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Abstract
Estimating demand for large assortments of differentiated goods requires the specifi-
cation of a demand system that is sufficiently flexible. However, flexible models are
highly parameterized so estimation requires appropriate forms of regularization to
avoid overfitting. In this paper, we study the specification of Bayesian shrinkage pri-
ors for pairwise product substitution parameters. We use a log-linear demand system
as a leading example. Log-linear models are parameterized by own and cross-price
elasticities, and the total number of elasticities grows quadratically in the number of
goods. Traditional regularized estimators shrink regression coefficients towards zero
which can be at odds with many economic properties of price effects. We propose
a hierarchical extension of the class of global-local priors commonly used in regres-
sion modeling to allow the direction and rate of shrinkage to depend on a product
classification tree. We use both simulated data and retail scanner data to show that, in
the absence of a strong signal in the data, estimates of price elasticities and demand
predictions can be improved by imposing shrinkage to higher-level group elasticities
rather than zero.

Keywords Hierarchical priors · Global-local priors · Non-sparse shrinkage ·
Horseshoe · Seemingly unrelated regression · Price elasticities

JEL Classification C11 · C13 · D12 · M31

We thank IRI for making the data available. All estimates and analysis in this paper based on data
provided by IRI are by the authors and not by IRI. Accompanying R code is available at https://
github.com/adam-n-smith/hierarchical-shrinkage.

� Adam N. Smith
a.smith@ucl.ac.uk

Jim E. Griffin
j.griffin@ucl.ac.uk

1 UCL School of Management, University College London, London, UK

2 Department of Statistical Science, University College London, London, UK

Published online: 29 December 2022

Quantitative Marketing and Economics (2023) 21:95–146

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11129-022-09260-7&domain=pdf
http://orcid.org/0000-0003-1959-7962
https://github.com/adam-n-smith/hierarchical-shrinkage
https://github.com/adam-n-smith/hierarchical-shrinkage
mailto: a.smith@ucl.ac.uk
mailto: j.griffin@ucl.ac.uk


1 Introduction

Measuring price and promotional effects from store-level transaction data is a main-
stay of economics and marketing research. However, many challenges arise in model
specification and inference when the product space is large. For example, demand
models for many goods should be flexible so as to not impose strong prior restric-
tions on cross-price effects, but flexible models contain many parameters so some
form of dimension reduction or regularization is needed to avoid overfitting. While
there is a large literature on regularized estimation, existing methods typically assume
that the underlying parameter vector is sparse and so shrinkage points are fixed at
zero. In this paper, we demonstrate the value of non-sparse, data-driven shrinkage in
high-dimensional demand models.

Our primary contribution is to develop Bayesian shrinkage priors for pairwise
product substitution parameters that may not be sparse but instead conform to a
low-dimensional structure. We propose a hierarchical extension of the class of global-
local priors (Polson & Scott, 2010) that is parameterized using information from
a product classification tree. Typical retail scanner panel data sets, such as those
provided by IRI and Nielsen, include product classification tables where goods
are partitioned into broad categories (e.g., “Salty Snacks”), subcategories (“Potato
Chips”), brands (“Lay’s”), and ultimately UPCs (“Lay’s Classic Potato Chips 20
oz.”). We explicitly use this tree structure to parameterize: (i) prior means, so that
substitution between two goods will depend on the nature of substitution between
their respective subcategories and categories; (ii) prior variances, so that shrinkage
can propagate down through the tree. We also consider different forms of shrinkage at
each level of the tree—e.g., ridge (Hoerl & Kennard, 1970) vs. horseshoe (Carvalho
et al., 2010)—and provide novel results on the shrinkage behavior of the induced
marginal priors.

We apply the proposed hierarchical shrinkage priors to a log-linear demand system
with hundreds of goods and thousands of cross-price elasticity parameters. Log-linear
models remain widely used in elasticity-based pricing applications because of their
simple yet flexible functional form. In practice, however, researchers typically only
allow a small subset of “within category” cross-price effects to enter the demand
equation for any good (e.g., Hausman et al., 1994; Montgomery, 1997; Hitsch et al.,
2021; Semenova et al., 2021) or even omit cross effects altogether (e.g., DellaVigna
& Gentzkow, 2019). We contribute to this literature by allowing a more complete,
high-dimensional set of prices to enter each demand equation and then use the pro-
posed shrinkage priors to do data-driven regularization on price elasticity parameters.
We also propose a posterior computational strategy that partially mitigates the curse
of dimensionality arising from estimating log-linear demand systems at scale.

We use both simulated and actual retail scanner data to highlight the value of
hierarchical non-sparse shrinkage. In our simulation experiments, we show that the
proposed priors are especially useful in settings where the true elasticity matrix is
either: (i) dense, meaning all pairs of goods have a non-zero cross-price elastic-
ity; (ii) dense but becomes sparse after subtracting off the prior mean, meaning all
pairs of product groups have a non-zero cross-price elasticity and many product-level
elasticities are exactly equal to the group-level elasticity; or (iii) group-wise sparse,

96 A.N. Smith, J.E. Griffin



meaning many group-level cross elasticities are zero and this sparsity is inherited
by product-level elasticities. In our empirical application, we use store-level data to
estimate a high-dimensional log-linear demand system with 275 products that span
28 subcategories and nine categories. We show improvements in demand predictions
and estimated elasticities from imposing non-sparse hierarchical shrinkage. Relative
to the best-performing sparse prior, the best-performing hierarchical prior leads to a
4.5% improvement in predictions across all products, a 5.7% improvement for prod-
ucts with extrapolated price levels in the holdout sample, and a 6.8% improvement for
products with limited price variation. In addition, we find that imposing hierarchical
shrinkage leads to larger and more dispersed cross-price elasticities as well as more
negative and precisely estimated own-price elasticities. We believe that being able
to produce more economically reasonable elasticity estimates by simply imposing
shrinkage to higher-level category elasticities is a strength of our approach. Finally,
we produce competitive maps from each estimated 275 × 275 price elasticity matrix
and show that hierarchical shrinkage priors lead to a more interpretable analysis of
product competition and market structure.

1.1 Related literature

Methodologically, our work relates to the literature on Bayesian shrinkage priors for
high-dimensional regression models (Polson & Scott, 2012a; Bhadra et al., 2019).
This literature has largely focused on the problem of sparse signal recovery in which
the parameter vector is assumed to be zero except for a few possibly large compo-
nents. Our goal is to illustrate how many existing shrinkage technologies can still
be used for detecting deviations from some non-zero mean structure. Because our
prior is hierarchical in nature, it also relates to the hierarchical penalties of Bien et
al. (2013) and hierarchical priors of Griffin and Brown (2017) developed to control
shrinkage in linear regression models with interaction terms. These penalties/priors
control the rate of shrinkage of regression effects at different levels of the hierarchy,
allowing for higher-order interactions to be present only when the main effects are
present. In contrast, our priors control both the rate and direction of shrinkage and
have applications beyond regression models with many interactions.

We also contribute to a rich literature on shrinkage estimation of price and
promotional elasticities. For example, Blattberg and George (1991), Montgomery
(1997), and Boatwright et al. (1999) estimate Bayesian hierarchical models that pool
information across stores to improve elasticity estimates. Rather than exploiting a
hierarchical structure over stores, we impose a hierarchical structure over products
in order to estimate high-dimensional regression-based demand systems. Moreover,
Montgomery and Rossi (1999), Fessler and Kasy (2019), and Smith et al. (2019)
demonstrate the benefits of constructing priors that shrink towards economic theory.
Relative to Smith et al. (2019), who also consider group-wise restrictions on price
elasticity parameters in a log-linear demand system, we explicitly focus on a high-
dimensional setting in which there are more prices and cross-price effects than there
are observations. For example, while Smith et al. (2019) estimate demand for up to
32 goods spanning eight subcategories and one category, we estimate demand for 275
goods spanning 28 subcategories and nine categories. Smith et al. (2019) also impose
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group-wise equality restrictions on elasticity parameters, which is a very dogmatic
form of shrinkage. Ensuring shrinkage points are correctly specified is a first-order
concern and motivates their approach of estimating the grouping structure from the
data. While this offers the ability to uncover boundaries in substitution, it comes at a
severe cost of scalability and would not be feasible in our high-dimensional setting.
Although the mean structure of our hierarchical prior is not explicitly derived from
microeconomic theory, the idea of group-wise shrinkage is similar in spirit to the
dimension reduction offered by the theory of separable preferences and multi-stage
budgeting (Goldman & Uzawa, 1964; Gorman, 1971; Deaton & Muellbauer, 1980;
Hausman et al., 1994).

Lastly, we contribute to a growing literature on large-scale demand estimation.
One strand of literature has focused on modeling consumer choice among a high-
dimensional set of substitutes from one product category. A variety of large-scale
discrete choice models have been proposed and made tractable through regulariza-
tion (Bajari et al., 2015), random projection (Chiong & Shum, 2018), and the use of
auxiliary data on consumer consideration sets and search (Amano et al., 2019; Moro-
zov, 2020). A second strand has focused on modeling demand for wider assortments
spanning multiple categories and has exploited the flexibility of deep learning (Gabel
& Timoshenko, 2021) and representation learning methods such as word embed-
dings (Ruiz et al., 2020) and matrix factorization (Chen et al., 2020; Donnelly et al.,
2021).1 There is also a well-established literature on economic models of multi-
category demand (e.g., Manchanda et al., 1999; Song & Chintagunta, 2006; Mehta,
2007; Thomassen et al., 2017; Ershov et al., 2021). However, with the exception
of Ershov et al. (2021), microfounded multi-category models become intractable at
scale and have only been estimated on data with relatively small choice sets spanning
a few categories.

There are a few ways in which the methods in this paper differ from, and poten-
tially complement, existing large-scale methods. The first difference is in the data
required. Our estimation framework—comprising a log-linear demand system with
hierarchical shrinkage priors on price elasticity parameters—uses aggregate store-
level data while most papers discussed above use household-level purchase basket
data. Although granular purchase data sets are becoming more ubiquitous, many
marketing researchers continue to rely on store-level data to estimate price and pro-
motional effects (Hitsch et al., 2021). Our framework thus adds to the toolkit for
anyone wanting to forecast demand and estimate large cross-price elasticity matrices
with aggregate data.

The second difference is in the assumptions about functional forms and the con-
sumer choice process. Log-linear models do not require explicit assumptions about
the functional form of consumer utility and can instead be viewed as a first-order
approximation to some Marshallian demand system (Diewert, 1974; Pollak &Wales,

1There is a closely related literature on modeling purchase data alone (Jacobs et al., 2016; Kumar et al.,
2020; Jacobs et al., 2021) which uses similar methods but abstracts away from demand estimation in the
sense that prices do not enter the modeling framework.
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1992).2 Log-linear models are also directly parameterized by price elasticities, which
is convenient when elasticities are focal objects of interest. That said, log-linear mod-
els do not allow for inferences about preference heterogeneity, are not guaranteed to
satisfy global regularly conditions, and are less scalable—at least when modeled in a
joint, seemingly unrelated regression system—than many existing machine learning
methods.

Finally, we note that the novel contribution of this paper is not in the specifica-
tion of demand, but instead in the approach to regularize high-dimensional demand
parameters within a given functional form. We see at least two ways in which
this paper can complement existing methods. First, estimating substitution patterns
requires sufficient variation in key marketing variables such as price, which can be
challenging in many retail settings. One common solution in empirical work is to
exclude goods from the analysis whose prices either do not vary or perfectly covary
with other prices (e.g., Donnelly et al., 2021). In contrast, our hierarchical shrinkage
approach pools information across goods to produce reasonable estimates of cross-
price elasticities for all products, even those with little to no price variation. Second,
while we use log-linear demand as a leading case, we believe that hierarchical shrink-
age priors can facilitate the estimation of many other demand systems at scale.
Examples include models based on quadratic utility functions (Wales & Woodland,
1983; Thomassen et al., 2017) and discrete choice over product bundles (Gentzkow,
2007; Song & Chintagunta, 2006; Ershov et al., 2021), both of which contain sets of
pairwise substitution parameters that grow quadratically in the number of goods.

The remainder of this paper is organized as follows. Section 2 defines the
log-linear demand system and outlines existing approaches for imposing sparse
shrinkage, including global-local priors. Section 3 develops hierarchical global-local
priors. Section 4 discusses posterior computation strategies. Section 5 presents results
from a set of simulation experiments and Section 6 presents results of an empirical
application to store-level scanner data. Section 7 concludes.

