chain {(Xn,Mn−1, . . . ,Mn−δ)} then has a unique limiting
distribution

π(k,m1, . . . ,mδ)

= lim
n→∞ P(Xn = k,Mn−1 = m1, . . . ,Mn−δ = mδ), (4)

where k ≥ 0 and mi ∈ {0, . . . , s} for all i. Let X denote a
random variable distributed according to the limiting queue
length distribution

π(k) := P(X = k) = lim
n→∞ P(Xn = k). (5)

The probability generating function of X is then given by

G(z) =
s∑

m1=0

· · ·
s∑

mδ=0

Gm1,...,mδ (z), (6)

where

Gm1,...,mδ (z) =
∞∑

k=0

π(k,m1, . . . ,mδ)z
k. (7)

In the analysis below we make use of the normalization con-
dition

s−1∑

k=0

s∑

m1=0

· · ·
s∑

mδ=0

π(k,m1, . . . ,mδ)(s − k) = s − αμA

1 + μA

, (8)

which can be explained as follows. The left-hand side of
(8) clearly expresses the additional acquisition effort per
slot. On average, the guaranteed acquisition effort brings
per slot αμA of new customers to the queue, each customer
requiring one unit of energy. Hence, αμA of the remain-
ing s energy units per slot are spent on serving these cus-
tomers. This leaves s − αμA energy units, of which only
(s − αμA)/(1 + μA) units can be spent on additional acqui-
sition (since one unit of acquisition results on average in μA

new customers).

2.1 Case δ = 0

We start from the balance equations (for k = 0,1, . . .)

π(k) =
k+s∑

k′=s

π(k′)aα
k−k′+s +

s−1∑

k′=0

π(k′)aα+s−k′
k . (9)

Multiplying both sides of (9) by zk , summing over all values
of k, and rearranging terms yields

G(z) = A(z)α
∑s−1

k=0 π(k)(zsA(z)s−k − zk)

zs − A(z)α
. (10)

Expression (10) is of indeterminate form, but the s bound-
ary probabilities π(0), . . . , π(s − 1) can be determined by
consideration of the zeros of the denominator in (10) that lie
on or within the unit circle. The following lemma is taken
from [1].

Lemma 2 If αμA < s and P(A = 0) > 0, it holds that zs −
A(z)α has s zeros on or within the unit circle.

Denote the s zeros of zs − A(z)α in |z| ≤ 1 by z0 =
1, z1, . . . , zs−1, which are assumed to be simple (and thus
distinct). Since the function G(z) is finite on and inside
the unit circle, the numerator of the right-hand side of (10)
needs to be zero for each of the s zeros, i.e., the numerator
should vanish at the exact points where the denominator of
the right-hand side of (10) vanishes. For z0 = 1, this is triv-
ial, so Lemma 2 and (10) lead to s−1 (non-trivial) equations
in terms of the s boundary probabilities. The final equation
follows from the normalization condition (8).
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If zs − A(z)α has zeros of multiplicity greater than two,
sufficiently many equations are obtained from setting the
derivatives (up to the multiplicity) of the numerator of the
right-hand side of (10) equal to zero.

2.2 Case δ = 1

In this case we include one memory variable Mn−1 into our
state description, and we distinguish between the balance
equations for states (k,m1) with m1 = 0

π(k,0) =
s∑

i=0

k+s∑

k′=s

π(k′, i)aα+i
k−k′+s

, (11)

and with m1 ∈ {1, . . . , s}

π(k,m1) =
s∑

i=0

π(s − m1, i)a
α+i
k . (12)

Multiplying both sides of (11) and (12) by zk and summing
over all values of k yields

G0(z) = z−s

s∑

i=0

(
Gi(z) −

s−1∑

k=0

π(k, i)zk

)
A(z)α+i , (13)

and for m1 ∈ {1, . . . , s}

Gm1(z) =
s∑

i=0

π(s − m1, i)A(z)α+i . (14)

Upon substituting (14) into (13) and rearranging terms we
find

G0(z)

= A(z)α(
∑s

i=0
∑s−1

k=0 π(k, i)(A(z)s+α+i−k − zkA(z)i)

zs − A(z)α
.

