Skip to main content

Advertisement

Log in

Reduced-calorie Avocado Paste Attenuates Metabolic Factors Associated with a Hypercholesterolemic-high Fructose Diet in Rats

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60 % fructose solution (HHF group); hypercholesterolemic diet plus 60 % fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60 % fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60 % fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1 %), low-density lipoprotein (45.4 %), and triglycerides (32.8 %) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1 %, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

HDL-C:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostasis model assessment-insulin resistance

IR:

Insulin resistance

LDL-C:

Low-density lipoprotein cholesterol

References

  1. Nomura K, Yamanouchi T (2012) The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem 23(3):203–208

    Article  CAS  Google Scholar 

  2. Messier C, Whately K, Liang J, Du L, Puissant D (2007) The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behav Brain Res 178(1):139–145

    Article  CAS  Google Scholar 

  3. Pieterse Z, Jerling JC, Oosthuizen W, Kruger HS, Hanekom SM, Smuts CM, Schutte AE (2005) Substitution of high monounsaturated fatty acid avocado for mixed dietary fats during an energy-restricted diet: effects on weight loss, serum lipids, fibrinogen, and vascular function. Nutrition 21(1):67–75

    Article  CAS  Google Scholar 

  4. Ortiz MA, Dorantes AL, Galindez MJ, Cardenas SE (2004) Effect of a novel oil extraction method on avocado (Persea americana Mill) pulp microstructure. Plant Foods Hum Nutr 59(1):11–14

    Article  CAS  Google Scholar 

  5. Ortiz MA, Dorantes AL (2004) Obtención de aceite extra virgen de aguacate y pasta de aguacate reducida en calorias. México D.F. Patente no. 258281

  6. Alhazzaa R, Oen JJJ, Sinclair AJ (2013) Dietary phytosterols modify the sterols and fatty acid profile in a tissue-specific pattern. J Funct Foods 5(2):829–837

    Article  CAS  Google Scholar 

  7. AOAC (2005) Official methods of analysis, vol 1. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  8. Matsuda H, Chisaka T, Kubomura Y, Yamahara J, Sawada T, Fujimura H, Kimura H (1986) Effects of crude drugs on experimental hypercholesterolemia. I. Tea and its active principles. J Ethnopharmacol 17(3):213–224

    Article  CAS  Google Scholar 

  9. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  Google Scholar 

  10. Anderson RL, Hamman RF, Savage PJ, Saad MF, Laws A, Kades WW, Sands RE, Cefalu W (1995) Exploration of simple insulin sensitivity measures derived from frequently sampled intravenous glucose tolerance (FSIGT) tests. The Insulin Resistance Atherosclerosis Study. Am J Epidemiol 142(7):724–732

    CAS  Google Scholar 

  11. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  12. Naveh E, Werman MJ, Sabo E, Neeman I (2002) Defatted avocado pulp reduces body weight and total hepatic fat but increases plasma cholesterol in male rats fed diets with cholesterol. J Nutr 132(7):2015–2018

    CAS  Google Scholar 

  13. Galisteo M, Duarte J, Zarzuelo A (2008) Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem 19(2):71–84

    Article  CAS  Google Scholar 

  14. Calpe-Berdiel L, Escolà-Gil JC, Blanco-Vaca F (2009) New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 203(1):18–31

    Article  CAS  Google Scholar 

  15. Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31(22):2741–2748

    Article  Google Scholar 

  16. Wu JH, Ward NC, Indrawan AP, Almeida CA, Hodgson JM, Proudfoot JM, Puddey IB, Croft KD (2007) Effects of alpha-tocopherol and mixed tocopherol supplementation on markers of oxidative stress and inflammation in type 2 diabetes. Clin Chem 53(3):511–519

    Article  CAS  Google Scholar 

  17. Colquhoun DM, Moores D, Somerset SM, Humphries JA (1992) Comparison of the effects on lipoproteins and apolipoproteins of a diet high in monounsaturated fatty acids, enriched with avocado, and a high-carbohydrate diet. Am J Clin Nutr 56(4):671–677

    CAS  Google Scholar 

  18. Carranza J, Alvizouri M, Alvarado MR, Chávez F, Gómez M, Herrera JE (1995) Effects of avocado on the level of blood lipids in patients with phenotype II and IV dyslipidemias. Arch Inst Cardiol Mex 65(4):342–348