2 Background: Regularizing high-dimensional demand

In this paper we propose a non-sparse, hierarchical shrinkage approach to improve
the estimation of high-dimensional demand models. Our priors apply to demand
models characterized by a set of pairwise product substitution parameters whose
dimension grows non-linearly in the number of goods. Throughout the paper, we use
log-linear demand as a leading example. Before introducing our shrinkage frame-
work, we first outline the specification of a log-linear demand system and standard
existing approaches for regularization.

2Many existing large-scale methods still rely on assumptions of discrete choice. For example, Donnelly
et al. (2021) and Gabel and Timoshenko (2021) model purchases as a two-stage process: first category
incidence and then discrete choice among products within each of the chosen categories. Ruiz et al. (2020)
propose a behavioral model of sequential discrete choice: a consumer decides which item to add to their
basket (or to stop shopping) conditional on previously chosen items.
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2.1 Demand specification

Consider an assortment of products indexed by i = 1, . . . , p. For each product, we
observe its unit sales qit and price pit across weeks t = 1, . . . , n. In a log-linear
demand system, the log of unit sales of product i at time t is regressed on its own log
price, the log prices of all other products, and a vector of controls which can include
product intercepts, seasonal trends, and promotional activity:

log qit = βii logpit +
∑

j �=i

βij logpjt + c′
itφi + εit . (1)

The p × 1 error vector εt = (ε1t , . . . , εpt ) is assumed to follow a N(0, �) distri-
bution where the covariance matrix � captures any unobserved, contemporaneous
correlations between goods.

Log-linear demand systems are attractive for a few reasons. First, the price coef-
ficients represent own and cross-price elasticities, which are often focal economic
objects in the analysis of market structure and pricing/promotion schedules. Second,
the functional form is simple and admits tractable estimators of all model parame-
ters. Third, the model is flexible in that there are no restrictions imposed on βij ’s so
we can accommodate both substitutes (βij > 0) and complements (βij < 0). Log-
linear models are also flexible in the sense that they possess enough parameters to
serve as a first-order approximation to a valid Marshallian demand system (Diewert,
1974; Pollak & Wales, 1992). However, because there are p2 elasticities in a system
with p goods, regularization is needed at scale.

2.2 Sparse shrinkage and global-local priors

We now outline a standard sparse approach to regularizing parameters in the log-
linear demand system in Eq. 1 which will both lay the groundwork for, and also serve
as a benchmark against, the hierarchical priors we construct in the following section.
We take a Bayesian approach to estimation and so regularization will be imparted
by way of the prior. There are now many prior specifications that can be used for
elasticity parameters βij , each having different tail behavior and thus inducing dif-
ferent forms of shrinkage (see, e.g., Bhadra et al., 2019). We specifically focus on
global-local priors (Polson & Scott, 2010), which are scale mixtures of normals:

βij |λ2ij , τ 2∼ N(0, τ 2λ2ij ),

λ2ij ∼ G. (2)

Here τ 2 is the “global” variance that controls the overall amount of shrinkage across
all elasticity parameters βij while λ2ij is a “local” variance that allows for component-

wise deviations from the shrinkage imposed by τ 2. The local variances are distributed
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according to a mixing distribution G, which is often assumed to be absolutely
continuous and will thus admit an associated density g(·).3

One of the reasons that global-local priors are attractive is that, given an appropri-
ate choice of mixing density, they can exhibit two useful properties for sparse signal
recovery: (i) a spike of mass at zero to encourage sparsity for small noisy observa-
tions; and (ii) heavy tails to leave large signals unshrunk (Polson & Scott, 2010).
Together, (i) and (ii) induce shrinkage behavior that mimics the hard selection rules
of Bayesian two-group, spike-and-slab priors (Mitchell & Beauchamp, 1988; George
& McCulloch, 1993; Ishwaran & Rao, 2005) while admitting much more efficient
posterior computation strategies.

The global-local structure is also very general and nests many common Bayesian
shrinkage priors. For example, ridge regression (Hoerl & Kennard, 1970) arises when
λ2ij = 1, the Bayesian lasso (Park & Casella, 2008; Hans, 2009) arises when λ2ij
follows an exponential distribution, and the horseshoe (Carvalho et al., 2010) arises
when λij follows a half-Cauchy distribution. The priors can be compared using their
shrinkage profiles, which measure the amount by which the posterior mean shrinks
the least squares estimate of a regression coefficient to zero, and is related to the
shape of the mixing density g(·). For example, the tails of an exponential mixing
density are lighter than the polynomial tails of the half-Cauchy, suggesting that the
Bayesian lasso may tend to over-shrink large regression coefficients and under-shrink
small ones relative to the horseshoe (Polson & Scott, 2010; Datta & Ghosh, 2013;
Bhadra et al., 2016).

Although the tail behavior and associated shrinkage properties of global-local pri-
ors have now been studied extensively, existing work typically considers the problem
of sparse signal recovery and so the prior means in Eq. 2 are assumed to be fixed at
zero. However, economic theory offers many reasons for why sparse shrinkage may
not be appropriate for price elasticity parameters. First, own-price effects should be
negative by the law of demand and cross-price effects in a Marshallian demand sys-
tem need not be zero even if true substitution effects are zero. Second, the property of
Cournot aggregation (or “adding-up”) implies that demand must become more elas-
tic as the set of available substitutes increases. If cross-effects are arbitrarily shrunk
towards zero, then the magnitude of the own effects must fall, which would lead to
estimates of own-price effects that are biased downward in magnitude. Third, line
pricing can produce highly correlated prices among substitutable goods, which would
lead to heavy shrinkage on the associated cross-price effects in estimation. However,
fixing the shrinkage points to zero would suggest that varieties within the product line
are unrelated even though the very nature of price correlation reflects a high degree
of substitution. Together, these examples suggest that care must be taken when reg-
ularizing price effect parameters, which motivates our development of non-sparse
shrinkage priors.

3Note that some of the earliest examples of Bayesian shrinkage arise under the model in Eq. 2 with G

being discrete. For example, spike-and-slab priors (Mitchell & Beauchamp, 1988; George & McCulloch,
1993) arise under a two-point mixture distribution G(λ2) = wδλ2=1 + (1 − w)δλ2=0.
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3 Hierarchical global-local priors

In this section, we develop hierarchical global-local priors with two goals in mind.
The first is to allow own and cross-price elasticities to be shrunk towards higher-
level group elasticities (rather than zero), where the hierarchy of groups is defined
using a pre-specified product classification tree. The second is to allow shrinkage to
propagate down through the tree. To this end, we extend the standard global-local
specification by adding a hierarchical mean structure to connect shrinkage points
across levels in the tree, as well as a hierarchical product structure on the local
variances to connect the degree of shrinkage across levels in the tree.

3.1 Notation

We first define a minimum of notation. We assume that the researcher has access to
an L-level product classification tree where levels are indexed by 	 = 0, 1, . . . , L−1
and are ordered such that 	 = 0 is the lowest level corresponding to products, 	 = 1
corresponds to most granular definition of product groups, and 	 = L−1 corresponds
to the highest level and most coarse definition of product groups. Further define n	

to be the number of nodes (groups) on level 	 where n0 > n1 > · · · > nL−1.
The indexing notation we introduce is slightly more complicated than the usual

indexing for graphical models because, in our case, the target parameters are always
defined with respect to two nodes (e.g., the price elasticity between two products),
not one. So instead of considering the parent of node i, we must consider the parent
of (i, j), which itself will be a pair of nodes. We now define the indexing function
that will be used throughout.

Definition 1 Let (i, j) denote a pair of nodes at the lowest level (level 0) of the
classification tree. Then let π(ij |	) denote the parent index function which produces
the level-	 parent nodes of (i, j).

To build intuition, consider the following two products: (i) Lay’s potato chips,
which belongs to the “Potato Chip” subcategory (level 1) and “Salty Snack” category
(level 2); and (ii) Heineken beer, which belongs to the “Imported Beer” subcategory
(level 1) and “Beer” category (level 2). Then the parents of (Lay’s, Heineken) on
levels 1 and 2 are as follows.

π(Lay’s,Heineken|1) = (Potato Chips, Imported Beer)

π(Lay’s,Heineken|2) = (Salty Snacks,Beer)

Given a product-level elasticity βij , we let θπ(ij |m) represent the relationship
between the level-m ancestors of i and j . An example of this lineage of parameters is
shown in Fig. 1. The darkest square in the left-hand-side grid denotes βij . The level-1
parent of (i, j) is π(ij |1) = (4, 2) and the level-2 parent of (i, j) is π(ij |2) = (2, 1).
The idea is to then direct shrinkage of βij towards θπ(ij |1) (grid in the middle), which
is in turn shrunk towards θπ(ij |2) (grid on the right).
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Fig. 1 Visualization of hierarchical shrinkage using a three-level classification tree. The focal product pair
is (i, j) which has level-1 parent π(ij |1) = (4, 2) and level-2 parent π(ij |2) = (2, 1). The parameter βij

(darkest shaded square in the left grid) will be shrunk towards the level-1 parent θπ(ij |1) (darkest shaded
region of 4 squares in the middle grid), which will in turn be shrunk towards the level-2 parent θπ(ij |2)
(shaded region of 16 squares in the right grid)

3.2 Prior construction

Using the indexing notation above, we now introduce a sequence of prior distribu-
tions on the elasticity parameters of the log-linear demand model in Eq. 1. Starting
at the lowest level of the tree, define the prior on the (i, j) product pair as:

βij ∼ N
(
θπ(ij |1), τ 2β�ij

)
(3)

which is a global-local prior with global variance τ 2β , local variance �ij , and prior
mean θπ(ij |1). Note that this notation holds for any (i, j ) pair including the own elas-
ticities where i = j . However, in order to account for differences in the expected
signs of own and cross-price elasticities, we will ultimately build up two separate
hierarchical structures: one for the βii’s and one for the βij ’s. The former will shrink
the product-level own elasticities towards higher-level own-price elasticities whereas
the latter will shrink product-level cross elasticities towards higher-level cross-price
elasticities. For ease of exposition, we will focus our prior construction on the case
where i �= j and the βij ’s are cross elasticities.

Hierarchy of means We specify global-local priors on the higher-level group elastic-
ities:

θπ(ij |	) ∼ N
(
θπ(ij |	+1), τ

2
	 �π(ij |	)

)
, 	 = 1, . . . , L − 1, (4)

where τ 2	 is the global variance across all level-	 elasticities θπ(ij |	), �π(ij |	) is a
local variance, and θπ(ij |	+1) is the parent cross-group elasticity to θπ(ij |	). This
hierarchical mean structure allows the direction of shrinkage to be governed by the
classification tree. That is, in the absence of a strong signal in the data, elasticities
will be shrunk towards higher-level elasticity parameters instead of zero.
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Hierarchy of variances We also impose a hierarchical structure on the local variance
parameters. At the product level, we have:

�ij = λ2ij

L−1∏

k=	+1

λ2π(ij |k), λ2ij ∼ Gβ, (5)

and at higher levels in the tree, we have:

�π(ij |	) = λ2π(ij |	)
L−1∏

k=	+1

λ2π(ij |k), λ2π(ij |	) ∼ G	, 	 = 1, . . . , L − 1. (6)

Here λ2ij and λ2π(ij |	) are variances associated with βij and θπ(ij |	), respectively,
and represent local variances absent any hierarchical structure connecting variances
across levels. That is, without a hierarchy of variances we would simply have �ij =
λ2ij and �π(ij |	) = λ2π(ij |	). With the product hierarchy of variances, the induced local

variances � will be small whenever either λ2π(ij |	) is small or any λ2π(ij |s) is small
for s > 	 (i.e., higher levels in the tree), which allows shrinkage to propagate down
through the tree. Taken together with the hierarchical mean structure, the hierarchal
variance structure implies that, in the absence of a strong signal in the data, price elas-
ticities will be strongly shrunk towards higher-level elasticities and these higher-level
group elasticities will be strongly shrunk towards each other.

