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Abstract
We introduce a new method to implement joint measurements using a 4-qubit twist
defect on a rotated surface code. The proposed method enables us to perform logical
S (Phase gate), T (π/8 gate), and H (Hadamard) with low overhead. Combined with
other universal quantum gates, we can implement fault-tolerant quantum computation
at the lattice surgery level beyond the gate level while saving considerable resources.
We compare our method with previous methods using benchmark circuits by calculat-
ing the space and time costs. The proposedmethod requires additional lines of physical
qubits for each encoded patch. Although it slightly increases the space cost for logical
H compared to the previous work, it reduces the time cost. In addition, the proposed
method decreases the space cost and time cost by introducing a 4-qubit twist defect
for logical S and T . Therefore, the overall space-time cost is reduced.

Keywords Fault-tolerant quantum computation · Quantum error correction code ·
Surface code · Lattice surgery · Logical operation

1 Introduction

To protect quantum information from errors arising from the unstable characteristics of
physical qubits, a quantum error correction code (QECC) is required [1, 2]. A surface
code is a type of topological code with a high threshold and can be implemented
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using operations between adjacent qubits in a two-dimensional space. Therefore, it
is a promising technology for realistic architectures such as superconducting qubits,
optical lattices, ion traps, quantum dots, and nitrogen-vacancy (NV) centers, which
can perform physical operations between adjacent qubits [3–8]. In addition, the high
threshold of the surface code is maintained even when a gate error of 0.8% to 1.4%
occurs [4]. Although there is a coherent error, the threshold is undamaged as the code
distance is increased [9]. Therefore, this study targets a fault-tolerant quantum system
based on a surface code, especially a rotated surface code requiring fewer physical
qubits per logical qubit [10].

Once a quantum error correction code has been determined, we can implement
a quantum system that performs any quantum operation at a logical level using a
universal quantum gate set on the encoded data. A universal quantum gate set is a
set of quantum operations consisting of Clifford gates (Pauli, CNOT, Hadamard H ,
phase gate S) and a non-Clifford gate (π/8 gate T ). Any unitary operation can be
decomposed into the elements of a universal quantum gate set with arbitrary accuracy
[11]. Therefore, a fault-tolerant quantum computation (FTQC) can be achieved if a
fault-tolerant universal gate set can be implemented.

Pauli operations have zero cost in terms of time and space resources bymanipulating
the results of measurements in software [12]. Other logical operations in a universal
quantum gate set can be performed using joint measurements that can be implemented
by lattice surgery. In previous studies, a logical CNOT has been implemented using
two joint measurements and one measurement on a single qubit [13–15]. However, the
time cost of a logical CNOT can increase, depending on the logical qubit arrangement.
In the case of the row-type architecture (r-arch) [16], the logical CNOT takes 2d cycles
for error correction. In checkerboard-type (c-arch) and tile-based architectures (t-arch)
[17], qubit movements are required to perform a logical CNOT between two distant
qubits while increasing the time cost to 3d ∼ 4d cycles.

For logical S (SL ) and T (TL ) gates, a magic state refined through a distillation
process is needed [15, 18]. For the SL gate, we execute a quantum teleportation circuit
[12] or joint ZL ZL measurement [19] with the magic state. Alternatively, we can
implement SL using a joint ZLYL measurement with logical |0〉 (|0〉L ) [20]. However,
this approach requires two-patch-wide logical qubits. TL , a non-Clifford gate, requires
a distilled magic state and can be implemented using a quantum teleportation circuit
[21] or a sequence of joint measurements [15]. For logical H (HL ), we must perform
physical Hadamards transversally and lattice surgery with adjacent areas to return to
the original position [14, 15]. Recently, circuit-level analysis for a similar method has
been conducted [22]. A quantum teleportation circuit using lattice surgery with an
additional logical qubit can remove these physical operations while increasing time
and space costs [23].

After determining how to perform logical operations on the encoded information
using joint measurements, the next step is to arrange the logical qubits. When we use
surface code, logical qubits are counted in patches. Depending on how the stabilizers
are constructed, a single patch may represent logical information with two or more
degrees of freedom. The X and Z stabilizers of the surface code are shown in Fig. 1a.
The numbers and blue arrows indicate the order of the physical CNOTs in the parity
measurement circuit. Figure1b shows a logical qubit with two degrees of freedom,
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Fig. 1 a X and Z stabilizers. Each circle represents one qubit. The blue (or red) face represents the X (or Z )
stabilizer. Each face includes a measurement qubit. The execution order of each stabilizer is determined in a
zigzag manner [13]. The top-to-bottom sequence in the X stabilizers and the left-to-right sequence in the Z
stabilizers are indicated by blue arrows. b Logical qubit encoded using rotated surface code with a distance
of 3. The gray circles represent ancilla qubits for lattice surgery, and the white circles represent data qubits.
The logical X (XL ) and logical Z (ZL ) operations are defined in a sequence of X or Z marked by a thick
solid line. XL is encoded by one of the Z boundaries, and ZL is encoded by one of the X boundaries. This
can be changed by H operations. c Patches encoded using the rotated surface code in (b). The pink and
gray boxes represent the data and ancilla patches, respectively. The logical qubits on the right correspond
to patches on the left (Color figure online)

and Fig. 1c shows two types of patches. One patch in which the user performs the
desired operations is called a data patch, and the other patch consumed in the middle
of the operation is called an ancilla patch. There are various logical qubit architectures,
depending on how the data and ancilla patches are arranged, and each structure has
different efficiencies in terms of time and space costs [16, 17]. In this study, we assume
that an ancilla patch is placed above or below a data patch. Furthermore, we initially fix
all patches’ X and Z boundaries in the same direction so that logical operations can be
performed in a certain direction. These assumptions are common to all architectures
in [16, 17]. However, we add physical qubits between the patches, represented by
the gray circles in Fig. 1b. The proposed joint measurement is described based on a
rotated surface code, and a method for implementing a universal quantum gate set
using the proposed techniques is presented. Because our method rotates the boundary
when performing a HL , it uses less time than previous methods without physical
H operations. In addition, by presenting a method for performing a SL without a
magic state, we can efficiently perform SL and TL that requires an S correction after
measurement.