    CAS  Google Scholar 

  19. Lin YL, Chou CH, Yang DJ, Chen JW, Tzang BS, Chen YC (2012) Hypolipidemic and antioxidative effects of noni (Morinda citrifolia L.) juice on high- fat/cholesterol-dietary hamsters. Plant Foods Hum Nutr 67(3):294–302

    Article  CAS  Google Scholar 

  20. Pahua-Ramos ME, Ortiz-Moreno A, Chamorro-Cevallos G, Hernandez-Navarro MD, Garduno-Siciliano L, Necoechea-Mondragon H, Hernandez-Ortega M (2012) Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant Foods Hum Nutr 67(1):10–16

    Article  CAS  Google Scholar 

  21. Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G (2000) Fatty infiltration of liver in hyperlipidemic patients. Dig Dis Sci 45(10):1929–1934

    Article  CAS  Google Scholar 

  22. Aragno M, Tomasinelli CE, Vercellinatto I, Catalano MG, Collino M, Fantozzi R, Danni O, Boccuzzi G (2009) SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats. Free Radic Biol Med 47(7):1067–1074

    Article  CAS  Google Scholar 

  23. Cummings BP, Stanhope KL, Graham JL, Evans JL, Baskin DG, Griffen SC, Havel PJ (2010) Dietary fructose accelerates the development of diabetes in UCD-T2DM rats: amelioration by the antioxidant, alpha-lipoic acid. Am J Physiol Regul Integr Comp Physiol 298(5):R1343–R1350

    Article  CAS  Google Scholar 

  24. Bhatnagar MK, Arora S, Singh V, Bhattacharjee J (2011) Assessment of insulin resistance using surrogate markers in patients of metabolic syndrome. Diabetes Metab Syndr 5(1):29–32

    Article  Google Scholar 

  25. Hosseinpour-Niazi S, Mirmiran P, Sohrab G, Hosseini-Esfahani F, Azizi F (2011) Inverse association between fruit, legume, and cereal fiber and the risk of metabolic syndrome: Tehran Lipid and Glucose Study. Diabetes Res Clin Pract 94(2):276–283

    Article  Google Scholar 

  26. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245(3):194–205

    Article  CAS  Google Scholar 

  27. Hopps E, Noto D, Caimi G, Averna MR (2010) A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20(1):72–77

    Article  CAS  Google Scholar 

  28. Kawagishi H, Fukumoto Y, Hatakeyama M, He P, Arimoto H, Matsuzawa T, Arimoto Y, Suganuma H, Inakuma T, Sugiyama K (2001) Liver injury suppressing compounds from avocado (Persea americana). J Agric Food Chem 49(5):2215–2221

    Article  CAS  Google Scholar 

  29. Pasko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, Gorinstein S (2010) Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods Hum Nutr 65(2):146–151

    Article  CAS  Google Scholar 

  30. Alkhouri N, Dixon LJ, Feldstein AE (2009) Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol 3(4):445–451

    Article  CAS  Google Scholar 

  31. Basaranoglu M, Kayacetin S, Yilmaz N, Kayacetin E, Tarcin O, Sonsuz A (2010) Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 16(18):2223–2226

    Article  Google Scholar 

  32. Shivanna N, Naika M, Khanum F, Kaul VK (2013) Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J Diabetes Complicat 27(2):103–113

    Article  Google Scholar 

  33. Ramaiah SK (2007) A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol 45(9):1551–1557

    Article  CAS  Google Scholar 

  34. Chidambaram J, Carani Venkatraman A (2010) Cissus quadrangularis stem alleviates insulin resistance, oxidative injury and fatty liver disease in rats fed high fat plus fructose diet. Food Chem Toxicol 48(8–9):2021–2029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Instituto Politécnico Nacional and CONACyT scholarship 176073. The authors gratefully acknowledge Lucia Quevedo-Corona of the Departmento de Fisiología-IPN for technical support.

Conflict of Interest

All authors declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Ortiz-Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahua-Ramos, M.E., Garduño-Siciliano, L., Dorantes-Alvarez, L. et al. Reduced-calorie Avocado Paste Attenuates Metabolic Factors Associated with a Hypercholesterolemic-high Fructose Diet in Rats. Plant Foods Hum Nutr 69, 18–24 (2014). https://doi.org/10.1007/s11130-013-0395-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0395-4

Keywords

Navigation