Examples A summary of model parameters is provided in Table 1. Below we provide
examples of the complete hierarchical prior specification for trees different numbers
of levels. A single-level tree corresponds to a prior for βij that has a fixed mean θ̄

and does not encode any information about product groups. If the tree has at least
two levels, then βij will be shrunk towards its parent elasticity and shrinkage will be
allowed to propagate. Note that the level at which shrinkage begins to propagate is

Table 1 Summary of notation

Parameter Level Description

Elasticities

βij 	 = 0 Price elasticity of demand for product i with respect to price of j

θπ(ij |	) 	 ≥ 1 Level-	 ancestor elasticity of the (i, j) product pair

Local Variances

λ2ij 	 = 0 Local variance for βij

λ2π(ij |	) 	 ≥ 1 Local variance for θπ(ij |	)
�ij 	 = 0 Product of all higher-level local variances including λ2ij

�π(ij |	) 	 ≥ 1 Product of all higher-level local variances including λ2π(ij |	)
Global Variances

τ 2β 	 = 0 Global variance across all product elasticities βij

τ 2	 	 ≥ 1 Global variance across all level-	 elasticities θπ(ij |	)
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also a choice of the researcher. In the examples below, shrinkage starts to propagate
at the top level (	 = L − 1) of the tree.

(a) One-level prior

βij ∼ N
(
θ̄ , τ 2β�ij

)
, �ij = λ2ij

(b) Two-level prior

βij ∼ N
(
θπ(ij |1), τ 2β�ij

)
, �ij = λ2ij λ

2
π(ij |1)

θπ(ij |1) ∼ N
(
θ̄ , τ 21�π(ij |1)

)
, �π(ij |1) = λ2π(ij |1)

(c) Three-level prior

βij ∼ N
(
θπ(ij |1), τ 2β�ij

)
, �ij = λ2ij λ

2
π(ij |1)λ

2
π(ij |2)

θπ(ij |1) ∼ N
(
θπ(ij |2), τ 21�π(ij |1)

)
, �π(ij |1) = λ2π(ij |1)λ

2
π(ij |2)

θπ(ij |2) ∼ N
(
θ̄ , τ 22�π(ij |2)

)
, �π(ij |2) = λ2π(ij |2)

3.3 Choice of mixing densities

The hierarchical priors outlined above endow each product-level elasticity and group-
level elasticity with a local variance λ2π(ij |	) which is distributed according to a
level-specific mixing distribution G	. As discussed in Section 2.2, the tails of the
associated densities g	(·) will play a key role in shaping the shrinkage imposed by
the prior. Although there are now many possible choices for g	(·), we confine our
attention to three forms of shrinkage: (i) ridge, where the mixing density is a degen-
erate distribution and local variances are fixed to one; (ii) lasso, with an exponential
mixing density; and (iii) horseshoe, with a half-Cauchy mixing density. These three
types of priors remain common choices in empirical work and have very different
shrinkage profiles (Bhadra et al., 2019).

Our hierarchical global-local priors also require the specification of a mixing den-
sity for each level of the tree. We can therefore conceive of using different forms of
shrinkage across different levels (e.g., ridge at the subcategory level and horseshoe at
the product level). However, this also raises questions of whether properties of g	(·)
at higher levels in the tree affect shrinkage behavior at the product level, which we
address in the following section.

3.4 Some theory on shrinkage properties

The typical strategy for characterizing shrinkage in global-local models is to examine
the shape—specifically, the tails—of the marginal prior for regression coefficients
βij . Because global-local priors are scale mixtures of normals, the heaviness of the
tails of this marginal prior will be determined by the tails of the mixing density
(Barndorff-Nielsen et al., 1982). However, in our setting this analysis is complicated
by the fact that the marginal prior for βij will depend on multiple mixing densities in
the hierarchical global-local structure.
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In this section, we provide three results to characterize shrinkage properties of
hierarchical global-local priors. First, we show that the marginal prior for βij still
retains a scale mixtures of normals representation and so the mixing densities will
continue to play a key role in shaping the shrinkage profile for βij . Second, we show
that if the same heavy-tailed mixing density is specified at each level of the tree,
then its heaviness will be preserved under the hierarchical product structure that we
impose on local variances. Finally, we show that even if a combination of heavy and
light-tailed mixing densities are specified across different levels, the heavy-tailed
mixing densities will ultimately dominate and shape the product-level shrinkage
profile.

We focus on two specific forms of shrinkage. The first is the shrinkage of βij to
θπ(ij |m), which is the shrinkage of the product-level elasticity to its level-m parent
elasticity. This type of “vertical” shrinkage allows us to assess how quickly product-
level elasticities can be pulled towards higher-level elasticities. Here we can write βij

as a function of its parent mean and error term:

βij = θπ(ij |1) + ξij , ξij ∼ N
(
0, τ 2β�ij

)
(7)

where, again, for any 	 = 1, . . . , L − 1:

θπ(ij |	) = θπ(ij |	+1) + ξπ(ij |	), ξπ(ij |	) ∼ N
(
0, τ 2	 �π(ij |	)

)
. (8)

We can therefore write βij as a function of its level-m parent elasticity and a sum of
errors across levels:

βij = θπ(ij |m) +
m−1∑

	=1

ξπ(ij |	) + ξij , (9)

which yields the prior distribution:

βij − θπ(ij |m) ∼ N

(
0,

m−1∑

	=1

τ 2	 �π(ij |	) + τ 2β�ij

)
. (10)

This prior is a scale mixture of normals where the scales are sums over each level’s
local variance �π(ij |	), which is in turn a product of λ2π(ij |	), . . . , λ

2
π(ij |L−1). Thus,

the local variances will be a sum of products and if there is a value of s (for s ≤ m)
for which λ2π(ij |s) is “small” then βij will tend to be very close to θπ(ij |m).

We also consider the shrinkage of βij to βi′j ′ (for i �= j , i′ �= j ′, and i �= i′), which
is the shrinkage between two product-level elasticities. This type of “horizontal”
shrinkage allows us to assess the extent to which elasticities become more similar as
they become closer in the tree. Formally definem� = min{m : π(ij |m) = π(i′j ′|m)}
to be the lowest level in the tree such that all four products (i, j, i′, j ′) share a com-
mon ancestor (i.e., belong to the same group at some level in the tree), where m� = L

if no common parent node exists for within the tree. Then we can write

βij − βi′j ′ =
m�−1∑

s=	

(
ξπ(ij |s) − ξπ(i′j ′|s)

)
(11)
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so the prior distribution of the difference is

βij − βi′j ′ ∼ N

⎛

⎝0,
m�−1∑

s=	

(
�π(ij |s) + �π(i′j ′|s)

)
τ 2s

⎞

⎠ . (12)

Like the marginal distribution of the cross elasticities, the marginal prior distribution
of the difference will be a scale mixtures of normals, where the scales are sums of
products of λ2

π(ij |s) and λ2
π(i′j ′|s). The number of terms in the sum is m� − 1 − 	

and so the variance of differences will be tend to be larger if m� is larger (i.e., the
products are less similar). The form of the variances in Eq. 12 implies that if �π(ij |m)

is “small” on level m then �π(ij |s) and �π(i′j ′|s) will tend to be small for s < m and
so the variance of the difference will tend to be smaller further down the tree. This
allows shrinkage to propagate down the tree with subsequent sub-categorizations of
products tending to have similar cross-elasticities.

The results above show that the priors on βij and the differences (βij − βi′j ′)
can be expressed as normal scale mixtures and so, like in sparse signal detection
settings, the shape of the marginal prior will again be determined by the mixing
density (Barndorff-Nielsen et al., 1982). However, while there is only one mixing
density in traditional regression priors, the marginal priors for βij and (βij − βi′j ′)
involve a “scaled sum of products” transformation over many mixing densities. It is
therefore not clear whether the heaviness of the mixing density specified level 	 is:
(i) preserved under the scaled sum of products transformations; or (ii) tarnished by
mixing densities with lighter tails at higher levels in the tree. We clarify both points
in the following two propositions.

Definition 2 The random variable ζ has an L-sum of scaled products distribution if
it can be written as ζ = ∑L

	=1 τ 2	
∏	

s=1 λ2s with fixed τ 21 , . . . , τ 2L.

Proposition 1 Suppose ζ has an L-sum of scaled products distribution where λ2	
iid∼

G for 	 = 1, . . . , L and G is a regularly varying distribution with index α. Then ζ is
regularly varying with index α.

Proof Because the λ2s ’s are all independent and regularly varying with index α, then
�	 = ∏	

s=1 λ2s is also regularly varying with index α (Cline, 1987). Then the closure
property of regularly varying functions guarantees that ζ = ∑L

	=1 τ 2	
∏	

s=1 λ2s is also
regularly varying with index α.

This first result shows that the heaviness of the mixing density at level 	 is pre-
served under the scaled sum of products transformation. For example, if every λs has
a half-Cauchy prior then each λ2s is an inverted-beta random variable with density
g(λ2) ∝ (λ2)−1/2(1 + λ2)−1 (Polson & Scott, 2012b), which is regularly varying
with index -3/2 and so λ2s is regularly varying with index 1/2 (Bingham et al., 1987).
Then by Proposition 1, the sum of products would also have regularly varying tails,
and the different forms of shrinkage in Eqs. 10 and 12 will all have tails of the same
heaviness as a standard horseshoe prior.
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Proposition 2 Suppose ζ has anL-sum of scaled products distribution with λ2	 ∼ G	

for 	 = 1, . . . , L and let RV = {	 : G	 is regularly varying with index α} be non-
empty. If there exists an ε such that Gs has a finite α + ε moment for all s /∈ RV then
ζ is regularly varying with index α.

Proof If at level 	 at least one of λ21, . . . , λ
2
	 is regularly varying with index α then

�	 = ∏	
s=1 λ2s is regularly varying with index α. If none of λ21, . . . , λ

2
	 are regularly

varying, then by assumption �	 has a finite α + ε moment. Since, by assumption, at
least one of λ21, . . . , λ

2
L is regularly varying then at least one �1, . . . , �L is regularly

varying while the others are guaranteed to have a finite α + ε moment. Therefore,
the closure properties of regularly varying random variables implies that ζ is also
regularly varying with index α (Bingham et al., 1987).

Proposition 2 shows that the sum of products has regular variation if at least
one element is regularly-varying. This suggests that sparsity shrinkage of the cross-
elasticities at the lowest level of the tree does not require sparsity shrinkage at all
levels. For example, we know by Proposition 1 that if λ2ij , λ

2
π(ij |1), . . . , λ

2
π(ij |L−1) are

all regularly varying with index α, then their product is also regularly varying with
index α. Now by Proposition 2, we know that even if λ2π(ij |s) is not regularly varying
for s > 	 but has a finite α + ε moment for some ε > 0, then the product is again
regularly varying. Examples of non-regularly varying distributions with a finite α+ε

moment are a degenerate distribution (i.e., ridge shrinkage with λ2 = 1) and an expo-
nential distribution (i.e., lasso shrinkage). Therefore, heavy tails at any level of the
tree are all that is required to get sparsity shrinkage at for the product-level elastici-
ties. We explore different combinations of shrinkage in the simulations and empirical
applications below.

4 Posterior computation

Given the log-linear demand system defined in Section 2.1 and hierarchical priors
outlined in Section 3, we now turn to our posterior sampling strategy. Note that the
presence of product-specific control variables and general error structure in Eq. 1
leads to a seemingly unrelated regression (SUR) model:

⎛

⎜⎜⎜⎝

y1
y2
...

yp

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

β1
β2
...

βp

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cp

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

φ1
φ2
...

φp

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

ε1
ε2
...

εp

⎞

⎟⎟⎟⎠ (13)

where yi is the n × 1 vector of log sales for product i, X is the n × p matrix of
log prices, βi is the p × 1 vector of own and cross-price elasticities associated with
product i, and Ci is a n× d matrix of control variables with coefficients φi . In vector
form, we have

y = Xβ + Cφ + ε, ε ∼ N(0, � ⊗ In) (14)
where y = (y′

1, y
′
2, . . . , y

′
p)′, X = diag(X, X, . . . , X), β = (β ′

1, β
′
2, . . . , β

′
p)′, C =

diag(C1, C2, . . . , Cp), φ = (φ′
1, φ

′
2, . . . , φ

′
p)′ and ε = (ε′

1, ε
′
2, . . . , ε

′
p)′.
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Sampling from the posterior of a SUR model first requires transforming the model
in Eq. 14 into one with homogeneous unit errors. Let U denote the upper triangular
Cholesky root of � and define ỹ = (U−1 ⊗ In)y, X̃ = (U−1 ⊗ In)X, and C̃ =
(U−1 ⊗ In)C. Then the following transformed system represents a standard normal
linear regression model.