The remainder of this paper is organized as follows. In Sect. 2, we review some of
the operations proposed in previous studies that are applied to this paper. Therefore,
we describe a previous work for implementing joint XL XL , ZL ZL , and XL ZL mea-
surements based on the rotated surface code in Sect. 2.1 and 2.2. Logical operations
such as initialization, state injection, measurement, Pauli, and CNOT based on joint
XL XL and ZL ZL measurements are also described in Sect. 2.3. New methods for
implementing SL and TL using a joint ZLYL measurement and HL using a boundary
rotation are presented in Sect. 3. A joint ZLYL measurement based on a 4-qubit twist
defect is proposed in Sect. 3.1. Sections3.2 and 3.3 perform SL and TL using the pro-
posed ZLYL measurement while consuming fewer resources than previous studies. In
addition, Sect. 3.4 implements a HL based on a boundary rotation and the transfor-
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mation of the subsequent measurement with fewer space-time resources. In Sect. 4,
the number of physical qubits (space cost), number of cycles (time cost), and product
of the space and time cost (space-time cost) required for benchmarks are presented
using logical operations in Sect. 2 and 3. The conclusions are discussed in Sect. 5.

2 Preliminary

2.1 Joint XLXL,ZLZL measurement

Lattice surgery is used to manipulate logical qubits by activating specific stabilizers
or measuring certain physical qubits. It involves two techniques. Merging is one of
the techniques that involves turning on stabilizers between two patches to unify them.
This operation projects united patch onto one of the eigenspaces of the product of
logical operations. The other is splitting, which involves measuring certain physical
qubits of a patch and dividing it into two individual patches. Because this action makes
some stabilizers in the cross-section inactive, the information on the unified patch is
distributed to two separate patches.

When merging two qubits facing each other’s Z boundary, the product of parity
measurements for the newly activated stabilizers is equal to the product of the mea-
surement outcome concerning XL XL . Therefore, Z boundary merging projects patch
into one of the eigenspaces of XL XL , called joint XL XL measurement. Likewise, X
boundary merging is called joint ZL ZL measurement. After merging, the two patches
are unified and must be split to apply logical operations to the two individual patches
or shrink them to return to their original size [14, 15, 23].

In addition, we can implement patch extension and patch shrinkage using joint
XL XL and ZL ZL measurements. Performing the joint ZL ZL measurement with |+〉L
or the joint XL XL measurement with |0〉L leaves the information of the data patch
unchanged, increasing the patch size, so-called patch extension. The code distance
during the joint measurement is maintained, and the entire procedure takes 1d cycles.
However, measuring an extended part in X(Z) basis in the case of the joint ZL ZL

(XL XL) measurement results in patch shrinkage, which takes 0d cycles. Figure2a,
b shows a patch extension using the joint ZL ZL measurement with |+〉, and a patch
shrinkage by measuring in X basis is presented in Fig. 2c, d.

2.2 Joint XLZL measurement

We consider joint measurements facing the same boundaries, as described in the
previous section. This section introduces a joint XL ZL measurement for different
boundaries. In [13] and [15], a joint XL ZL measurement was performed using X Z
stabilizers consisting of two X and Z operators. Figure3 shows an example of the
XL ZL measurement for the two patches.
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Fig. 2 An example of patch extension and patch shrinkage. a A data patch in an arbitrary quantum state
|ψ〉 and an ancilla patch initialized in |+〉. XL = XXX and ZL = Z Z Z are marked by bold solid lines. b
The joint ZL ZL measurement to extend the data patch in the size of two-patch-wide. Using the product of
the stabilizers marked by black circles, we can obtain the outcome of the ZL ZL measurement. cMeasuring
physical qubits colored in green on X basis to shrink the patch. d Compensation for logical X operators.
The product of the measurement outcomes of qubits colored in black must be reflected in the XL after the
shrinkage [15] (Color figure online)

Fig. 3 Joint XL ZL
measurement of two patches.
The product of the parity
measurements marked by black
circles is equivalent to the
outcome of XL ZL measurement

2.3 Initialization, state injection, measurement, Pauli operator, CNOT

We use the method presented in [14, 15, 20] for logical operations such as initial-
ization, state injection, measurement, and CNOT. The initialization, state injection,
and measurement take 0d cycles, whereas the CNOT requires two joint measurements
and takes 2d cycles. However, when considering the logical qubit architecture, logical
CNOT requires additional logical SWAP or merging with surrounding areas [16, 17],
resulting in longer surface code cycles. Pauli operations are processed in the software
using a commutation relationship with other operations [12, 24]. Thus, 0d cycles are
required. Table 1 summarizes the logical operations and the cost in previous studies.
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Table 1 The cost of logical operations in previous work

Operation Time cost Space cost References

Initialization, state injection, measurement 0d 1d2 [14]

Patch shrinkage 0d 1d2 [20]

Patch extension 1d 2d2 [20]

Pauli 0d 1d2 [12, 24]

CNOT(r-arch) 2d 3d2 [14–16]

CNOT(c-arch) 3d 3d2 [17]

CNOT(t-arch) 4d 3d2 [17]

Fig. 4 The proposed ZLYL measurement process. a A data patch in an arbitrary quantum state. The light
gray circles represent ancilla qubits initialized in |+〉. X stabilizers do not affect light gray ancilla qubits
because they are already in a +1 eigenspace of X stabilizers. Dark gray circles are ancilla qubits initialized
in |0〉. Ancilla qubits in |0〉 can ignore Z stabilizers for the same reason as ancilla qubits in |+〉. b A ZLYL
measurement between two patches. The product of stabilizers marked in black circles yields the outcome
of ZLYL measurement. c A 4-qubit twist defect and corresponding circuit for parity measurement. In the
circuit, the first qubit is a syndrome qubit containing the parity check’s result