(15)

Hence, (14) and (15) still contain s(s + 1) boundary proba-
bilities

π(k,m1), k = 0, . . . , s − 1, m1 = 0, . . . , s,

which should be determined. We therefore match these un-
knowns by equally many equations: s2 equations follow
from (12), s − 1 equations follow from Lemma 2 and (15),
and a final equation is provided by the normalization condi-
tion (8).

2.3 Case δ = 2

We now include two memory variables Mn−1 and Mn−2

into our state description, but for the balance equations we

only need to distinguish between the states (k,m1,m2) with
m1 = 0 and m1 ∈ {1, . . . , s}. We get

π(k,0,m2) =
s∑

i=0

k+s∑

k′=s

π(k′,m2, i)a
α+i
k−k′+s

, (16)

and for m1 ∈ {1, . . . , s}

π(k,m1,m2) =
s∑

i=0

π(s − m1,m2, i)a
α+i
k , (17)

and so we obtain for m2 ∈ {0, . . . , s}

G0,m2(z) = z−s
s∑

i=0

(
Gm2,i (z)

−
s−1∑

k=0

π(k,m2, i)z
k

)
A(z)α+i , (18)

Gm1,m2(z) =
s∑

i=0

π(s − m1,m2, i)A(z)α+i ,

m1 ∈ {1, . . . , s}. (19)

Upon rearranging terms in (18) for m2 = 0 we get

G0,0(z)

= A(z)α(
∑s

i=1 G0,i (z)A(z)i − ∑s
i=0

∑s−1
k=0 π(k,0, i)zkA(z)i)

zs − A(z)α
.

(20)

Equations (18–20) contain s(s + 1)2 boundary probabilities

π(k,m1,m2), k ∈ {0, . . . , s − 1}, m1,m2 ∈ {0, . . . , s},
(21)

which can again be matched by equally many equations.
In this case, s2(s + 1) equations follow from (17) for k ∈
{0, . . . , s − 1}, m1 ∈ {1, . . . , s}, m2 ∈ {0, . . . , s}, s − 1 equa-
tions follow from Lemma 2 and (20) (using (18) and (19)),
and one equation follows from the normalization condi-
tion (8). So we need an extra s2 equations. For this, we
consider the probabilities π(k,0,m2), k ∈ {0, . . . , s − 1},
m2 ∈ {1, . . . , s}, see Fig. 5. Note that these probabilities
can be expressed through (16) in terms of the probabili-
ties π(k′,m2, i), k′ ∈ {s, . . . ,2s − 1}, m2 ∈ {1, . . . , s}, i ∈
{0, . . . , s}, only. Each of the latter probabilities can be writ-
ten in terms of the boundary probabilities through (17),
yielding s2 equations.

2.4 General case

It might be clear from the analysis for δ = 2 that we can
take a similar approach for δ = 3,4, . . . . We start from the
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Fig. 5 The states corresponding to the boundary probabilities (21)
and the additional probabilities π(k′,m2, i), k′ ∈ {s, . . . ,2s − 1},
m2 ∈ {1, . . . , s}, i ∈ {0, . . . , s}

balance equations

π(k,0,m2, . . . ,mδ)

=
s∑

i=0

k+s∑

k′=s

π(k′,m2, . . . ,mδ, i)a
α+i
k−k′+s

, (22)

and for m1 ∈ {1, . . . , s}
π(k,m1,m2, . . . ,mδ)

=
s∑

i=0

π(s − m1,m2, . . . ,mδ, i)a
α+i
k , (23)

and obtain

G0,m2,...,mδ (z) = z−s

s∑

i=0

(
Gm2,...,mδ,i (z)

−
s−1∑

k=0

π(k,m2, . . . ,mδ, i)z
k

)
A(z)α+i ,

(24)

and for m1 ∈ {1, . . . , s}

Gm1,...,mδ (z) =
s∑

i=0

π(s − m1,m2, . . . ,mδ, i)A(z)α+i . (25)

For m2 = m3 = · · · = mδ = 0 we get from (24)

G0,...,0(z)

=
∑s

i=1 G0,...,0,i (z)A(z)α+i − ∑s
i=0

∑s−1
k=0 π(k,0, . . . ,0, i)zkA(z)α+i

zs − A(z)α
.