ỹ = X̃β + C̃φ + ε̃, ε̃ ∼ N(0, Inp). (15)

The full set of model parameters includes the elasticities β, the coefficients on con-
trols φ, the error variance �, and the set of hierarchical prior parameters � =({θπ(ij |	)}, {λ2π(ij |	)}, {τ 2	 }).

Priors The priors for β and all hierarchical hyperparameters are given in Section 3.2.
We write the p2 × p2 prior covariance matrix for β as �∗ = τ 2βdiag(vec(�)), where
� is a p×p matrix of local variances �ij as defined in Eq. 5. Note that for a standard
global-local prior, the (i, j)th element of � would be λ2ij . We place N(φ̄, A−1

φ ) priors
on the control variable coefficients, which are conditionally conjugate to the normal
likelihood given �. Inverse Wishart priors are commonly used for covariance matri-
ces in Bayesian SUR models, however if p > n then � will be rank deficient. One
approach would be to also regularize � (Li et al., 2019; Li et al., 2021). We instead
impose a diagonal restriction � = diag(σ 2

1 , . . . , σ 2
p) and place independent IG(a, b)

priors on each σ 2
j .

Full Conditionals We construct a Gibbs sampler that cycles between the following
full conditional distributions.

�|β, data (16)

�|β, φ, �, data (17)

β, φ|�, β, �, data (18)

The first full conditional represents the posterior of all global/local variances and
higher-level group elasticities. Sampling from these distributions is computationally
inexpensive. The elements of θ each have independent normal posteriors conditional
on all variance parameters. Both local variances λ2 and global variances τ 2 can also
be sampled independently, but the form of their respective posteriors will depend on
the choice of prior. Under ridge shrinkage, each λ2 = 1 so no posterior sampling is
necessary. Under lasso shrinkage, each λ2 follows an independent exponential dis-
tribution and so the full conditionals of 1/λ2 have independent inverse Gaussian
distributions (Park & Casella, 2008). Under horseshoe shrinkage, each λ follows an
independent half-Cauchy distribution. We follow Makalic and Schmidt (2015) and
represent the half-Cauchy as a scale mixture of inverse gammas, which is conjugate
to the normal density so the target full conditional can be sampled from directly.
Details are provided in Appendix A.1.
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The second full conditional represents the posterior of the observational error
covariance matrix. Assuming � = diag(σ 2

1 , . . . , σ 2
p) with independent IG(a, b)

priors yields the following posterior:

σ 2
j |β, φ, �, data ∼ IG

(
a+n/2, b+(yj −Xβj −Cjφj )

′(yj −Xβj −Cjφj )/2
)

(19)

where the j subscript denotes all elements of the given vector or matrix associated
with product j . Note that the case of p > n calls for a judicious choice of (a, b) given
that diffuse priors will yield barely proper posteriors. If n > p and � is unrestricted,
typical inverse Wishart priors can be used.

The last full conditional represents the joint posterior of the regression coefficients
(β, φ). One approach to sampling from the joint posterior is to iterate between each
full conditional. For example, the posterior of β conditional on φ is:

β|φ, �, �, data ∼ N
(
(X̃

′
X̃ + �−1∗ )−1(X̃

′
ỹ∗
φ + �−1∗ β̄(θ)), (X̃

′
X̃ + �−1∗ )−1

)
(20)

where ỹ∗
φ = ỹ − C̃φ. Similarly, the posterior of φ conditional on β is:

φ|β, �, �, data ∼ N
((
C̃

′
C̃ + Aφ

)−1(C̃′
ỹ∗
β + Aφφ̄

)
,
(
C̃

′
C̃ + Aφ

)−1
)

(21)

where ỹ∗
β = ỹ − X̃β. However, note that these two Gibbs steps can be improved

through blocking. For example, β can be integrated out of the conditional posterior
of φ:

φ|�, �, data ∼ N
((
C̃

′
PC̃ + Aφ

)−1(C̃′
Pỹ + Aφφ̄

)
,
(
C̃

′
PC̃ + Aφ

)−1
)

(22)

where P = Inp − X̃(X̃
′
X̃ + �−1∗ )−1X̃

′
is an orthogonal projection matrix. Marginal-

izing over β will yield improvements in convergence and mixing, and comes at
virtually no additional cost since the inverse contained in the projection matrix must
be computed to sample from Eq. 20. It should also be noted that the posterior
precision matrix in Eq. 20 requires the inversion of a p2×p2 matrix which is compu-
tationally expensive when p is large. We therefore present two strategies to facilitate
scalability in the following subsections.

4.1 Diagonal restriction on�

As with all Bayesian regression models, a computational bottleneck arises in invert-
ing the posterior precision matrix (X̃

′
X̃ + �−1∗ ). This especially true for Bayesian

SUR models since the design matrix X contains p stacked copies of the multivariate
regression design matrix. If � is unrestricted, then X̃

′
X̃ is a dense p2×p2 matrix and

any sampler that directly inverts this matrix will be hopeless for large p. For example,
even a sampler that calculates the inverse using Cholesky decompositions has com-
plexityO(p6). If instead� is assumed to be diagonal then both X̃

′
X̃ and (X̃

′
X̃+�−1∗ )

will have block diagonal structures, with each of the p blocks containing an p × p
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matrix. Computing the inverse of (X̃
′
X̃+�−1∗ ) then amounts to inverting each p ×p

block, which has computational complexity O(p4) using Cholesky decompositions.
While this is better than inverting (X̃

′
X̃ + �−1∗ ) directly, it can still be prohibitively

expensive for large p.

4.2 Fast sampling normal scale mixtures

Bhattacharya et al. (2016) present an alternative approach for sampling from the pos-
teriors of linear regression models with normal scale mixture priors. The idea is to
use data augmentation and a series of linear transformations to avoid the inversion of
(X̃

′
X̃ + �−1∗ ). Instead, their algorithm replaces the inversion of X̃

′
X̃ with the inver-

sion of X̃X̃
′
. For a multiple regression model, this means the matrix being inverted

is n × n instead of p × p and the proposed algorithm has complexity that is linear
in p. In the context of our SUR model, the fast sampling algorithm has complexity
O(n2p2) if � is diagonal or O(n2p4) if � is unrestricted.

Since the original algorithm was also developed for typical shrinkage priors cen-
tered at zero, we present a modified algorithm to allow for the nonzero mean
structure, which we denote as β̄(θ), in the proposed hierarchical priors:

1. Sample u ∼ N(β̄(θ), �∗) and δ ∼ N(0, Inp);
2. Set v = X̃u + δ;
3. Compute w = (X̃�∗X̃

′ + Inp)−1(ỹ − v);

4. Set β = u + �∗X̃
′
w.

A constructive proof that β retains the posterior in Eq. 20 is provided in
Appendix A.2. Note that the computational gains come from the third step, which
requires inverting the np×np matrix (X̃�∗X̃

′ + Inp) rather than the original p2 ×p2

precision matrix (X̃
′
X̃ + �−1∗ ). This also shows that the computational gains are

largest when p is much larger than n.

4.3 Scalability

To provide practical insights into the computational gains afforded by fast sampling
algorithm above, we draw from the posterior of the elasticity vector β using data
generated with n = 100 and p ∈ {100, 200, 300, . . . , 1000}. In addition to the
fast sampler of Bhattacharya et al. (2016), we also provide results for a “standard”
sampler that inverts the p2 ×p2 precision matrix (X̃

′
X̃+�−1∗ ) via Cholesky decom-

positions (see, e.g., chapters 2.12 and 3.5 of Rossi et al., 2005). In both cases we
assume � is diagonal. The samplers are coded in Rcpp (Eddelbuettel & François,
2011) and run on a MacBook Pro laptop with 32GB of RAM and an Apple M1 Max
processor. Figure 2 plots the computation time in log seconds against the number of
products p. We find that the fast sampler offers significant computational savings: it
is roughly two times faster when p = 200, 10 times faster when p = 500, and 30
times faster when p = 1000.
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Fig. 2 Computation time associated with taking one draw from the posterior of the product-level
elasticities β with fixed sample size n = 100 and varying numbers of products p

5 Simulation experiments

We first explore the performance of hierarchical global-local priors using simulated
data. We generate data from price elasticity matrices that have different underlying
structures in order to illustrate differences between sparse and non-sparse shrinkage,
as well as differences in the heaviness of shrinkage used across levels in the tree.
Each of these structures is described in detail below.

(I) Hierarchical + Dense: A dense vector of elasticities βij is generated from
a three-level hierarchical prior. The top-level coefficients θπ(ij |2) are sam-
pled from a uniform distribution over the interval {-3,-1}∪{1,3} and we fix
λ2π(ij |	) = 1 and τ 2	 = 1 for all (i, j) and across all levels. The middle-
level coefficients θπ(ij |1) and product elasticities βij are generated through the
model outlined in Section 3.2. In this specification, all pairs of goods have a
non-zero cross-price elasticity.

(II) Hierarchical + Sparse After Transformation: A dense vector of elastici-
ties βij is generated from a three-level hierarchical prior where 75% of the
product-level local variances �ij are set to zero so that the corresponding
product-level elasticity βij is exactly equal to its prior mean. Thus, all pairs of
product groups have a non-zero cross-price elasticity and many product-level
elasticities are exactly equal to the group-level elasticity. This creates a struc-
ture where β appears dense, but is sparse after subtracting off the prior mean
parameters θπ(ij |1).

(III) Hierarchical + Group-Wise Sparse: A “group-wise” sparse vector of elas-
ticities βij is generated from a three-level hierarchical prior where 75% of the
level-1 coefficients θπ(ij |1) and local variances �π(ij |1) are both set to zero.
This allows the product-level elasticities to inherit their sparsity from higher
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levels in the tree, which in turn produces blocks of cross elasticities that are
either all dense or exactly equal to zero.

(IV) Sparse: A sparse vector of elasticities βij is generated from a non-hierarchical
prior with 95% of all elasticities set to zero.

For each specification above, we generate data from the regression model in Eq. 1
with dimensions (n = 50, p = 100) and (n = 100, p = 300). For specifications
(I)–(III), we use a three-level classification tree with five equal-sized groups on the
top level and 10 equal-sized groups in the middle level. Across all specifications,
we simulate the own elasticities from a Unif(-5,-1) distribution, fix φi = 0, define
� = diag(σ 2

1 , . . . , σ 2
p) with σ 2

j = 1, and generate elements of data matrices X

and Cj from a N(0,1) distribution. We generate 25 data sets from each specification.
Examples of the resulting elasticity matrices are shown in Fig. 3.

We take a total of nine models to the data. The first three models impose standard
shrinkage with fixed shrinkage points set to zero. The second three models include
a hierarchical prior on β with ridge shrinkage for the upper-level parameters θ . The
final three models include a hierarchical prior on β with horseshoe shrinkage at the
upper level. Within each batch, we specify three types of mixing distributions on
λ2ij which in turn induce three types of shrinkage for β: ridge, lasso, and horseshoe.
All models are fit using the MCMC sampling algorithms outlined in Section 4. In
Appendix B.1, we plot the posterior means and 95% credible intervals for elasticity
parameters in the (θ -Ridge, β-Ridge) model to demonstrate that parameters can be
accurately recovered.

Model fit statistics are reported in Table 2. The top panel reports results from
the (n = 50, p = 100) data sets and the bottom panel reports results from the
(n = 100, p = 300) data sets. The first four columns report the root mean squared
error (RMSE) associated with the estimation of β in each specification, averaged
across the 25 data replicates. The results illustrate the relative strengths of each
type of shrinkage prior. In specification (I) where β is purely dense, the hierarchi-
cal prior with ridge shrinkage across all levels of the tree fits best. Not surprisingly,
a ridge prior is most appropriate when the true parameter is dense. In specifica-
tion (II) where β appears dense but is sparse after subtracting off the prior mean,
the hierarchical prior with horseshoe shrinkage for β and ridge shrinkage for θ is

Fig. 3 Examples of simulated 100 × 100 cross elasticity matrices from the following specifications:
(I) hierarchical + dense; (II) hierarchical + sparse after transformation; (III) hierarchical + group-wise
sparse; and (IV) sparse. Darker tiles indicate larger elasticities in magnitude. Color version: red tiles
represent negative elasticities and green tiles represent positive elasticities
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best. This shows how heavy horseshoe shrinkage can still be desirable for param-
eters that are sparse under some transformation of the data. In specification (III)
where β is “group-wise” sparse, a hierarchical prior with horseshoe shrinkage for θ

and ridge shrinkage for β is best. By forcing β to inherit its heaviness from θ , the
prior for β still exhibits heavy shrinkage—reaffirming some of the theory results in
Section 3.4—and behaves like group-wise variable selection. In all three specifica-
tions, all hierarchical priors substantially outperform the standard shrinkage priors.
In specification (III), unlike specifications (I) and (II), all θ -Horseshoe priors out-
perform all θ -Ridge priors. Finally, in specification (IV) where β is sparse in the
traditional sense, then the standard horseshoe prior with fixed shrinkage at zero is
best. However, either of the hierarchical priors with horseshoe shrinkage for β also
offer competitive performance.