3 Logical operations using joint measurements

3.1 Joint ZLYL measurement

In [13], a 5-qubit twist defect has been introduced for a logical Y (YL ) measurement
that requires two-patch-wide logical qubits. This study proposes a ZLYL measurement
between one-patch-wide logical qubits using a 4-qubit twist defect. A 4-qubit twist
defect can be implemented in eight steps, unlike a 5-qubit defect. Consequently, the
proposed defect does not increase the measurement-failure probability and the total
time cost after scheduling logical operations. In addition, the effective code distance is
not reduced in the minimum-weight-perfect-matching (MWPM) decoder [25]. From
the newly active stabilizers, the ZL of the first qubit and YL of the second qubit can be
obtained to implement the ZLYL measurement. Figure4 shows the ZLYL measurement
process for the rotated surface code (SC-17) [10] at a distance of 3. When the distance
is 3, six stabilizers are newly turned on, as shown in Fig. 4b. Three of them are Z
stabilizers, two are X stabilizers, and the other is a mixed stabilizer that includes X ,
Y , and Z , called a 4-qubit twist defect. The product of the Z stabilizers and a mixed
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Fig. 5 The proposed SL process. a A data patch (pink box) in an arbitrary state |ψ〉L and an ancilla patch
(gray box) in |0〉L . Corresponding logical qubits encoded by SC-17 are placed next to the boxes. The
initialization of two patches followed by lattice surgery requires 0d cycles b ZLYL measurement between
|ψ〉L and |0〉L . The product of stabilizers marked in black circles is equivalent to the outcome of the ZLYL
measurement. c Patch shrinkage to return the patch to the original size. Qubits marked in green or red are
measured in X or Z basis. The measurement outcomes of qubits constituting the XL in (b) are used to
calibrate the reduced XL (Color figure online)

stabilizer produces the ZL ZL of the two logical qubits, and multiplication by the X
stabilizers results in the logical X of the second qubit, that is, the product of the new
active stabilizers is equal to the product of the ZL of the first logical qubit and the YL
of the second logical qubit. A quantum circuit for parity measurement of the mixed
stabilizer is shown in Fig. 4c. The execution order of the gates is determined to be Z1-
X2-Y3-X4, considering the surrounding stabilizers. The distance between the logical
X and Z operators is maintained at d. We present a 3D space-time figure where the
logical operators are supported in Appendix A. The proof of the ZLYL measurement
using the stabilizer description is presented in Appendix B.

3.2 SL gate

Logical S can be implemented using Hadamards and CNOTs with magic state |Y 〉L
[12] or a joint ZL ZL measurement with |Y 〉L [19]. The magic state |Y 〉L can be
expressed as

|Y 〉L = 1√
2
(|0〉L + i |1〉L). (1)

This can also be implemented using a joint ZLYL measurement with |0〉L [20]. In
particular, authors in [20] used two-patch-wide logical qubits to perform a joint ZLYL
measurement. However, we propose a method for one-patch-wide logical qubits. We
utilize the data patch shown in Fig. 1, but only 1d2 + 2d physical qubits are used
per patch. In Fig. 5, one data patch requires an ancilla patch in |0〉L to perform an
SL operation. The result of the joint ZLYL measurement between the two patches is
equivalent to performing an SL on the data patch, and patch shrinkage is applied by
measuring some qubits to return to the original size. Therefore, as shown in Fig. 5c,
the qubits marked in green are measured in the X basis, and the qubits marked in red
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Table 2 Comparison of the implementation of SL operation

Method MSD |Y 〉L Time cost Space cost
(data+ancilla
patches)

References

Hadamards, CNOTs with |Y 〉L © 14d 2 × 1d2 [12]

ZL ZL measure with |Y 〉L © 1d 2 × 1d2 [19]

ZLYL measure with |0〉L (5-qubit defect) × 1d 2 × (2d2 − 2d) [20]

ZLYL measure with |0〉L (4-qubit defect) × 1d 2 × (1d2 + 2d) Proposed

are measured in the Z basis. Pauli correction is also required according to the results
of those measurements. The entire operation takes 1d cycles.

The results of comparing the proposed method with the previous studies are pre-
sented in Table 2. The space cost is calculated by considering all the consumed ancilla
patches and the data patch where SL is performed. The first method uses logical
Hadamards and CNOTs, which requires a considerable amount of time. Because all
methods except the first perform the joint measurement once, they take 1d cycles to
complete the error correction. Although the second method takes 1d cycles to finish
the error correction, magic state distillation (MSD), which requires many resources in
fault-tolerant quantum computation, is required to prepare the |Y 〉L [12, 18, 26]. The
third method does not require distilled |Y 〉L . However, it uses two-patch-wide logical
qubits and requires the largest number of physical qubits (space cost). The proposed
method uses a 4-qubit twist defect and does not require a magic state distillation for
|Y 〉L . Therefore, only a small number of qubits are required.

3.3 TL gate

Since the TL is a non-Clifford operation, magic state |A〉L is required [18, 27–29].
The magic state |A〉L can be expressed as

|A〉L = 1√
2
(|0〉L + e

iπ
4 |1〉L). (2)

Previous studies have implemented TL using logical CNOT and SL [21] or a joint
ZL ZL measurement with the magic state [15, 30]. In this study, we present a method
that consumes less time and space resources by applying the SL proposed in the pre-
vious section. Our method is based on a circuit that performs TL using ZL ZL and
ZLYL measurements with |A〉L and |0〉L [20]. Figure6 shows the process of ZL ZL

and ZLYL measurements with |A〉L and |0〉L to perform TL on an arbitrary state |ψ〉L .
All stabilizers for ZL ZL and ZLYL measurements are turned on simultaneously in one
surface code cycle, as shown in Fig. 6b. Because the initialization of the |0〉L accom-
panied by lattice surgery requires 0d cycles, the total time cost is still 1d cycles. The
result of the ZL ZL (or ZLYL ) measurement is the product of the parity measurements
of the stabilizers, which are marked by blue (or black) circles in Fig. 6b. SL correction
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Fig. 6 The proposed TL process. aAdata patch (pink box) in an arbitrary state |ψ〉L and ancilla patches(gray
box) in |A〉L and |0〉L . Corresponding logical qubits are placed next to the boxes. b ZL ZL and ZLYL
measurements on |ψ〉L with |A〉L and |0〉L . The product of stabilizers marked in blue(black) circles is
equivalent to the outcome of the ZL ZL (ZLYL ) measurement. c SL correction by measuring |0〉L patch
in X basis. d Measuring |0〉L patch in Z basis to cancel the SL correction. The measurement outcomes of
qubits constituting the logical X in (b) are used to calibrate the reduced logical X (Color figure online)

is required according to the ZL ZL and ZLYL measurement results. Using the condi-
tional SL circuit shown in [20], if an SL correction is required, we measure the |0〉L
patch in X basis, as shown in Fig. 6c. If a correction is unnecessary, we measure the
patch in Z basis, as shown in Fig. 6b.