(26)

We should then still determine the s(s + 1)δ boundary prob-
abilities

π(k,m1, . . . ,mδ),

k ∈ {0, . . . , s − 1}, m1, . . . ,mδ ∈ {0, . . . , s} (27)

and so we need equally many equations. Equation (23) im-
mediately yields s2(s + 1)δ−1 equations, and we thus search
for an extra s(s + 1)δ−1 equations.

Consider (22) for m2 ∈ {1, . . . , s}. The probabilities
on the right-hand side of (22) can be written in terms
of the boundary probabilities through (23), which yields
s2(s + 1)δ−2 equations. Likewise, (22) for m2 = 0 and m3 ∈
{1, . . . , s} yields s2(s + 1)δ−3 equations, and we can repeat
this trick all the way up to (22) for m2 = · · · = mδ−1 = 0,
mδ ∈ {1, . . . , s} (yielding s2 equations). Altogether, this
leads to

s2(s + 1)δ−2 + s2(s + 1)δ−3 + · · · + s2

equations. Together with the s − 1 equations from Lemma 2
and (26), and the normalization condition (8), we then have
exactly s(s + 1)δ−1 equations.

A demonstration of the implementation of this analytical
solution will be provided in Sect. 3 (see Table 1).

3 Mean limiting queue length

In principle, the mean of X follows from evaluating the first
derivative of (6) at z = 1, but this does not lead to a partic-
ularly nice expression. Instead, we apply a method that was
first used by Kingman [8], which is based on the manipula-
tion of

Pn = (Xn − s)+, Mn = (s − Xn)
+. (28)

For these variables we have

Xn − s = Pn − Mn, (Xn − s)2 = P 2
n + M2

n. (29)

Let M denote a random variable distributed according
to the limiting distribution of Mn, and hence M is equal in
distribution to (s−X)+. We then derive the following result.

Theorem 1 The mean limiting queue length in the acquisi-
tion queue defined by (1) can be expressed as

EX = ασ 2
A

2(s − αμA)
+ σ 2

A

2(1 + μA)
+ s + αμA

2

+ E(M2)
μ2

A − 1

2(s − αμA)
+ ER

μA

s − αμA

, (30)

where

ER = lim
n→∞ E(PnMn−δ). (31)

Proof Define

Sn−δ =
α+Mn−δ∑

i=1

Ai. (32)
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Since Xn − s = Pn − Mn = Xn+1 − Sn−δ − Mn, taking ex-
pectations at both sides, letting n → ∞, and rearranging
terms gives

EM = s − αμA

1 + μA

. (33)

Next, using Pn = Xn+1 − Sn−δ and (29) yields

(Xn − s)2 = P 2
n + M2

n = (Xn+1 − Sn−δ)
2 + M2

n

= X2
n+1 − 2Xn+1Sn−δ + S2

n−δ + M2
n

= X2
n+1 − 2(Pn + Sn−δ)Sn−δ + S2

n−δ + M2
n

= X2
n+1 − 2PnSn−δ − S2

n−δ + M2
n, (34)

i.e.,

2sXn = s2 + X2
n − X2

n+1 + 2PnSn−δ + S2
n−δ − M2

n. (35)

Furthermore, from (32),

E(S2
n−δ) = (α + E(Mn−δ))σ

2
A

+ (α2 + 2αE(Mn−δ) + E(M2
n−δ))μ

2
A, (36)

and

E(PnSn−δ) = αE(Pn)μA + E(PnMn−δ)μA

= αE(Xn − s + Mn)μA + E(PnMn−δ)μA. (37)

Taking expectations in (35), substituting (36) and (37), let-
ting n → ∞, and rearranging terms leads to

2EX(s − αμA)

= (s − αμA)2 + 2αEM(μA + μ2
A) + (α + EM)σ 2

A

+ E(M2)(μ2
A − 1) + 2μAER, (38)

with ER as in (31). Finally, substituting (33) into (38)
yields (30). �

Expression (30) contains two unknown terms: a term
E(M2) that is related to the energy spent on acquisition, and
a correlation term ER. Both terms can be expressed in terms
of the boundary probabilities. One readily sees that

E(M2) =
s−1∑

k=0

s∑

m1=0

· · ·
s∑

mδ=0

π(k,m1, . . . ,mδ)(s − k)2. (39)

In case δ = 0, we obviously have that ER = 0. To determine
ER for δ = 1, note that R satisfies