The last four columns of Table 2 report the share of signs that are correctly
estimated, averaging across data replicates. Producing incorrectly signed elastic-
ity estimates—e.g., negative cross elasticity estimates for goods that are obviously
substitutes—is one of the long-standing empirical problems with unrestricted log-
linear models (Allenby, 1989; Blattberg & George, 1991; Boatwright et al., 1999).
We find that hierarchical priors are largely able to mitigate this issue. For exam-
ple, while the standard shrinkage priors correctly estimate 73–78% of signs in
specifications (I) and (II), hierarchical priors correctly estimate 92–98%.

So far we have assumed that the product classification tree fit to the data matches
that of the data generating process. In reality, we do not know whether there is a true
hierarchical structure governing cross elasticities, let alone what that structure looks
like. In this paper we take the view that category definitions of the retailer or data
provider can be used as a reasonable proxy for boundaries in substitution, though this
may ultimately be an empirical question (see, e.g., Smith et al., 2019). In Appendix
B we provide additional simulations that explore robustness to tree misspecification.
We conduct three sets of simulations that vary in the degree of tree misspecification.
We find that hierarchical shrinkage can still provide gains (and is no-worse than stan-
dard shrinkage) in the presence of misspecification, although the magnitude of these
gains vanishes as the degree of misspecification grows. This suggests that hierarchi-
cal priors are fairly robust to misspecification of the tree but performance gains over
standard sparse approaches depends on the quality of the tree.

6 Empirical application

6.1 Data

We apply log-linear demand models with standard and hierarchical shrinkage priors
to IRI store-level transaction data (Bronnenberg et al., 2008). We use data from the
largest grocery retail store in Pittsfield, Massachusetts for the two-year period span-
ning 2011–2012. We use the first 78 weeks as training data and the last 26 weeks as
holdout data to evaluate model fit. Although there is the potential to add data from
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Table 2 Simulation results

Estimation RMSE Correct Signs

Data: n = 50, p = 100 (I) (II) (III) (IV) (I) (II) (III) (IV)

Standard Shrinkage

β-Ridge 2.541 2.375 1.219 0.492 0.77 0.78 0.87 1.00

β-Lasso 2.622 2.473 1.079 0.314 0.76 0.77 0.89 1.00

β-Horseshoe 2.879 2.745 0.969 0.098 0.73 0.74 0.88 1.00

Hierarchical Shrinkage

θ -Ridge, β-Ridge 1.033 0.530 0.515 0.490 0.94 0.97 0.94 1.00

θ -Ridge, β-Lasso 1.047 0.461 0.451 0.313 0.93 0.98 0.95 1.00

θ -Ridge, β-Horseshoe 1.126 0.385 0.407 0.102 0.92 0.98 0.95 1.00

θ -Horseshoe, β-Ridge 1.044 0.526 0.190 0.472 0.93 0.98 0.98 1.00

θ -Horseshoe, β-Lasso 1.053 0.461 0.192 0.310 0.93 0.98 0.98 1.00

θ -Horseshoe, β-Horseshoe 1.130 0.386 0.270 0.100 0.92 0.98 0.97 1.00

Data: n = 100, p = 300 (I) (II) (III) (IV) (I) (II) (III) (IV)

Standard Shrinkage

β-Ridge 2.938 2.743 1.275 0.545 0.72 0.73 0.83 0.99

β-Lasso 2.972 2.790 1.232 0.427 0.72 0.73 0.84 1.00

β-Horseshoe 3.225 3.045 1.185 0.068 0.69 0.70 0.84 1.00

Hierarchical Shrinkage

θ -Ridge, β-Ridge 1.162 0.585 0.530 0.544 0.94 0.98 0.93 0.99

θ -Ridge, β-Lasso 1.170 0.547 0.488 0.427 0.93 0.98 0.94 1.00

θ -Ridge, β-Horseshoe 1.253 0.503 0.471 0.069 0.93 0.99 0.94 1.00

θ -Horseshoe, β-Ridge 1.169 0.586 0.170 0.543 0.93 0.98 0.98 0.99

θ -Horseshoe, β-Lasso 1.172 0.548 0.174 0.426 0.93 0.98 0.98 1.00

θ -Horseshoe, β-Horseshoe 1.255 0.508 0.233 0.068 0.93 0.99 0.97 1.00

Fit statistics are averaged across 25 simulated data sets. Columns denote the four different true parameter
specifications: (I) hierarchical + dense; (II) hierarchical + sparse after transformation; (III) hierarchical
+ group-wise sparse; and (IV) sparse. Standard shrinkage priors have a fixed mean of zero and do not
incorporate any hierarchical structure. Hierarchical shrinkage priors are based on a three-level tree

other chains and markets, we take the perspective of the retailer who wants to esti-
mate store-level elasticities to allow for more granular customization of marketing
instruments (Montgomery, 1997).

The scope of products included in a large-scale demand analysis usually take one
of two forms: (i) narrow and deep, where products only come from one category or
subcategory but are defined at a very granular level like the UPC; or (ii) wide and
shallow, where products span many categories but are defined at a higher level of
aggregation. Here we take the latter approach, in part because a UPC-level analysis
often creates challenges for log-linear models due to the potentially high incidence of
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zero quantities. Estimating demand for wider multi-category assortments also high-
lights the general flexibility of log-linear systems—e.g., the ability to accommodate
a mix of substitutes and complements.

Our procedure for selecting products is as follows. We first choose nine product
categories that cover a large portion of total expenditure. Within each category, we
remove any subcategories that account for less than 2% of within category revenue,
resulting in a total of 28 subcategories. We then aggregate UPCs to the category-
subcategory-brand level using total volume (in ounces) and revenue-weighted prices
(per ounce). We sort brands by their within-subcategory revenue and then keep top
brands that together capture 85% of subcategory revenue and are also present in at
least 95% of weeks in the data. This results in p = 275 total products, comprised
of over 170,000 UPCs, that make up 81.5% of total revenue within the nine chosen
categories. A list of the categories and subcategories used in our analysis is provided
in Table 3.

6.2 Models

We estimate log-linear demand models of the form in Eq. 1 assuming a diagonal
error variance matrix �. In addition to the high-dimensional vector of prices, we
also include product intercepts, summer and holiday dummy variables, and feature
and display promotion variables as controls. We consider three different types of
shrinkage priors for the price elasticity parameters: standard (where the prior mean is
fixed to zero), hierarchical with ridge shrinkage at the upper levels, and hierarchical
with horseshoe shrinkage at the upper levels. At the product level we consider ridge,
lasso, and horseshoe shrinkage. Together, this results in a total of nine models.

Across all models, we allow the own elasticities to have a different prior than
the cross elasticities to account for differences in their expected sign and magnitude.
Specifically, in the sparse models we allow the own elasticities to have a separate
global variance parameter. In the hierarchical models, we specify separate hierar-
chical priors for the own and cross elasticities. Each is based on a three-level tree
(products at 	 = 0, subcategories at 	 = 1, categories at 	 = 2) where shrinkage
starts to propagate at the subcategory level. A complete list of prior and hyperparam-
eter specifications is provided in Appendix C.1. All models are estimated using the
MCMC algorithms outlined in Section 4 which are run for 100,000 iterations and
thinned by keeping every 100th draw. The standard shrinkage models, hierarchical θ -
Ridge models, and hierarchical θ -Horseshoe models take roughly two minutes, four
minutes, and six minutes per 1,000 iterations, respectively. Mixing diagnostics are
reported in Appendix C.

6.3 Results

6.3.1 Predictive fit

Table 4 reports the out-of-sample RMSEs associated with three sets of demand pre-
dictions. The first two columns in Table 4 report the mean and standard deviation of
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Table 3 Summary of product categories

No. of Share of

Category Subcategories Products Revenue

BEER/ALE Domestic Beer/Ale 62 16.1

Imported Beer/Ale

CARBONATED BEVERAGES Low Calorie Soft Drinks 30 19.1

Regular Soft Drinks

Seltzer/Tonic/Club Soda

COFFEE Ground Coffee 27 8.5

Ground Decaffeinated Coffee

Instant Coffee

Single Cup Coffee

Whole Coffee Beans

COLD CEREAL Ready-to-Eat Cereal 53 9.3

FZ DINNERS/ENTREES Fz Handheld Entrees 36 7.8

Multi-Serve Fz Dinners

Single-Serve Fz Dinners

FZ PIZZA Fz Pizza 7 5.0

MILK Rfg Almond Milk 10 12.9

Rfg Flavored Milk/Eggnog/Buttermilk

Rfg Skim/Lowfat Milk

Rfg Soy Milk

Rfg Whole Milk

SALTY SNACKS Cheese Snacks 35 13.4

Corn Snacks

Other Salted Snacks

Potato Chips

Pretzels

Ready to Eat Popcorn/Caramel Corn

Tortilla/Tostada Chips

YOGURT Rfg Yogurt 15 7.9

Total Count = 9 28 275 100%

In our analysis, we aggregate over flavors and pack sizes and define the product at the brand level. In
this product classification tree, the category is the top level (	 = 2), the subcategory is the middle level
(	 = 1), and the product is the bottom level (	 = 0). Here there are 92 = 81 category elasticities θπ(ij |2),
282 = 784 subcategory elasticities θπ(ij |1), and 2752 = 75, 625 product elasticities βij . See Table 1 for a
complete glossary of parameters associated with each level of the tree
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Table 4 Out-of-sample fit statistics

Extrapolated Limited

All Products Price Levels Price Variation

Mean SD Mean SD Mean SD

Standard Shrinkage

β-Ridge 0.846 (0.126) 0.871 (0.190) 0.968 (0.347)

β-Lasso 0.847 (0.117) 0.865 (0.181) 0.960 (0.331)

β-Horseshoe 0.895 (0.170) 0.937 (0.258) 1.085 (0.449)

Hierarchical Shrinkage

θ -Ridge, β-Ridge 0.808 (0.104) 0.816 (0.148) 0.895 (0.276)

θ -Ridge, β-Lasso 0.814 (0.113) 0.824 (0.170) 0.909 (0.314)

θ -Ridge, β-Horseshoe 0.899 (0.131) 0.889 (0.194) 1.004 (0.347)

θ -Horseshoe, β-Ridge 0.842 (0.119) 0.825 (0.168) 0.919 (0.307)

θ -Horseshoe, β-Lasso 0.823 (0.117) 0.821 (0.169) 0.908 (0.308)

θ -Horseshoe, β-Horseshoe 0.993 (0.159) 0.845 (0.162) 0.902 (0.305)

Out-of-sample RMSEs are reported for: (i) all 275 products; (ii) the 152 products with extrapolated price
levels in the test sample; (iii) the 69 products in the lower quartile of the distribution of price variation.
Standard shrinkage priors have a fixed mean of zero and do not incorporate any hierarchical structure.
Hierarchical shrinkage priors are based on a three-level tree with means estimated at each level

RMSEs across all 275 products. The middle two columns report RMSEs for a sub-
set of 152 products with extrapolated price levels in the test sample. A product is
included in this set if at least one price point in the test sample falls outside of its
range of prices in the training sample. The final two columns report RMSEs for a
subset of 69 products with limited price variation. A product j is included in this
set if SDj = SD(logpj1, . . . , logpjn) falls in the lower quartile of the distribution
of SD1, . . . ,SD275. Together, these three types of predictions allow us to examine
model performance across a range of forecasting scenarios that retailers may face:
predicting demand for an entire assortment, predicting demand at counterfactual
price levels, and predicting demand for “low signal” goods.