Table 3 summarizes the time and space cost of TL operations. The first method
requires the most time resources because it uses a logical CNOT and a SL . The second
method takes 2d cycles because of a joint measurement followed by a SL . Since the
third method and the proposed method need only one joint measurement, they require
1d cycles, which is the shortest of all. The proposed method uses 2d more qubits per
patch, but still less than the third method.

3.4 HL gate

In previous studies, a HL has been implemented using transversal physical Hadamards
[14] or a quantum teleportation circuit without physical Hadamards [23]. In [14],
the boundaries are not aligned in subsequent joint measurements because physical
Hadamards change the stabilizers and boundaries. Therefore, rotation is performed by
merging with extra space, as shown in Fig. 7. To reserve the extra space, the number
of physical qubits per logical qubit is enlarged by as much as 2d2.

In [23], the authors utilized quantum teleportation with |0〉L to perform a HL on
a single data patch. Therefore, one ancilla patch in |0〉L is consumed, and the data
to which HL is applied moves on to the ancilla patch. For c-arch, t-arch[17], and r-
arch[16], this method causes the HL to be considered during routing. In addition, the
time cost required to return the data to the data patch position increases. Consequently,
this method increases not only the space cost but also the time cost.

Before proposing a HL , changing the type of the boundaries is defined as a boundary
rotation, which is presented in [20]. Figure8 illustrates the execution sequence based in
Fig. 1b. Before the boundary rotation (normal cycle), the X boundaries are composed
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Table 3 Comparison of the implementation of TL operation

Method MSD |Y 〉L Time cost Space cost
(data+ancilla
patches)

References

CNOT with |A〉L
and SL
correction

© 17d 3 × 1d2 [21]

ZL ZL measure
with |A〉L and
SL correction

© 2d 3 × 1d2 [15, 30]

ZL ZL , ZLYL
measure with
|A〉L ,
|0〉L (5-qubit
defect)

× 1d 2 × (2d2 − 2d) +1d2 [20]

ZL ZL , ZLYL
measure with
|A〉L ,
|0〉L (4-qubit
defect)

× 1d 3 × (1d2 + 2d) Proposed

Fig. 7 a A data patch in an arbitrary quantum state. A HL is performed using transversal Hadamard
operations on physical qubits followed by 1d rounds of error correction. b After transversal Hadamard
operations, X stabilizers turn into Z stabilizers and vice versa. It appears that the whole patch rotated by
90◦. c The patch is merged with surrounding areas, while the distance of logical qubit is maintained, taking
1d cycles. d The patch is shrunk, leaving the shape consistent with (a). After the shrinkage, physical qubits
are initialized and physical swap operations move the whole patch to its original position, taking 1d cycles
each

of X stabilizers above and below the patch, and the Z boundaries are composed of
Z stabilizers on the left and right sides. After the X boundary on the top is expanded
to the right side, we activate adjacent Z stabilizers instead of X stabilizers at the top
boundary as though we expand the Z boundary on the left. Then, some qubits are
measured in X basis to reduce the patch, and it is expanded to the left while increasing
only Z boundaries. Again, some qubits are measured in X basis, and the patch is
reduced to its original size. When a boundary rotation is performed, all stabilizers
on the boundaries are changed after 3d cycles. The boundaries are rotated by 90◦,
leading to rotations of the XL and ZL . The stabilizer changes simultaneously within
each stage, and the distance and degrees of freedom remain the same; thus, the original
information is not damaged. However, the logical operator must be corrected based on
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Fig. 8 Boundary rotation process. a A boundary rotation starting from Fig. 1b. Ancilla qubits colored in
dark gray are initialized in |0〉. b Expanding X boundary on the top to the right. The minimum weight of
logical operators remains d = 3. After expansion, 1d rounds of surface code cycles are required. The qubit
in the right corner is initialized in |+〉. c Patch deformation by moving corners. The top X boundary is
changed to a Z boundary by turning on Z stabilizers adjacent to previous X stabilizers. Additional 1d cycles
are required. d Measuring physical qubits colored in green in X basis to shrink the patch. e Preparation to
extend Z boundaries. Ancilla qubits colored in light gray are initialized in |+〉. f Expanding Z boundaries
on the top and bottom. Although the weight of logical X has increased, the code distance remains d = 3
because the patch cannot correct error patterns that would have been corrected using a code with d = 5.
The parity measurement of the stabilizer is repeated 1d times. g Shrink the patch by measuring physical
qubits colored in green in X basis. Total surface code cycles for boundary rotation are 3d cycles (Color
figure online)

the measurement outcomes of the newly activated stabilizers. The correction method
and verification of the boundary rotation are presented in Appendix C.

The proposed method for the HL combines the boundary rotation and transforma-
tion of subsequent measurements. The detailed implementation process is as follows.
A HL is pushed back, changing subsequent measurements. When the HL reaches a
single measurement at the end of the circuit, it is combined with the measurement by
changing the basis of the measurement from X (Z ) to Z (X ). This method applies to
logical operations of the universal gate set as follows. First, if a HL is followed by a
logical CNOT and patch extension, we perform a joint XL XL or ZL ZL measurement
after the HL . To move the HL to the end of the circuit, we transform the subsequent
joint measurement for arbitrary state |ψ1〉L and |ψ2〉L using the relation [14, 21, 31]

(HL ⊗ IL) |ψ1〉L |ψ2〉L + (−1)MXX (XL ⊗ XL)(HL ⊗ IL) |ψ1〉L |ψ2〉L (3)

(HL ⊗ IL) |ψ1〉L |ψ2〉L + (−1)MZZ (ZL ⊗ ZL)(HL ⊗ IL) |ψ1〉L |ψ2〉L (4)

(XL ⊗ XL)(HL ⊗ IL) = (HL ⊗ IL)(ZL ⊗ XL) (5)

(ZL ⊗ ZL)(HL ⊗ IL) = (HL ⊗ IL)(XL ⊗ ZL) (6)

where MXX and MZZ are the results of the joint XL XL and ZL ZL measure-
ments. Therefore, HL can be moved behind logical CNOT by transforming joint
ZL ZL (XL XL ) to XL ZL (ZL XL ) measurements. A boundary rotation is required to
change the type of boundaries; therefore, logical H takes 3d cycles. In the case of a
logical CNOT after logical H in Fig. 9a, we apply the joint XL ZL measurement with
|+〉L instead of the joint ZL ZL measurement. Figure 9b shows the joint XL ZL mea-
surement between a data patch and an ancilla patch. Second, SL changes its joint ZLYL
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Fig. 9 a An example of a logical CNOT following a HL . The HL of |ψ1〉L transforms the joint ZL ZL
measurement of the CNOT to the joint XL ZL measurement. b The change of stabilizers during joint XL ZL
measurement in (a) and the execution order of XL ZL stabilizers. Using the boundary rotation followed by
error correction, the boundary of the patch seems to rotate 90 degrees. Merging with |+〉L facing XL XL
boundaries is turned into the operation facing XL ZL boundaries

measurement to joint XLYL measurement to move HL behind SL . TL also changes its
joint ZLYL and ZL ZL measurement to joint XLYL and ZL XL measurement.