R
d=

(
α+M1∑

j=1

A1,j − s

)+
(s − X)+, (40)

where
d= denotes equality in distribution, and hence

ER = E

(
α+M1∑

j=1

A1,j − s

)+
(s − X)+,

=
s−1∑

k=0

s∑

m1=0

π(k,m1)E

(
α+m1∑

j=1

A1,j − s

)+
(s − k). (41)

With max{x,0} = x − min{x,0} we get

E

(
α+m1∑

j=1

A1,j − s

)+

= (α + m1)μA − s −
s−1∑

n=0

aα+m1
n (n − s). (42)

Substituting (42) into (41) gives an expression for ER that
consists of finitely many terms only. Similar expressions can
be obtained for δ ≥ 2. For δ = 2 we have

R
d=

((
α+M2∑

j=1

A2,j − s

)+
+

α+M1∑

j=1

A1,j − s

)+
(s − X)+.

(43)

Introducing the notation

Un =
α+Mn∑

j=1

An,j − s, (44)

we can write (43) as

R
d= (U+

2 + U1)
+(s − X)+

= max{0,U1,U1 + U2}(s − X)+. (45)

In general, we find for δ ≥ 1 that

R
d= max{0,U1,U1 + U2, . . . ,

U1 + U2 + · · · + Uδ}(s − X)+, (46)

and conditioning as in (41) leads to explicit expressions
for ER.

Table 1 displays values of EX, P(X ≤ s −1), E(M2) and
ER for η = 10 and A Poisson distributed with μA = 0.99.
These values were obtained by determining the s(s + 1)δ

boundary probabilities as outlined in Sect. 2. Observe
that EX, E(M2) and ER increase as functions of δ, and EX

increases as a function of α. The case α = 5 is extreme be-
cause the stability condition (3) is only just satisfied. EX be-
comes large because of the 1

2ασ 2
A/(s − αμA) term, while

E(M2) and ER become negligibly small (mainly because
P(X ≤ s − 1) is small).
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Table 1 EX, P(X ≤ s − 1), E(M2), ER for η = 10 and A Poisson distributed with μA = 0.99

α EX P(X ≤ s − 1)

δ = 0 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2

0 5.2133 5.3684 5.4777 0.8625 0.8164 0.7939

1 5.2759 5.4614 5.5911 0.8282 0.7785 0.7555

2 5.3791 5.6076 5.7653 0.7713 0.7213 0.6999

3 5.5830 5.8781 6.0783 0.6637 0.6230 0.6067

4 6.1847 6.5984 6.8776 0.4447 0.4229 0.4150

5 54.7128 55.3828 55.8741 0.0145 0.0140 0.0139

α E(M2) ER

δ = 0 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2

0 35.6196 38.2757 39.3444 0 1.5931 2.7066

1 23.8530 25.6764 26.3761 0 1.5184 2.5753

2 14.6221 15.6768 16.0687 0 1.4003 2.3640

3 7.7711 8.2424 8.4145 0 1.2060 2.0219

4 3.0273 3.1733 3.2232 0 0.8540 1.4299

5 0.0552 0.0573 0.0579 0 0.0336 0.0584

The entries in Table 1 for α = 0 (so s = 10) and δ = 2 re-
quire the determination of 1210 boundary probabilities, and
hence solving a system of equally many linear equations.
For even larger values of s and δ the set of boundary prob-
abilities may become prohibitively large. It is therefore that
we search for approximations for E(M2) and ER that can be
easily calculated for larger values of s and δ. E(M2) can be
written as E(M2) = ∑s−1

j=0 P(X = j)(s − j)2, from which
we find that
(

s−1∑

j=0

P(X = j)(s − j)

)2

≤
s−1∑

j=0

P(X = j)(s − j)2

≤ s

s−1∑

j=0

P(X = j)(s − j), (47)

where the first inequality follows from Jensen’s inequality.
Together with (33) this leads to the bounds

(
s − αμA

1 + μA

)2

≤ E(M2) ≤ s
s − αμA

1 + μA

. (48)

These bounds, and some further improvements, have been
presented in [4]. No simple bounds on ER can be derived.
Instead, we derive a fluid approximation for ER in the next
subsection.

4 A fluid approximation

We now employ a heuristic argument to construct an ap-
proximation for ER, which, together with the bounds (48),

gives an approximation for EX. The argument is based on
inspection of the sample paths of various realizations of the
process defined by (1).