We find that the (θ -Ridge, β-Ridge) hierarchical prior provides the best predic-
tions across all three tasks. Relative to the best-performing standard shrinkage prior,
the (θ-Ridge, β-Ridge) prior generates a 4.5% improvement in predictions across
all products, a 5.7% improvement for products with extrapolated price levels, and a
6.8% improvement for products with limited price variation. We also find that horse-
shoe shrinkage at the product level tends to perform worst, regardless of if and how
the prior mean is parameterized. One possible explanation is that the true elasticities
are actually dense, rather than sparse, in which case ridge shrinkage should perform
well (as shown in the simulations in Section 5). A second possibility is that the true
magnitude of the elasticities may not be large enough to warrant a heavy-tailed prior
like the horseshoe. In reality, it may be a combination of both; we will revisit this
question as we analyze estimates from each model below.
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6.3.2 Product-level elasticities

Next, we compare the estimated product-level elasticities from each model. Table 5
reports the overall average and the 10th, 50th, and 90th percentiles of the distribu-
tion of posterior means of βii and βij . We also report the share of own elasticities
that are negative and the share of own elasticities that are significant at the 5% level.
Complete distributions of price elasticity and promotion effect estimates are shown in
Appendix C.3. Elasticity estimates are markedly different across prior specifications.
Starting with own elasticities, we find that standard priors produce distributions of
own elasticities where roughly 84% of estimates are negative, 21% of estimates are
significant, and the average (median) own elasticity is around -1.2 (-0.9). In contrast,
hierarchical priors produce distributions of own elasticity estimates where 93% are
negative, 50% are significantly away from zero, and the average (median) own elas-
ticity is around -1.5 (-1.4). We believe that being able to produce more economically
reasonable and precise own elasticity estimates by simply shrinking to higher-level
elasticities rather than zero is a strength of our approach.

The distribution of cross elasticity estimates also differs across prior specifica-
tions.We are estimating 75,350 cross elasticities using less than 100 weeks of training
data, and so it is not surprising that the prior imposes heavy regularization. Because
typical sparse priors shrink estimates towards zero, the associated distribution of esti-
mates is highly concentrated around zero. Hierarchical priors produce distributions
of estimates that are also centered around zero, but spread mass more widely in the
(-0.1, 0.1) interval. The exact shape of the distribution depends on the type of shrink-
age imposed at each level of the tree. Interestingly, the (θ-Horseshoe, β-Horseshoe)

Table 5 Summary of product-level price elasticity estimates

Own Elasticities βii Cross Elasticities βij

Neg Sig Mean 10th 50th 90th Mean 10th 50th 90th

Standard Shrinkage

β-Ridge 84.0 25.8 -1.20 -2.97 -1.09 0.41 -0.000 -0.000 -0.000 0.000

β-Lasso 83.6 21.5 -1.13 -2.95 -0.86 0.28 -0.000 -0.000 -0.000 0.000

β-Horseshoe 85.1 16.7 -1.23 -3.38 -0.82 0.26 -0.001 -0.004 -0.000 0.003

Hierarchical Shrinkage

θ -Ridge, β-Ridge 93.5 41.5 -1.58 -3.01 -1.53 -0.28 -0.004 -0.023 -0.004 0.012

θ -Ridge, β-Lasso 94.2 42.9 -1.55 -2.87 -1.47 -0.27 -0.004 -0.024 -0.004 0.016

θ -Ridge, β-Horseshoe 89.5 49.5 -1.42 -2.64 -1.40 0.09 -0.001 -0.121 -0.002 0.114

θ -Horseshoe, β-Ridge 97.5 54.9 -1.63 -2.88 -1.48 -0.59 -0.004 -0.020 -0.001 0.013

θ -Horseshoe, β-Lasso 97.1 61.1 -1.57 -2.77 -1.46 -0.64 -0.004 -0.019 -0.003 0.010

θ -Horseshoe, β-Horseshoe 87.6 49.5 -1.30 -2.56 -1.14 0.05 -0.008 -0.086 -0.004 0.071

Percentiles of the distribution of own and cross-price elasticity estimates are reported for each model. We
also report the share of negative own elasticities (“Neg”) and the share of own elasticities whose 95%
credible intervals do not contain zero (“Sig”). Standard shrinkage priors have a fixed mean of zero and do
not incorporate any hierarchical structure. Hierarchical shrinkage priors are based on a three-level tree
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prior generates a more widely dispersed distribution of elasticities than the (θ -Ridge,
β-Ridge) prior. This is a consequence of hierarchical priors: endowing βij with a
potentially non-zero prior mean leads to a build-up of mass away from zero when
shrinkage in strong. Differences in the shape of cross-elasticity estimates can also be
seen in the histograms reported in Appendix C.3.

6.3.3 Higher-level elasticities

In addition to product-level elasticities, we can also examine higher-level group
elasticities in any of the hierarchical priors. For the sake of brevity, we focus our
discussion on estimates from the (θ -Ridge, β-Ridge) prior. Figure 4 plots the distribu-
tions of higher-level elasticities at the category and subcategory level. The figure on
the left plots own elasticities and the figure on the right plots cross elasticities, where
the within-group elasticities (green lines) are separated from the across-group elastic-
ities (red lines). Here, the within-group elasticities represent the diagonal elements of
the category or subcategory-level elasticity matrix. For example, the BEER within-
category elasticity represents the average cross-price elasticity of all products within
the BEER category. Similarly, the Domestic Beer/Ale within-subcategory elastic-
ity represents the average cross-price elasticity of all products within the Domestic
Beer/Ale subcategory.

Figure 4 illustrates two economic properties of elasticities that are not imposed
on the model but are a consequence of hierarchical shrinkage. First, own elastic-
ities tend to be negative and are slightly more negative at the subcategory level
than at the category level. The fact that product-level own elasticities are shrunk
towards these negative values rather than zero is one reason why own elasticities
tend to be more negative under hierarchical priors (as shown in Table 5). Second,
cross elasticities within each category/subcategory are mostly positive and shifted
to the right of the distribution of elasticities across categories/subcategories. This

Fig. 4 Distributions of higher-level elasticities from the (θ -Ridge, β-Ridge) hierarchical prior
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suggests that substitution and product competition tend to be strongest within each
category/subcategory.

Table 6 provides further insight into the nature of category and subcategory-level
substitution. For each category/subcategory, we report the associated largest (most
positive) elasticity and smallest (most negative) elasticity. We find that for six of the
nine categories, demand changes most in response to price changes within the same
category (i.e., the within elasticities shown in Fig. 4). For example, the largest elas-
ticity associated with the demand of BEER/ALE is the price of BEER/ALE. This
is to be expected if the competition is stronger within categories than across cate-
gories. Many of the cross-category relationships also appear reasonable. For example,
BEER/ALE and SALTY SNACKS, CARBONATED BEVERAGES and SALTY
SNACKS, and MILK and CEREAL are all pairs of strong complements. Results at
the subcategory level are similar. For 15 of the 28 subcategories, the largest elastic-
ity corresponds to the either the within subcategory elasticity or the across elasticity
within the category (e.g., Domestic vs. Imported Beer/Ale). Many of the strong cross-
subcategory complements such as Imported Beer/Ale and Tortilla/Tostada Chips or
Rfg Skim/Lowfat Milk and Ready-to-Eat Cereal appear to be inherited from their
respective cross-category parent elasticities.

6.3.4 Shrinkage factors

In addition to the summary of elasticity parameters presented above, we can also
summarize the variance parameters to learn about the strength of shrinkage imposed
by the prior. To this end, we explore the posterior distribution of product-level shrink-
age factors, which are common summary measures used to convey the strength of
shrinkage in global-local models (Carvalho et al., 2010; Bhadra et al., 2019). Shrink-
age factors measure the extent to which the posterior mean is pulled towards the prior.
Formally, the posterior mean of the regression coefficient β takes the form:

E(β|data) = (X̃
′
X̃ + �−1∗ )−1X̃

′
X̃β̂ + (X̃

′
X̃ + �−1∗ )−1�−1∗ β̄(θ) (23)

which is a weighted average of the maximum likelihood estimator β̂ and the prior
mean β̄(θ). The weight on the prior mean, (X̃

′
X̃ + �−1∗ )−1�−1∗ , defines the matrix

of shrinkage factors. For simplicity, we use the component-wise approximation:

E(βij |data) ≈ (1 − κij )β̂ij + κij β̄(θ)ij (24)

where

κij = 1

1 + ns2j σ−2
i τ 2β�ij

(25)

and s2j = Var(logpj ). Notice that ns2j /σ 2
i can be interpreted as a signal-to-noise

ratio. When the signal dominates the noise, κij → 0 and the posterior mean of βij

converges to β̂ij ; when the noise dominates, then κij → 1 and the posterior mean of
βij converges to the prior mean.

Table 7 reports summary statistics of global variances and product-level price
elasticity shrinkage factors across model specifications. We first compute the pos-
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Table 7 Global variances and shrinkage factors

Own Elasticities Cross Elasticities

κii κij

τ 2βown Min Mean Max τ 2βcross Min Mean Max

Standard Shrinkage

β-Ridge 5.11 0.01 0.15 1.00 2.51E-06 1.00 1.00 1.00

β-Lasso 5.07 0.01 0.19 1.00 1.13E-05 1.00 1.00 1.00

β-Horseshoe 7.33 0.00 0.19 1.00 6.84E-06 0.01 1.00 1.00

Hierarchical Shrinkage

θ -Ridge, β-Ridge 1.77 0.02 0.29 1.00 9.63E-05 1.00 1.00 1.00

θ -Ridge, β-Lasso 1.82 0.02 0.35 1.00 3.15E-05 1.00 1.00 1.00

θ -Ridge, β-Horseshoe 0.11 0.03 0.76 1.00 1.12E-05 0.01 1.00 1.00

θ -Horseshoe, β-Ridge 0.21 0.02 0.49 1.00 6.79E-06 0.03 0.99 1.00

θ -Horseshoe, β-Lasso 0.42 0.02 0.58 1.00 3.81E-05 0.02 1.00 1.00

θ -Horseshoe, β-Horseshoe 0.08 0.01 0.76 1.00 1.51E-06 0.00 1.00 1.00

Posterior medians of κii and κij are calculated at the product level and then summarized for each model.
There is maximum shrinkage when κ = 1 and no shrinkage when κ = 0

terior median of each κij and then report summary statistics across the distribution
of estimates. The first finding is that there is a sizable difference in the strength of
shrinkage between own and cross-price elasticities. We find that estimates of τ 2βcross

tend to be four to five orders of magnitude smaller than τ 2βown. Consequently, esti-
mates of κij (for i �= j ) tend to be bunched at one while estimates of κii are more
dispersed throughout the unit interval. One explanation for this difference in shrink-
age is that retail scanner data tends to exhibit a stronger signal for estimating own
elasticities than cross elasticities (Hitsch et al., 2021). Our estimation problem is also
high-dimensional as we are estimating 75,350 cross elasticity parameters from 78
weeks of training data.

Across models, we find that hierarchical priors impose heavier shrinkage, on aver-
age, than standard global-local priors—especially for own elasticities. For example,
the average shrinkage factor κii is 0.19 for the β-Horseshoe model but 0.76 for the
(β-Ridge, β-Horseshoe) model. If the shrinkage points are misspecified (as appears
to be the case for standard priors with a mean fixed at zero), then the prior variances
will need to get larger to accommodate deviations from zero. Since the hierarchical
priors center the product-level elasticities around more reasonable values, then the
prior variance can get smaller and shrinkage will “kick in” for noisy estimates. For
differences in shrinkage factors across product categories, see Appendix C.4 where
we plot the empirical CDF of posterior medians of κii across both categories and
models. We find appreciable variation in the strength of category-level shrinkage.
While there is variation across models, we find that shrinkage tends to be heaviest in
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categories like BEER/ALE and CARBONATED BEVERAGES, and lightest in FZ
PIZZA and SALTY SNACKS.

6.4 Discussion

So far, we have provided evidence that hierarchical shrinkage priors can lead to more
negative and precisely estimated own elasticities, larger and more dispersed cross
elasticities, and improvements in out-of-sample demand predictions. We close this
section with a discussion of implications for analysts and managers. We first discuss
the nature of price variation in retail markets, and show how judicious prior choices
can help mitigate challenges of estimating price elasticities with weakly informative
data. We then discuss the benefits of imposing hierarchical shrinkage when producing
competitive maps used for market structure analysis.