Figure 10 shows examples of SL and TL after HL . In Fig. 10a, SL is replaced by
joint measurements and Pauli correction. After moving HL behind SL , a joint ZLYL
measurement changes to a joint XLYL measurement, and Pauli correction is affected
by the movement. The changes in joint measurements and Pauli correction for TL are
shown in Fig. 10b. To conditionally apply SL correction, the basis of the measurement
on |0〉L is determined depending on the result of the joint ZL XL measurement. The
joint XLYL measurement generated by HL requires a boundary rotation and a 4-qubit
twist defect.

Figure 11a shows stabilizers, logical operators, and a 4-qubit defect for the joint
XLYL measurement. In Fig. 11a, the product of the parity measurement results for the
stabilizers, marked with black circles, is equivalent to the XLYL measurement result.
ZL and XL are defined as XXX and Z Z Z XXX , respectively. In addition, we can
check the details of the 4-qubit defect in Fig. 11b. The parity measurement circuit for
the defect is shown, and the order of execution is Y1-X2-X3-X4, marked by a blue
arrow. Third, Pauli operations are handled in the software, which is not a consideration,
and HL , followed by another HL , is equivalent to the logical identity operator. Finally,
if the subsequent operation is a single Z or X basis measurement, HL is absorbed by
changing the basis from Z to X or from X to Z without any additional cost, as shown
in Fig. 12.
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Fig. 10 a An example of a SL following a HL . The HL of |ψ〉L transforms the joint ZLYL measurement to
the joint XLYL measurement. The notation× indicates the product of the measurement results. In addition,
Pauli correction can be changed depending on the relation with H . b An example of a TL following a
HL . The HL of |ψ〉L transforms the joint ZL ZL and ZLYL measurement to the joint ZL XL and XLYL
measurement

The comparison results of implementing a HL with previous studies are presented
in Table 4. For the time cost, we calculate the surface code cycle required to complete
each method, and the space cost is the number of physical qubits required per logical
qubit. The first method using quantum teleportation performs HL without physical
Hadamard operations. Because logical SWAPs have been added to return to their
original location after the teleportation, it takes considerable time and space costs.
The second method is a more reasonable way to implement a HL using physical
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Fig. 11 a An example of the joint XLYL measurement with |0〉L . After the boundary rotation followed
by error correction, merging with |0〉L facing ZLYL boundaries is turned into the operation facing XLYL
boundaries. b A 4-qubit twist defect and corresponding circuit for parity measurement. The circuit takes
eight steps to finish, similar to the parity check circuit of other X and Z stabilizers [12]

Fig. 12 a An example of single
Z measurement following a HL .
b An example of single X
measurement following a HL .
HL changes the basis from X to
Z or Z to X

Table 4 Comparison of the implementation of HL operations

Method Physical Hadamard Time cost Space cost
(per logical
qubit)

References

Quantum teleportation × 7d 2d2 [23]

Merging with surrounding areas © 4d 2d2 [14]

Boundary rotation and transformation × 3d 2d2 + d Proposed

Hadamards because it takes 4d cycles. As shown in Fig. 7, extra space is reserved
for rotation, taking additional 1d2 physical qubits per patch. The authors in [16, 17]
adopt this method. The proposed method combines the boundary rotation in [20] and
the transformation of the subsequent measurement, requiring only 3d of cycles, using
additional 1d2 physical qubits for the rotation and 1d physical qubits for a 4-qubit
defect.

4 Numerical results

4.1 Benchmarks

The benchmarks used in the study are listed in Table 5. 4-qubit is an arbitrarily
generated 4-qubit quantum circuit, as shown in Fig. 13. 3AQFT is a circuit for
an approximate quantum Fourier transform (AQFT) using three logical qubits and
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Fig. 13 An example of 4-qubit quantum circuit

Table 5 Benchmarks

Benchmark # logical qubits # logical gates # SL , TL # HL Rtshg% r-arch size t-arch size

4-qubit 4 19 10 6 84.21 4 × 1 × 3 2 × 2 × 6

3AQFT 4 36 14 14 77.78 4 × 1 × 3 2 × 2 × 6

Y-dist(7) 8 23 7 4 47.83 8 × 1 × 3 3 × 3 × 6

A-dist(15) 16 55 15 5 36.36 16 × 1 × 3 4 × 4 × 6

A-dist(20) 25 89 20 7 30.34 25 × 1 × 3 5 × 5 × 6

Shor15 6 225 105 30 60.00 6 × 1 × 3 3 × 3 × 4

Adder0-5 16 290 126 36 55.86 16 × 1 × 3 4 × 4 × 6

Adder1-8 18 273 112 32 52.75 18 × 1 × 3 5 × 5 × 6

one ancilla qubit[32, 33]. Y-dist(7) is a magic state Y distillation circuit that uses
the [[7,1,3]] code [26]. A-dist(15) and A-dist(20) are the magic state A distillation
circuits using the [[15,1,3]] code and [[20,4,2]] code, respectively [26, 28]. The
remaining benchmarks are presented in [34]. Table 5 lists the architecture size of
the patch units and percentage of expensive SL , TL , and H gates, which is expressed
as Rtshg = (#SL , TL + #HL)/# logical gates.