The cyclic behavior discussed in Sect. 1.2 is typically ob-
served in case μA > 1 and δ ≥ 1, irrespective of the actual
distribution of A, suggesting that we can construct a deter-
ministic approximation of the sample path. Our approxima-
tion for ER is then obtained by evaluating ER for this deter-
ministic approximation.

More formally, we define a deterministic process {xn}
from (1) by replacing An by its expected value μA, yield-
ing

xn+1 = (xn − s)+ + μA(α + (s − xn−δ)
+). (49)

Given initial values x0 = · · · = xδ = αμA, it is easy to see
that (49) yields for j = 1, . . . , δ + 1

xδ+j = j (η − αμA)μA − (j − 1)s.

At the beginning of slot 2δ + 1 the queue has built up to the
level (δ + 1)(η − αμA)μA − sδ, after which the queue is
drained at rate s − αμA. This yields

x2δ+1+j = (δ + 1)(η − αμA)μA − (δ + j)s + jαμA,

for j = 1, . . . ,L∗. Here L∗ is the smallest value l for which
x2δ+1+l hits αμA. Consequently, an approximation for L∗
can be obtained from x2δ+1+L∗ ≈ αμA, that is,

L∗ ≈ (δ + 1)(η − αμA)μA − sδ

s − αμA

. (50)
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After instant 2δ + 1 + L∗ the sequence repeats itself. Hence
the cycle length equals L = 2δ + 1 +L∗ ≈ (δ + 1)(μA + 1).
We therefore approximate ER as

ER ≈ lim
N→∞

1

N

N∑

n=1

(s − xn)
+(xn+δ − s)+

≈ 1

L

L∑

n=1

(s − xn)
+(xn+δ − s)+. (51)

For μA > 1, we can approximate the latter sum by the terms
n = 2, . . . , δ + 1 (since s − xn > 0), so that

ER ≈ 1

L

δ∑

j=1

(s − αμA)+

× (j (η − αμA)μA − (j − 1)s − s)+

= 1

L

1

2
δ(δ + 1)(s − αμA)((η − αμA)μA − s)+

≈ 1

2

δ

μA + 1
(s − αμA)((η − αμA)μA − s)+. (52)

Substituting (52) into (30) yields the following approxima-
tion for EX.

EX ≈ ασ 2
A

2(s − αμA)
+ σ 2

A

2(1 + μA)

+ s + αμA

2
+ E(M2)

μ2
A − 1

2(s − αμA)

+ 1

2
δ

μA

μA + 1
((η − αμA)μA − s)+. (53)

The bounds in (48) for E(M2) can again be used to obtain
explicit expressions.

In order to assess the quality of (53) we have carried out
a number of simulations. Denote by α∗ the mean acquisition
effort per slot, i.e.,

α∗ = η

1 + μA

. (54)

The mean number of acquired customers per slot, denoted
by λ, then equals α∗μA.

Figures 6 and 7 display EX (obtained by simulation) as
a function of λ for A Poisson, η = 10, α = 0 and δ = 1,
5, 10. The results we present are based on a simulation of
10,000,000 slots, in which we start from an empty queue
and neglect the first 1,000,000 slots. The dashed lines rep-
resent the approximations that follow from (53) (where we
substitute for EM2 the average of the two bounds in (48)).
Figure 6 leads us to conclude that the approximations are
excellent for α = 0. There are some marked differences be-
tween Figs. 6 and 7. Most importantly, the approximation

Fig. 6 EX for A Poisson distributed with μA = 3, η = 10, α = 0 and
δ = 1, 5, 10. The dashed lines represent the approximations that follow
from (53)

Fig. 7 EX for A Poisson distributed with μA = 3, η = 10, α = 1 and
δ = 1, 5, 10. The dashed lines represent the approximations that follow
from (53)

(53) is less accurate in case α = 1. This is so in particular
for the higher traffic intensities.

From these and many other examples we conclude that
(53) is in general sharp, but breaks down in heavy traffic
conditions for α ≥ 1. The latter is because the determinis-
tic approximation to the sample path is less convincing for
increasing values of α, compare e.g. Figs. 1–3. Also, obvi-
ously, the deterministic approximation of the sample path is
more convincing for large values of δ.