6.4.1 Retail prices and prior regularization

In the era of big data it may be tempting to believe that prior specification is less of a
concern as the data will simply overwhelm the prior with a sufficiently large sample
size. We argue that this view is misguided in a demand estimation context because
more data does not necessarily imply more variation in key demand shifters.4 In
many retail markets, for example, prices are notoriously “sticky” (Bils & Klenow,
2004) and exhibit limited variation over time—a feature that need not dissipate as
more data are collected. With limited variation in prices, price coefficients will in turn
be subject to heavy regularization. Analysts interested in using observational data to
estimate price elasticities will almost always face a problem of weakly informative
data, calling for more judicious prior choices.

We illustrate the interplay between weakly informative data and regularization in
Fig. 5. Each scatter plot compares the own elasticities from a sparse prior (x-axis) to
the own elasticities from a hierarchical prior (y-axis). For example, the top left corner
compares estimates from the sparse β-Ridge prior to estimates from the hierarchical
(θ -Ridge, β-Ridge) prior. Each point is one of 275 products colored according to
the strength of the signal provided its price vector. Our specific measure of signal
strength for product j is the standard deviation of log prices across weeks in the
training data: SDj = SD(logpj1, . . . , logpjn). Red triangles represent products in
the bottom quartile of this distribution (i.e., products with relatively limited price
variation), green squares represent products in the top quartile of this distribution,
and grey circles represent products in the second and third quartiles.

We find that most of green squares fall along the diagonal line, implying that the
own elasticity estimates produced by sparse and hierarchical priors are similar for
goods with relatively high price variation. In contrast, most of the red triangles fall
below the diagonal line where estimates from the sparse prior estimates are greater

4We abstract away from the discussion of “clean” variation and price endogeneity. In our empirical appli-
cation, we only rely on temporal variation rather than cross-market variation in prices which is the typical
threat to exogeneity (Rossi, 2014).
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Fig. 5 The effects of non-sparse shrinkage on own-price elasticities

than estimates from the hierarchical prior. This set of products illustrates the value of
hierarchical shrinkage: in the absence of a strong signal in the data, we can produce
more economically reasonable estimates by imposing shrinkage towards higher-level
elasticities rather than zero.

6.4.2 Interpretable market structure

A second implication of hierarchical, non-sparse shrinkage is that it can allow for
more interpretable market structure analysis. Marketing researchers have a long his-
tory of using competitive maps—i.e., visual representations of product or brand
competition—for understanding customer preferences and guiding managerial deci-
sions related to brand positioning (Elrod, 1988; Allenby, 1989; Rutz & Sonnier,
2011), product line management (Chintagunta, 1998), and assortment planning
(Sinha et al., 2013). One challenge in producing competitive maps for large assort-
ments is that it is hard to flexibly estimate demand at scale.5 As we have shown,

5Visualizing market structure for large assortments remains an active area of research. In recent years,
several papers have bypassed the challenge of estimating demand at scale and have instead developed
visualization methods that either use purchase outcome data alone (France & Ghose, 2016; Gabel et al.,
2019), or use auxiliary data such as data on consumer search (Kim et al., 2011; Ringel & Skiera, 2016) or
online text reviews (Netzer et al., 2012).
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log-linear demand models with appropriate forms of regularization can produce esti-
mates of large elasticity matrices. Do different priors lead to appreciably different
inferences about competition and market structure?

Figure 6 plots elasticity-based competitive maps across all nine prior specifica-
tions. Each map is made by using a two-dimensional t-SNE projection (van der

Fig. 6 Competitive maps based on t-SNE projections of each model’s estimated 275×275 price elasticity
matrix. Each point represents a product and is colored by its category label
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Maaten & Hinton, 2008) of the estimated price elasticity matrix. Each point on the
map is one of 275 products and distances between products reflect degrees of substi-
tution, with more related products appearing closer together. Points are colored based
on category labels to help interpret competitive boundaries. We find substantial dif-
ferences in the interpretability of competitive maps across sparse and hierarchical
prior specifications. The maps produced by standard shrinkage priors do not, at first
glance, reflect any deeper structure of demand. In contrast, the maps produced by
hierarchical shrinkage priors feature a co-clustering of goods belonging to the same
or similar categories. For example, in the (θ -Ridge, β-Ridge) map, most beverages
appear on the right-hand side and many beers and carbonated beverages are located
near clusters of salty snacks, frozen dinners, and frozen pizza.

In Appendix C5, we show a subcategory-level version of Fig. 6 for two selected
models to show how hierarchical shrinkage leads to more coherent subcategory clus-
tering behavior. We also provide zoomed-in plots for the SALTY SNACK category
to examine the ways in which brands co-cluster. In the hierarchical shrinkage map,
we find that category and subcategory labels tend have more influence over cluster-
ing outcomes than brand labels. For instance, we do not find that brands co-cluster
across subcategories (as would be expected if umbrella branding or quality tiers
induced strong cross-subcategory substitution, for example). Instead, we find that
clusters tend to include all brands within the same subcategory. Relative to hier-
archical shrinkage maps, standard shrinkage maps exhibit no discernible clustering
behavior across brands or subcategories. Overall, we believe that improvements in
map interpretability can lead to better inferences about product competition and more
valuable insights for for decision-making.

7 Conclusion

This paper studies shrinkage priors for high-dimensional demand systems. We pro-
pose a hierarchical extension to the class of global-local priors where prior means and
variances are parameterized by product classification trees that commonly accom-
pany retail scanner data sets. The principal benefit is that the price elasticity between
two goods will be shrunk towards higher-level category elasticities rather than zero.
We also formally examine the shrinkage properties of hierarchical global-local priors
and show that including a heavy tailed mixing distribution at any level of the tree is
sufficient for imposing heavy shrinkage for product-level elasticities.

We apply our hierarchical priors to the elasticity parameters of a log-linear demand
model in which store-level sales are regressed on a high-dimensional vector of prices
as well as seasonal trends and other product controls. We propose a simple modified
version of the fast sampling algorithm in Bhattacharya et al. (2016) to help alleviate
the typical computational bottleneck that arises when inverting the posterior preci-
sion matrix. We then use both simulated data and retail scanner data to show the value
of non-sparse shrinkage. Our simulation experiments shed light on the situations in
which different types of shrinkage are most/least appropriate. Hierarchical priors can
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offer significant gains when the true elasticity matrix is dense and inherits its struc-
ture from a product classification tree. Moreover, hierarchical priors are fairly robust
to tree misspecification and are still competitive with standard sparsity priors when
the parameters are actually sparse.

Our empirical application uses two years of data to estimate 75,625 price elas-
ticities associated with an assortment of 275 goods that span 28 subcategories and
nine categories. We find that the hierarchical prior with ridge shrinkage through-
out the tree provides the best predictive performance. We also find that hierarchical
priors provide much more reasonable estimates of own elasticities than the stan-
dard shrinkage priors which impose a fixed shrinkage point at zero. The hierarchical
global-local structure also allows us to learn about within and cross-subcategory and
category elasticities, which is useful for identifying boundaries of competition. Our
results provide evidence that, in the absence of a strong signal in the data, hierarchical
shrinkage can lead to improvements in different aspects of demand estimation rela-
tive to “off-the-shelf” regularization. More generally, we believe our work highlights
the importance of judicious priors in high-dimensional estimation problems.

Appendix A: Posterior computation with hierarchical global-local
priors

A.1: Full Conditionals

Means The higher-level elasticity parameters θπ(ij |	) are assumed to follow a nor-
mal prior and therefore have a normal full conditional distribution: θπ(ij |	)|else ∼
N(θ̃π(ij |	), Vπ(ij |	)), where

θ̃π(ij |	) = Vπ(ij |	)

⎛

⎜⎝
∑

a∈C	
i

∑

b∈C	
j

θπ(ab|	−1)

τ 2	−1�π(ab|	−1)
+ θπ(ij |	+1)

τ 2	 �π(ij |	)

⎞

⎟⎠ ,

Vπ(ij |	) =
⎛

⎜⎝
∑

a∈C	
i

∑

b∈C	
j

1

τ 2	−1�π(ab|	−1)
+ 1

τ 2	 �π(ij |	)

⎞

⎟⎠

−1

.

Here C	
i = {

i′ ∈ {1, . . . , n	} : π(i′j |	) = π(ij |	)} and C	
j ={

j ′ ∈ {1, . . . , n	} : π(ij ′|	) = π(ij |	)} each represent sets of group indices that
share a common ancestry with group i or j at level 	.

Local variances First rewrite Eq. 6 as �π(ij |	) = λ2π(ij |	)
∏L−1

s=	+1 λ2π(ij |s) =
λ2π(ij |	)�π(ij |	+1) and so at level 	, all λ2π(ij |	) terms need to be sampled from their
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full conditional distribution given �π(ij |	+1). Here we focus on the case where
λπ(ij |	) ∼ C+(0, 1), which corresponds to horseshoe shrinkage. We exploit the fol-
lowing scale mixture representation of the half-Cauchy prior (Makalic & Schmidt,
2015): if λ2|ζ ∼ IG(1/2, 1/ζ ) and ζ ∼ IG(1/2, 1), then λ ∼ C+(0, 1).

λ2π(ij |	)|ζπ(ij |	), else ∼ IG

⎛

⎝1

2
+ 1

2

∑

s≤	

n2s ,
1

ζπ(ij |	)
+ (θπ(ij |	) − θπ(ij |	+1))

2

2τ 2	 �π(ij |	+1)

+1

2

∑

s<	

∑

a∈Cs
i

∑

b∈Cs
j

(θπ(ab|s) − θπ(ab|s+1))
2

τ 2s �π(ab|s+1)

⎞

⎟⎠

ζπ(ij |	)|λ2π(ij |	) ∼ IG

(
1, 1 + 1

λ2π(ij |	)

)

Global variances We place a half-Cauchy prior on τ and use the same scale mixture
representation outlined above for the local variances.

τ 2	 |ζ	, else ∼ IG

⎛

⎝n2	 + 1

2
,
1

ζ	

+ 1

2

n2	∑

a=1

n2	∑

b=1

(
θπ(ab|	) − θπ(ab|	+1)

)2

�π(ab|	)

⎞

⎠

ζ	|τ 2	 ∼ IG

(
1, 1 + 1

τ 2	

)

A.2: Fast sampling algorithm

We show that our version of the Bhattacharya et al. (2016) fast sampling algorithm,
as outlined in Section 4.2, produces a draw of β with the correct posterior mean and
covariance matrix:

E(β|data) = (X̃
′
X̃ + �−1∗ )−1(X̃

′
ỹ + �−1∗ β̄(θ))

Cov(β|data) = (X̃
′
X̃ + �−1∗ )−1

where β̄(θ) denotes the prior mean of β which depends on higher-level elasticity
parameters θ . Note that our proofs below rely on the Woodbury matrix identity: (A+
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UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1.