4.2 Results

Table 6 summarizes the logical operations and the required time and space costs. The
previous work represents the combined method of [14–17, 19, 20], which requires the
lowest space-time cost. SL and TL consume 1d2 physical qubits per patch, but HL

requires physical H operations and 2d2 physical qubits per logical qubit. Therefore,
the space cost per patch is based on 2d2 physical qubits per patch, and a column
called physical H indicates whether physical operations are performed. Unlike the
previous work, in the proposed method, 2d2 + d physical qubits are enough for HL ,
and 1d2 + 2d physical qubits are used in SL and TL . Accordingly, the space cost per
patch of the proposed method is 2d2 + d. The time cost in the second row refers to
the value of previous studies, and the time costs of SL and TL in the third row are 1d
cycles each because only one joint measurement is taken. HL requires only 3d cycles
for rotation without physical H operations, and changing the basis of subsequent
measurement is handled in software, requiring no additional time cost. In both rows,
the time cost of the CNOT operation uses the value presented in previous studies.
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Fig. 14 The time cost of benchmarks when arranging logical qubits in r-arch

Unlike the proposed method, SL and TL in previous work require several magic state
distillation(MSD) blocks of |Y 〉L in addition to |A〉L . In [20], the space-time cost of
one |Y 〉L distillation block is 28d3, which is the product of the time cost 4d and the
space cost 7d2. In the simulation of benchmark circuits, some SL and TL operations
can be performed simultaneously or right after prior SL and TL operations. To prepare
for such circumstances, we must prepare at least one |Y 〉L for each surface code cycle.
Since the time cost of |Y 〉L distillation is 4d, four distillation blocks are required to
obtain one |Y 〉L per surface code cycle. Therefore, the minimum space-time cost of
|Y 〉L distillation blocks is 4 × 28d3 = 112d3.

The simulation is based on the t-arch and r-arch developed in [16, 17] and uses
the scheduling and routing techniques presented in those studies. However, neither
study considered the space for |0〉L used in SL and the space for |A〉L used in TL .
Therefore, SL and TL are routed to operations using an ancilla patch. One line of
ancilla patch is added to all architectures to reserve space for |0〉L , |Y 〉L , or |A〉L . In
all simulations, the window size is fixed at 30 [16]. The time cost of the benchmarks
is the average value after repeating the same circuit 10 times. The space cost of each
benchmark is calculated as the product of the number of patches(architecture size) in
Table 5 and the space cost per patch in Table 6. Therefore, we can calculate space-
time cost = (t ime cost) × d × (architecture si ze) × (space cost per patch) +
(space-t ime cost o f |Y 〉L distillation).

Figure 14 shows the average time cost in the r-arch. Blue arrows indicate a reduction
in the proposed method compared to the previous work in percentage terms, which
is calculated using the formula rate o f change = 100 × (proposed method −
previous work)/previous work. In the bar graph, when the circuit is operated
using the proposed HL , SL , and TL , the time cost is reduced by 42.8% in the randomly
generated 4-qubit circuit. In other benchmarks requiring more qubits, the time cost is
also reduced by at least 4.8% and by up to 22.1%. This is because the proposedmethod
reduces the required time for HL and TL , and this reduction is sufficient to reduce the
overall time cost, even after scheduling and routing. In Fig. 15, we verify the gain of
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Fig. 15 The time cost of benchmarks when arranging logical qubits in t-arch

the proposed method based on the t-arch. The 4-qubit circuit consumes 26.3% lower
time cost. For the other benchmarks, the time cost is reduced by a minimum of 0.5%
and a maximum of 13.8%. Therefore, the proposed method provides advantages in
terms of time cost for both r-arch and t-arch.

In addition, the proposed method is beneficial not only in terms of the time cost,
but also in terms of the space-time cost. Figure16a shows the space-time cost when
the distance d is three. Because the architecture size is the same in the previous work
and the proposed method, the number of patches required is also the same. However,
the magic state distillation block for |Y 〉L is required in the previous work. Since the
space-time cost of |Y 〉L distillation is only added to the space-time cost of the previous
work, this gain is reflected in the space-time cost in all benchmarks. Therefore, the
space-time cost is reduced by 47.0% in the 4-qubit circuit. In other benchmarks,
the proposed method consumes a minimum of 6.8% to a maximum of 15.5% lower
space-time cost than the previous work. On the other hand, for benchmarks Y-dist(7),
A-dist(15), and A-dist(20), where Rtshg is less than 50%, the cost does not decrease.
This is because the proportion of TL , SL , and HL is small, and the gain from those
operations is reduced. Therefore, Fig. 16b shows the rate of changes in the space-time
cost when the code distance is 3, 6, and 9. As the distance increases, the space-time
cost of the proposed method is further reduced even in benchmarks where Rtshg is
less than 50%.

When the t-arch is applied, the space-time cost is calculated using the time cost in
Fig. 15 and the space cost with a distance of 3 is shown in Fig. 17a. The space-time
cost is reduced by 23.4% in the 4-qubit circuit. Also, the proposed method performs
other benchmarks at a lower cost from aminimum of 2.0% to amaximum of 2.7%. For
A-dist(15), A-dist(20), Shor15, Adder0-5, and Adder1-8, the cost does not decrease.
Since the gain in the time cost is less than the gain of r-arch and Rtshg is less than
60%, the benefit of the proposed method has a minimal impact on the space-time cost.
However, as the distance increases from 3 to 9 in Fig. 17b, the space-time cost of the
proposed method is further reduced in those benchmarks.
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Fig. 16 a The space-time cost of r-arch using the time cost in figure 14 when the distance is 3. b Rate of
changes in the space-time cost when the distance increases to 3, 6, and 9. More reduction means greater
gain

For both r-arch and t-arch, the time cost is reduced in all benchmarks, and the
benefit of the space-time cost is enlarged as the distance increases. In addition to the
benefit of the cost, the proposed method does not require physical H operations when
implementing logical H , so errors due to physical H operations can be ignored.

5 Conclusion

In this study, we propose a method for performing SL , TL , and HL at a low cost.
Logical operations are decomposed into joint measurements and implemented at the
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Fig. 17 a The space-time cost of t-arch using the time cost in Fig. 15 when the distance is 3. b Rate of
changes in the space-time cost when the distance increases to 3, 6, and 9. More reduction means greater
gain

lattice surgery level. In other words, we describe the newly activated stabilizers during
merging, specify the correction method for the XL and ZL operators according to the
result of the parity measurement, and indicate the physical qubits to be measured. In
addition, a boundary rotation that changes the stabilizers of boundaries is introduced,
resulting in implementing a HL with minimal time cost. The proposed method is
described based on a rotated surface code with a distance of 3, which can be extended
to a higher distance, and examples are presented in Appendix D.