4.1 Properties of the mean queue length

Approximation (53) suggests various interesting properties
for EX. Firstly, consider EX as a function of the delay δ.
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Equation (53) suggests that δ has no impact on the mean
queue length in case μA ≤ 1. However, in case μA > 1, EX

increases linearly with δ. It follows in particular that the cor-
relation term ER is the dominating term in the expression
for EX, and that EX grows without bounds for δ tending to
infinity.

Secondly, consider EX as function of α. In order to set α

such that the mean limiting queue length is kept small, there
are two considerations. The smaller α, the quicker the queue
is emptied, while the larger α, the more the arrival process
is smoothened. The approximation (53) can be used to strike
the proper balance between these two considerations.

Thirdly, consider EX as function of λ. Equation (53) sug-
gests that the mean limiting queue length is not necessarily
monotonic in the traffic intensity for δ ≥ 1 and α ≥ 1 (see
also Fig. 7). To see this, observe that the approximation (52)
of ER is not monotonic in μA. This follows easily as this
approximation is nonnegative, and equals 0 both for small
values of μA (i.e. μA ≤ 1) and for μA = s/α. Now for large
values of δ, the correlation term will dominate EX, which
then is non-monotonic too.

This non-monotonicity can be explained informally as
follows. Observe that the input to the queue consists of
two sources: (Xn − s)+ and a sum which increases in
(s − Xn−δ)

+. As the traffic intensity approaches the stabil-
ity bound, the cyclic behavior of the sample paths vanishes.
Hence, increasing the traffic intensity causes the input to be
less bursty, and this results in smaller queue lengths. An-
other way to see this is by observing that the bursts of ar-
riving customers that follows periods in which the system
is (relatively) empty are caused by an inflow of magnitude
(s −αμA)μA +αμA = (η−αμA)μA. The latter expression
is non-monotonic in μA. This type of non-monotonic behav-
ior, though remarkable, is not uncommon in systems that in-
volve control and feedback delay. Situations in which these
characteristics lead to unwanted oscillations and increased
delay occur if the traffic dynamics can be expressed via a
difference equation or differential equation that involves a
delayed response, see e.g. [5–7].

5 Free acquisition planning

We have discussed in Sect. 1.2 how the delay δ may result
in cyclic behavior and a strongly correlated arrival process.
This can have severe consequences for the mean queue
length, see (30), since the correlation term ER becomes
dominant in high-load situations. We now aim at smoothen-
ing the arrival process and reducing the correlation of the
arrival process. We will do so by choosing an appropriate
scheme for free acquisition planning, see (2).

Recall where the cyclic behavior comes from. More ac-
quisition is performed when the queue is small, and less ac-
quisition is performed when the queue is large. This type of

acquisition planning is expected to lead to a smoother ar-
rival process of customers. However, the delay δ upsets the
balance. The impact of a corrective decision, like more ac-
quisition if the system is less busy, is only seen δ slots later.
If the system is busier δ slots later, the extra arrivals might
just have the opposite effect. This phenomenon of control
decisions that have the opposite effect as one had in mind is
precisely what is captured by the correlation term. That is,
ER = limn→∞ E[(Xn − s)+(s − Xn−δ)

+] might be viewed
as a measure for the performance of the acquisition plan-
ning. Ideally, ER equals zero, and a high value of ER indi-
cates that the type of acquisition planning balances the input
poorly. It might be clear that the larger δ, the more unlikely it
is that the static acquisition planning adopted by the delayed
acquisition queue balances the input well.

Our primary goal is to reduce the mean limiting queue
length by constructing an acquisition scheme that balances
the input properly despite a substantial delay. In balancing
the input, one would want λ customers to arrive to the queue
each slot. This is not feasible, since we are dealing with a
stochastic arrival process, but it might serve as a guiding
principle. Say we are at the beginning of slot n. We have
spent ᾱn−δ + ᾱn−δ+1 +· · ·+ ᾱn−1 units of energy on acquisi-
tion in the previous δ slots and we are still free to choose ᾱn,
which makes that the number of arriving customers in the
next δ + 1 slots is given by

δ∑

k=0

ᾱn−k∑

i=1

Ak,i, (55)

where the Ak,i are i.i.d. as A. Ideally, there will be η − ᾱn

customers at the beginning of slot n, so that in each slot
all waiting customers can be served. In that case, we would
have Xn = η − ᾱn and