E(β|data) = E(u) + �∗X̃
′
E(w)

= E(u) + �∗X̃
′
E

(
(X̃�∗X̃

′ + I )−1(ỹ − v)
)

= E(u) + �∗X̃
′
(X̃�∗X̃

′ + I )−1(ỹ − E(v))

= E(u) + �∗X̃
′
(X̃�∗X̃

′ + I )−1(ỹ − X̃E(u) − E(δ))

= �∗X̃
′
(X̃�∗X̃

′ + I )−1ỹ + β̄(θ) − �∗X̃
′
(X̃�∗X̃

′ + I )−1X̃β̄(θ)

= (X̃
′
X̃ + �−1∗ )−1X̃

′
ỹ

+
(
I − �∗X̃

′
(X̃�∗X̃

′ + I )−1X̃
)
β̄(θ) by Woodbury

= (X̃
′
X̃ + �−1∗ )−1X̃

′
ỹ +

(
I − �∗X̃

′
(X̃�∗X̃

′ + I )−1X̃
)
�∗�−1∗ β̄(θ)

= (X̃
′
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′
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(
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′
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)
�−1∗ β̄(θ)

= (X̃
′
X̃ + �−1∗ )−1X̃

′
ỹ + (X̃

′
X̃ + �−1∗ )�−1∗ β̄(θ) by Woodbury

= (X̃
′
X̃ + �−1∗ )−1(X̃

′
ỹ + �−1∗ β̄(θ))

Cov(β|data) = Cov(u + �′∗X̃w)

= Cov(u + �′∗X̃�(ỹ − v))

= Cov(u − �′∗X̃�v)

= Var(u) + Var(�′∗X̃�v) − Cov(u, �′∗X̃�v) − Cov(�′∗X̃�v, u)

= Var(u) + �′∗X̃�Var(v)�X̃
′
�∗

−Cov(u, v)�X̃
′
�∗ − �′∗X̃�Cov(v, u)

= �∗ + �′∗X̃��−1�X̃
′
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′
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′
�∗

= �∗ − �′∗X̃(X̃�∗X̃
′ + I )−1X̃

′
�∗

= (X̃
′
X̃ + �−1∗ )−1 by Woodbury

Appendix B: Additional simulation experiments

B.1: Parameter recovery

The goal of this section is to show that the MCMC algorithms outlined in Section 4
can accurately recover model parameters at each level of the tree. We focus on one
of the 25 data sets generated by specification (I) with n = 50 and p = 100 (for
details, see the discussion in Section 5). The tree corresponding to this data set has
5 categories, 10 subcategories, and 100 products. There are then 52 = 25 category
elasticities θπ(ij |2), 102 = 100 subcategory elasticities θπ(ij |1), and 1002 = 10, 000
product elasticities βij .
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For simplicity, we report estimates from two models: the (θ -Ridge, β-Ridge) hier-
archical prior and the standard (β-Ridge) prior. Figure 7 plots the posterior mean
of each elasticity parameter against its true value. The vertical lines correspond to
95% credible intervals. The first three figures report estimates from the hierarchi-
cal shrinkage prior and the last figure reports estimates from the standard shrinkage
prior. We find that all 95% credible intervals cover true values for the category and
subcategory-level elasticities, and nearly all credible intervals cover true values for
product-level elasticities.

Fig. 7 Posterior means and 95% credible intervals of elasticity parameters are plotted against true values.
The first three figures report estimates from the hierarchical (θ -Ridge, β-Ridge) prior and the last figure
reports estimates from the standard (β-Ridge) model. The data are generated from specification (I) as
described in Section 5 with n = 50 and p = 100

The benefits of hierarchical shrinkage can be seen by comparing the estimates of
product-level elasticities βij in the last two figures. With high-dimensional p > n

data, the design matrix will be rank deficient and the regularization imposed by the
prior will bite. The last figure on the right shows that default prior assumptions can
produce very noisy and biased estimates, especially for elasticities that are larger
in magnitude. In comparison, our hierarchical priors shrink noisy estimates towards
more reasonable values by pooling information across products. Overall, this further
emphasizes the importances of judicious prior choices in high-dimensional settings.

B.2: Treemisspecification

The simulation experiments in Section 5 assume that the tree used to construct the
hierarchical shrinkage prior matches the “true” tree used to generate the data. When
working with observational data, the existence or structure of a true tree is not known
so there may be a concern of tree misspecification. In the context of scanner data,
the reported product classification tree could be misspecified if it does not reflect
consumers’ true boundaries of substitution across product groups. For example, in
the IRI scanner data set “Ready-to-Eat Cereal” is the only subcategory within the
CEREAL category. This part of the tree may be too coarse if there is a more granular
partitioning of cereal brands, flavors, and qualities that better aligns with consumer
cross-product substitution.
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Fig. 8 Aminimal example with p = 16 highlighting the three forms of misspecification considered in our
simulation experiments. Shaded circles indicate misspecification relative to Ttrue
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In this section we use the same 25 (n = 50, p = 100) simulated data sets from
specification (I) in Section 5 to explore consequences of tree misspecification. Let
Ttrue denote the tree used to simulate the data. Ttrue has five equal-sized categories
on the top level (each having two child subcategories), 10 equal-sized subcategories
on the middle level (each having 10 child products), and 100 products on the bottom
level. In addition to standard shrinkage priors and hierarchical priors based on Ttrue,
we also fit hierarchical priors based on the following three misspecified trees.

A) In T ′
A, the ordering of group nodes on the top and middle levels are kept the

same, but the bottom-level nodes (the “products”) are permuted. In Ttrue, prod-
ucts fill up one subcategory at a time—i.e., goods 1, . . . , 10 are assigned to
subcategory 1, goods 11, . . . , 20 are assigned to subcategory 2, and so on. We
generate T ′

A by assigning the first product to subcategory 1, the second prod-
uct to subcategory 2, and so on until each subcategory has one product. This
process repeats until all products have been assigned into a subcategory. The
resulting tree shares no common structure with Ttrue.

B) In T ′
B , half of the tree is misspecified (in the same way as T ′

A) while the other
half matches Ttrue.

C) In T ′
C , half of the tree is misspecified as an overly granular version of Ttrue

(each group is split into two) while the other half matches Ttrue.

Examples of each form of misspecification are provided in Fig. 8 and simulation
results are reported in Table 8. For each misspecified tree, we also report the distance
between T ′ and Ttrue using the adjusted Rand index (ARI). Similarity is maximized
when ARI (T ′, Ttrue) = 1. Our results indicate that hierarchical shrinkage can still
provide improved estimates over standard shrinkage methods—and is never worse
than standard shrinkage methods—even when the tree is misspecified. However, the
magnitude of these gains vanishes as the degree of misspecification grows. If an
analyst is concerned with the threat of misspecification, then different tree structures
could be fit to the data and compared based on out-of-sample fit metrics.

Table 8 Effects of tree misspecification

Hierarchical Shrinkage with T ′
A Estimation RMSE Correct Signs

A) ARI (T ′
A, Ttrue) = −0.02 (I) (II) (III) (I) (II) (III)

θ -Ridge, β-Ridge 2.482 2.340 1.207 0.77 0.79 0.88

θ -Ridge, β-Lasso 2.552 2.429 1.066 0.77 0.77 0.89

θ -Ridge, β-Horseshoe 2.800 2.697 0.951 0.73 0.73 0.89

θ -Horseshoe, β-Ridge 2.533 2.399 1.220 0.76 0.77 0.86

θ -Horseshoe, β-Lasso 2.587 2.468 1.088 0.76 0.76 0.88

θ -Horseshoe, β-Horseshoe 2.815 2.713 0.962 0.72 0.72 0.88

134 A.N. Smith, J.E. Griffin



Table 8 (continued)

Hierarchical Shrinkage with T ′
B Estimation RMSE Correct Signs

B) ARI (T ′
B, Ttrue) = 0.55 (I) (II) (III) (I) (II) (III)

θ -Ridge, β-Ridge 1.808 1.548 0.950 0.87 0.89 0.91

θ -Ridge, β-Lasso 1.820 1.538 0.866 0.86 0.89 0.92

θ -Ridge, β-Horseshoe 2.016 1.738 0.783 0.84 0.86 0.92

θ -Horseshoe, β-Ridge 1.704 1.340 0.711 0.87 0.91 0.93

θ -Horseshoe, β-Lasso 1.765 1.420 0.678 0.86 0.90 0.94

θ -Horseshoe, β-Horseshoe 1.958 1.645 0.668 0.84 0.87 0.93

Hierarchical Shrinkage with T ′
C

C) ARI (T ′
C, Ttrue) = 0.63 (I) (II) (III) (I) (II) (III)

θ -Ridge, β-Ridge 1.047 0.537 0.522 0.93 0.97 0.94

θ -Ridge, β-Lasso 1.060 0.471 0.459 0.93 0.98 0.95

θ -Ridge, β-Horseshoe 1.138 0.394 0.408 0.92 0.98 0.95

θ -Horseshoe, β-Ridge 1.064 0.529 0.193 0.93 0.97 0.98

θ -Horseshoe, β-Lasso 1.073 0.469 0.194 0.93 0.98 0.98

θ -Horseshoe, β-Horseshoe 1.147 0.394 0.261 0.92 0.98 0.97

Hierarchical Shrinkage with Ttrue

D) ARI (Ttrue, Ttrue) = 1 (I) (II) (III) (I) (II) (III)

θ -Ridge, β-Ridge 1.033 0.530 0.515 0.94 0.97 0.94

θ -Ridge, β-Lasso 1.047 0.461 0.451 0.93 0.98 0.95

θ -Ridge, β-Horseshoe 1.126 0.385 0.407 0.92 0.98 0.95

θ -Horseshoe, β-Ridge 1.044 0.526 0.190 0.93 0.98 0.98

θ -Horseshoe, β-Lasso 1.053 0.461 0.192 0.93 0.98 0.98

θ -Horseshoe, β-Horseshoe 1.130 0.386 0.270 0.92 0.98 0.97

E) Standard Shrinkage (I) (II) (III) (I) (II) (III)

β-Ridge 2.541 2.375 1.219 0.77 0.78 0.87

β-Lasso 2.622 2.473 1.079 0.76 0.77 0.89

β-Horseshoe 2.879 2.745 0.969 0.73 0.74 0.88

The table reports average fit statistics across 25 simulated data sets from specification (I) in Section 5
with n = 50 and p = 100. The first three panels show the estimation results from hierarchical priors with
misspecified trees. In each case, we use the adjusted Rand index (ARI) to report the similarity between the
misspecified tree T ′ and Ttrue . The two benchmark cases from Section 5 (i.e., hierarchical priors based on
Ttrue and standard shrinkage priors) are shown in the last two panels

Appendix C: Additional empirical details and results

C.1: Summary of Priors and Hyperparameter Specifications

Standard shrinkage priors
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• Cross elasticities

βij ∼ N
(
0, λ2ij τ

2
cross

)
, τcross ∼ C+(0, 1)

• Own elasticities

βii ∼ N
(
0, λ2iiτ

2
own

)
, τown ∼ C+(0, 1)

• Control coefficient vector (product intercepts, seasonal variables, promotional
variables)

φi ∼ N(0, 102Id)

• Observational error variance

σ 2
i ∼ IG(5, 5)

Hierarchical shrinkage priors

• Cross elasticities

βij ∼ N
(
θπ(ij |1), �ij τ

2
βcross

)
, τβcross ∼ C+(0, 1)

θπ(ij |1) ∼ N
(
θπ(ij |2), �π(ij |1)τ 21cross

)
, τ1cross ∼ C+(0, 1)

θπ(ij |2) ∼ N
(
θ̄own, �π(ij |2)τ 22cross

)
, τ2cross ∼ C+(0, 1)

θ̄cross ∼ N(0, 1)

• Own elasticities

βii ∼ N
(
θπ(ii|1), �iiτ

2
βown

)
, τβown ∼ C+(0, 1)

θπ(ii|1) ∼ N
(
θπ(ii|2), �π(ii|1)τ 21own

)
, τ1own ∼ C+(0, 1)

θπ(ii|2) ∼ N
(
θ̄cross, �π(ii|2)τ 22own

)
, τ2own ∼ C+(0, 1)

θ̄own ∼ N(0, 1)

• Control coefficient vector (product intercepts, seasonal variables, promotional
variables)

φi ∼ N(0, 102Id)

• Observational error variance

σ 2
i ∼ IG(5, 5)

C.2: Mixing diagnostics
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Fig. 9 Percentiles of the
autocorrelation function across
own-price elasticity parameters
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Fig. 10 Percentiles of the
autocorrelation function across
cross-price elasticity parameters.
In panel (c), we randomly
sample 1,000 of the 75,625 total
elasticity parameters
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C.3: Distributions of Price Elasticity and Promotional Effect Estimates

Fig. 11 Distributions of product-level price elasticity estimates
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Fig. 12 Distributions of product-level own-promotion effect estimates
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C.4: Shrinkage Factors by Category

Fig. 13 Empirical CDFs of own-price elasticity shrinkage factor estimates median(κii |data) plotted across
models and product categories. There is maximum shrinkage when κii = 1 and no shrinkage when κii = 0

141Shrinkage priors for high-dimensional demand estimation



C.5: Competitive maps by category

Fig. 14 Competitive maps based
on t-SNE projections of the
275× 275 price elasticity matrix
separated by category for two
selected models. Points are
assigned the same colors as in
Fig. 6 and are also assigned
separate shapes based on
subcategory labels (see Table 3).
The number of subcategories
within a category is listed in
parentheses next to the category
name
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Fig. 15 Competitive maps for the SALTY SNACK category from two selected models. This is a zoomed-
in, product-level view of Fig. 6. Each point is a product (brand) and is colored by its subcategory label
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