In terms of time cost, SL and TL can be executed at a low cost of 1d cycles, and
HL can be executed in 3d cycles, which is less than in the previous 4d cycles. When
the proposed method is applied to various benchmarks, the time cost is reduced even
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if they go through scheduling and routing to find operations that can be performed
simultaneously. In the r-arch, we can perform the 4-qubit circuit in 42.8% less time,
whereas other benchmarks can be performed in up to 22.1% less time. In the t-arch,
benchmarks can be performed in 26.3% less time for the 4-qubit circuit, and other
circuits can be performed in up to 13.8% less time. Regarding the space cost, the
number of patches is fixed according to the type of architecture; therefore, there is
a difference in the space and time cost for |Y 〉L distillation blocks. In the previous
work, because 2d2 physical qubits are required to implement a HL , all patches must
reserve at least 2d2 physical qubits. However, 2d2 +d physical qubits are sufficient to
implement a HL in the proposed method, and 1d2 + 2d physical qubits are required
for SL and TL . As a result, the space-time cost of the 4-qubit circuit is reduced by
47.0% in the r-arch and 23.4% in the t-arch. Additionally, the space-time cost of other
benchmarks is reduced by up to 23.5% in the r-arch and up to 11.9% in the t-arch, as
the code distance increases to 9.

In future work, beyond the joint measurement between two patches, we can apply
boundary rotation and ZLYL measurement to a multi-patch measurement performed
simultaneously across multiple patches. Therefore, they can be applied not only to the
r-arch and t-arch, but also to the architecture for multi-patch measurement [20] and
column-type architecture for multi-target CNOT [26]. Although this study is based
on the rotated surface code, it is expected to be expanded in lattice surgery of the
triangular code [35] or the color code [36].

Appendix A 3D space-time figure of logical operators during the joint
ZLYL measurement

First, after joint ZLYL measurement, we can find equivalent forms of logical operators
by multiplying them by the product of the stabilizer. Figure18 shows the logical X ,
which is equal to the original logical X multiplied by the product of the stabilizers
marked in blue dots. Figure19 shows the equivalent logical Z multiplied by the product
of the stabilizer marked in orange dots. In Fig. 20, we present a 3D space-time figure
where the logical operators in Figs. 18 and 19e, f are supported. The dark blue wall
indicates where the logical X operator is supported, and the light orange wall indicates
where the logical Z operator is supported. Figure20 shows that the distance between
the logical X and Z operators is maintained at d.
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Fig. 18 Variations of logical X , XL , by the product of the stabilizers during the joint ZLYL measurement
a XL = XXX before the joint ZLYL measurement, b XL = XXXXXXX after the joint ZLYL measure-
ment, c–e variations of logical X by the product of the stabilizers marked in blue, f variation of logical X
by the product of the stabilizers marked in blue, where XL = XXXY Z (Color figure online)

Fig. 19 Variations of logical Z , ZL , by the product of the stabilizers during the joint ZLYL measurement
a ZL = Z Z Z before the joint ZLYL measurement, b ZL = Z Z Z after the joint ZLYL measurement, c–e
variations of logical Z by the product of the stabilizers marked in orange, f variation of logical Z by the
product of the stabilizers marked in orange, where ZL = XXY Z Z Z Z (Color figure online)
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Fig. 20 3D space-time figure for
the joint ZLYL measurement.
Dark blue wall represents where
logical X is supported; light
orange wall represents where
logical Z is supported. a 3D
space-time figure using the
logical operators in Figs. 18e
and 19e. b 3D space-time figure
using the logical operators in
Figs. 18f and 19f (Color figure
online)

Appendix B Stabilizer description of the SL for a distance-3 code

Logical S can be proven by satisfying SL XL S
†
L = YL and SL ZL S

†
L = ZL . Table 7

lists the stabilizers for one data patch in an arbitrary state and one ancilla patch in |0〉L .
If we track the changes in XL1 and ZL1, which are the logical X and Z of the data
patch, respectively, we can determine whether logical S has been performed. In the
figure on the left, a,b, and c are the ancilla qubits prepared in |+〉L , and Ka ∼ Kc are
the corresponding stabilizers. d and e are ancilla qubits prepared in |0〉L and Kd ∼ Ke

are the corresponding stabilizers.
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Table 7 Stabilizer description of one data patch and one ancilla patch in |0〉L

Table 8 shows X and Z stabilizers in the process of performing a joint ZLYL
measurement. The changed parts compared to Table 7 are marked in red, and KcXL1
is equal to XL1 multiplied by the stabilizer.

Table 9 describes all stabilizers required for the joint ZLYL measurement, including
a 4-qubit defect. While ZL1 remains unchanged, XL1 is transformed into the chain
shown in the figure on the left. When XL1 is further multiplied by stabilizers K21 ∼
K23, it is transformed into K21K22K23K17KcXL1 in Table 10.

If we multiply this by K18 ∼ K20, it transforms into YL in Table 11. Thus, XL1
is replaced by YL = K18K19K20K21K22K23K17KcXL1 of the unified patch, and
ZL1 becomes ZL , confirming that SL is performed. In addition, logical operators
are calibrated according to the results of the parity measurements of new stabilizers,
and Pauli correction is performed on the entire patch according to the measurement
outcomes of the physical qubits in Fig. 5c.
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Table 8 Stabilizer description with new X and Z stabilizers during the joint ZLYL measurement
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Table 9 Stabilizer description with 4-qubit defect after joint ZLYL measurement
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Table 10 Stabilizer description of a unified patch after joint ZLYL measurement
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Table 11 Stabilizer description of a unified patch which is equal to Table 10 multiplied by stabilizers

Appendix C The correction and verification for the boundary rotation

During the boundary rotation, we must examine error correction, logical operators,
and code distance [37, 38]. The code distance of the original information in Fig. 21 is
3, and logical operators XL0 = X1X4X7 and ZL0 = Z7Z8Z9. Since ancilla qubits 10
∼ 11, 13 ∼ 18 are initialized in |0〉, which is +1 eigenstate of single Z stabilizers, Z
errors cannot damage those qubits.