δ∑

k=0

ᾱn−k∑

i=1

Ak,i = (δ + 1)λ. (56)

In reality, this will not be the case, but we will take these
values as a benchmark. So, we aim at choosing ᾱn such that

Xn − (η − ᾱn) +
δ∑

k=0

ᾱn−k∑

i=1

Ak,i = (δ + 1)λ. (57)

This benchmark gives rise to a useful scheme for acquisition
planning. However, since we do not know the outcome of
the Ak,i in (57) we replace these random variables by their
expectation μA, and upon some rewriting we get

ᾱ∗
n = 1

1 + μA

[
η + (δ + 1)λ − Xn − μA

δ∑

k=1

ᾱn−k

]

= α∗ + 1

1 + μA

[
(δ + 1)λ − Xn − μA

δ∑

k=1

ᾱn−k

]
. (58)
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Fig. 8 EX for A Poisson distributed with η = 10, δ = 10, for α = 0,
1, 2, 3 and free acquisition planning (59)

To make sure that ᾱn is integer-valued, and no energy is
wasted, we then choose ᾱn according to

ᾱn = max{0, 
ᾱ∗
n�, η − Xn}. (59)

6 Comparison of acquisition schemes

In order to assess the merit of various acquisition schemes,
we have carried out a number of simulations. We let A be
Poisson distributed, and set η = 10, δ = 10. The results we
present are based on a simulation of 10,000,000 slots, in
which we start from an empty queue and neglect the first
1,000,000 slots. We also verify some of the properties that
were stated in Sect. 4.1.

Figures 8 and 9 give results for static acquisition planning
with α = 0,1,2,3 and free acquisition planning according
to (59). Figure 8 displays the mean limiting queue length.
The curves obtained from static acquisition planning all
have an asymptote at λ = η−α. For most values of λ, α = 0
results in the largest mean queue length, while (59) results in
the smallest mean queue length. For static acquisition plan-
ning, the non-monotonic behavior mentioned in Sect. 4.1 is
clearly visible for α = 1. Figure 9 displays the correlation
term ER. For static acquisition planning, ER tends to zero
as λ goes to its maximum sustainable value. Free acquisi-
tion planning succeeds in keeping the ER small, except for
high values of λ, where the difference with static acquisi-
tion planning, case α = 0, is negligible. As mentioned be-
fore, a small correlation term indicates that the acquisition
scheme balances the input well.

From many other simulations we observed that free ac-
quisition performs better for increasing values of δ. The

Fig. 9 ER for A Poisson distributed with η = 10, δ = 10, for α = 0,
1, 2, 3 and free acquisition planning (59)

larger δ, the more (relatively) ER is reduced by free ac-
quisition planning. This can be explained as follows. Equa-
tion (59) determines the appropriate acquisition effort by
estimating the number of customers that will arrive in the
future. Denote the total acquisition effort in the δ previ-
ous slots by t . The estimated number of future arrivals is
then tμA. Hence, the larger δ, the larger t , and the more pre-
cise the estimation of the number of future arrivals will be.
A similar argument can be used for describing the influence
of the arrival distribution. The more volatile the distribution,
the less accurate the estimation of the future arrivals.

7 Conclusions

We have introduced the acquisition queue as a new type of
queueing model, and obtained the pgf of the limiting queue
length distribution. Using a method of Kingman [8] and a
fluid approximation, we have obtained an approximation to
the mean limiting queue length. Simulations have shown
that the approximation is precise, although it breaks down
in heavy-traffic situations.

Both the exact solution and the approximation revealed
a number of interesting properties of the acquisition queue.
We showed that the mean limiting queue length is increas-
ing in the delay δ and grows without limits for δ tending to
infinity. Also, rather remarkably, we showed that for δ ≥ 1
and α ≥ 1, the mean limiting queue length is not monotonic
in the traffic intensity. The mean limiting queue length first
grows with the traffic intensity, but as the traffic intensity ap-
proaches its maximum sustainable value, the mean limiting
queue length decreases substantially.

We proposed a type of acquisition planning that deter-
mines the acquisition effort in slot n based on the queue
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length at the beginning of slot n and total acquisition effort
in the δ previous slots. Numerical examples showed good
performance, mainly due to the fact that the correlation of
the input process is reduced.
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