Figure 22 shows logical operators and stabilizers after extending the X boundary
on the top. For example, an X stabilizer on qubits 3, 6, 10, and 13 is expressed as
K1 = X3X6X10X13 and the parity of K1 is (−1)m1 . The logical operators ZL1 and
XL1 are equivalent to ZL0 and XL0 . X stabilizers marked in diagonal lines(K1 =
X3X6X10X13, K2 = X11X12, K3 = X11X14X15, K4 = X13X14X16X17, and K5 =
X15X18) can have+1 or−1 parity without Z errors. Therefore, we can detect Z errors
from the following surface code cycle when the sign of those X stabilizers is inverted.

Figure 23 shows the process of transforming the stabilizers of the top boundary.
Z and X errors can be detected by existing stabilizers. However, we cannot distin-
guish whether the parities of K6 = Z1Z2, K7 = Z3Z10 and K8 = Z11Z12 are -1
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Fig. 21 A logical qubit in arbitrary states encoded by the surface code with a distance of 3. The numbers
correspond to each qubit. The logical operators are expressed as XL0 = X1X4X7 and ZL0 = Z7Z8Z9

Fig. 22 Extending the top X boundary. The measurement outcome of stabilizers with diagonal lines can be
+1 or −1. Logical operators are expressed as ZL1 = ZL0 and XL1 = XL0 . Z errors do not affect ancilla
qubits and X errors can be detected by Z stabilizers

Fig. 23 Transforming the stabilizers of the top boundary. The measurement outcome of Z stabilizers with
diagonal lines can be +1 or −1. Gauge-fixing operators are X2X3X10X11X12, X10X11X12, and X12. We
can use logical operators ZL2 and XL2 multiplied by Z and X stabilizers

Fig. 24 Measuring qubit 1 ∼ 9 in X basis. The parity of K9 = X10X13 can be extracted from K10 = X3,
K11 = X6, and K1 = X3X6X10X13. The logical operators ZL3 and XL3 are equivalent to ZL2 and XL2
by the product of Z or X stabilizers

due to an X error, or whether the state is projected into −1 eigenspace without X
errors. Therefore, the patch is fixed using X2X3X10X11X12, X10X11X12, and X12.
The logical operator ZL2 is the product of ZL1 and Z stabilizers including those
marked in diagonal lines and expressed as ZL2 = (−1)m6+m7+m8 Z12Z15Z18. The
logical operator XL2 is also the product of XL1 and X stabilizers and expressed as
XL2 = (−1)m2X1X2X3X4X7X10X11X12, which is handled in software [15]. The
weight of the minimum logical operator is 3, and some error patterns in which the
weight is greater than one cannot be accurately distinguished.

In Fig. 24, qubits 1 ∼ 9 are measured in X basis. X errors have no effect on
those measurements, and Z errors are detected by the inverted sign of measure-
ment outcomes. Using X measurement results of qubit 3 and qubit 6 as well as
K1 = X3X6X10X13, the parity of K9 = X10X13 can be determined. If the par-
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Fig. 25 Extending the patch using ancilla qubits prepared in |+〉. The logical operator XL4 is extended by
stretching Z boundaries. ZL4 is equivalent to ZL3 by the product of Z stabilizers, including those marked
in diagonal lines

Fig. 26 Measuring qubit 10 ∼
18 in X basis. The parity of
K19 = X3X6 is derived from
the measurement results of qubit
10 and 13, and the gauge-fixing
operator is Z3Z10

ity is −1, we correct the logical patch using the gauge-fixing operator Z3Z10. The
logical operator ZL3 is expressed as (−1)m6+m7 Z10Z13Z16 using the product of
Z stabilizers. XL3 is multiplied by the product of X stabilizers and expressed as
XL3 = (−1)m2+m10+m11+m12X10X11X12, where K12 = X9.

Ancilla qubits are prepared in |+〉, which is+1 eigenstate of the single X stabilizer.
X errors do not affect ancilla qubits, and Z errors can be detected by X stabilizers. The
patch is extended by stretching Z boundaries, as shown in Fig. 25. The logical oper-
ator XL4 is also extended as (−1)m2+m10+m11+m12X1X2X3X10X11X12. The newly
activated Z stabilizers marked in diagonal lines, K13 = Z1Z2, K14 = Z2Z3Z5Z6,
K15 = Z3Z10, K16 = Z4Z5Z7Z8, K17 = Z8Z9, and K18 = Z6Z9Z13Z16,
can have a +1 or −1 parity without X errors. Therefore, ZL4 is equivalent to
(−1)m6+m7+m13+m14+m15+m16+m17+m18 Z1Z4Z7. Theminimumweight of logical oper-
ators is still three.

In Fig. 26, qubit 10∼ 18 aremeasured in X basis, and the logical qubit is fixed using
Z3Z10 when the parity of K19 = X3X6 derived from the measurement results of qubit
10 and 13 is −1. The logical operator ZL5 is equivalent to ZL4 , and XL5 is corrected
as (−1)m2+m10+m11+m12+m20+m21+m22X1X2X3, where K20 = X10, K21 = X11, and
K22 = X12. The process of returning from Figs. 21, 22, 23, 24, 25, and 26 proceeds
similarly, starting by increasing the bottom Z boundary.

Appendix D Joint XLZL and ZLYL measurements for a surface code
with a distance larger than three

In Sect. 3, the proposed method is described based on SC-17, whose distance is 3,
but the same techniques can be applied to logical qubits encoded by the surface code
with a distance of three or higher. For example, logical qubits with a distance of 6 are
shown in Fig. 27. Figure27b, c shows examples of the XL ZL and ZLYL measurements,
respectively.
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Fig. 27 a Two logical qubits in arbitrary states encoded by the surface code with a distance of 6. bA XL ZL
measurement between two logical qubits. The boundary rotation is applied to the upper logical qubit. The
XL of the unified patch is defined as the product of six Zs and six Xs, which are marked in orange and
blue lines. The product of stabilizers marked in black circles is equivalent to the outcome of the XL ZL
measurement. c A ZLYL measurement between two logical qubits. The stabilizer in the bottom right-hand
corner consists of three qubits, unlike the case where the distance is 3. Therefore, a 3-qubit stabilizer is
used at the bottom corner of the column with a 4-qubit defect when the distance is an even number. The
product of stabilizers marked in black circles is also equivalent to the outcome of the ZLYL measurement
(Color figure online)
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