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Abstract
One of the main important features of the noisy intermediate-scale quantum (NISQ)
era is the correct evaluation and consideration of errors. In this paper, we analyse
the main sources of errors in current (IBM) quantum computers and we present a
useful tool (TED-qc) designed to facilitate the total error probability expected for any
quantum circuit. We propose this total error probability as the best way to estimate
a lower bound for the fidelity in the NISQ era, avoiding the necessity of comparing
the quantum calculations with any classical one. In order to contrast the robustness
of our tool we compute the total error probability that may occur in three different
quantum models: 1) the Ising model, 2) the Quantum-Phase Estimation (QPE), and 3)
the Grover’s algorithm. For each model, the main quantities of interest are computed
and benchmarked against the reference simulator’s results as a function of the error
probability for a representative and statistically significant sample size. The analysis
is satisfactory in more than the 99% of the cases. In addition, we study how error
mitigation techniques are able to eliminate the noise induced during the measurement.
These results have been calculated for the IBM quantum computers, but both the tool
and the analysis can be easily extended to any other quantum computer.
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1 Introduction

Quantum computing, i.e. the possibility to access real quantum states to realize com-
plex calculations, has passed from a possibility to a reality [1]. Feynman’s idea [2] of
using real quantum systems to simulate quantum mechanics is nowadays not a dream
or an idea anymore. In the last 20 years, the capabilities of state-of-the-art quantum
computers have improved a lot. As an example, this year IBM was able to implement
the first 433 qubit computer1 and it has foreseen to present a computer with more than
1000 qubits in the near future2 Ideal quantum computers are supposed to be able to
realize calculations not possible for classical computers with great accuracy. To do so,
these computers require at least thousands of qubits in order to use many of them for
quantum error corrections [3–5]. Unfortunately, we are still far from this situation, and
in the noisy intermediate-scale quantum (NISQ) era, the scientific and technological
efforts focus on evaluation, control, and reduction of the physical errors [6–22].

The NISQ devices are composed of a couple of tens of qubits and presumably a
couple of hundreds in the near future. One of their most important characteristics is
their imperfect nature, as their name indicates they are noisy. Nowadays, the best-
performing quantum computers are based on transmon qubits [23]; however, they
suffer from fourmain limitations. First of all, in these devices, the qubit’s state stability
is known to be of the order of hundreds of microseconds, so we cannot perform very
long calculations. In the second order, the gates acting on the qubits are noisy, so
every time we perform any calculation we are losing accuracy. In the third place, the
measurement process of the qubit state is subject to errors. The last thing to take into
account is the limited number of available physical qubits.

Normally, the errors induced by these limitations are analysed by comparing the
noisy quantum calculations against the classical noiseless results. Thismethod is really
precise, but it cannot be used for calculations that exceed the capacity of classical
computers. As quantum supremacy is expected in the NISQ era, we propose to use the
total error probability as the best way to measure the role of errors in this period. Our
main purpose in this paper is to analyse these limitations by considering representative
statistical samples in different quantum algorithms as a function of the total error
probability. By doing it, we will be able to ensure that this total error probability
obtained before any quantum calculation correctly represents an upper bound for
the error induced in the actual calculation. Several approaches are described in the
literature to estimate the circuit error of a quantum program, which either need the
use of a quantum devices [24, 25] or just take into account the gate operation errors
[26–28]. Our method not only introduces the errors induced by the instability of the
qubits, which as we will see is one of the main sources of the total error, but it can be
used to set properly the qubit map before executing in a real quantum device.

To do so, we first produce a tool that connects with IBM’s application programming
interface (API) to calculate the total error probability expected during the run of a given

1 IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum Sys-
tem Two, https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-
and-Next-Generation-IBM-Quantum-System-Two.
2 IBM promises 1000-qubit quantum computer-a milestone-by 2023, https://www.science.org/content/
article/ibm-promises-1000-qubit-quantum-computer-milestone-2023.
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quantum circuit. Then, we estimate the effect of the total error probability by studying
three different and representative quantum algorithms: the Ising model, the quantum
phase estimation (QPE), and the Grover’s algorithm. In addition, the fidelity provides
a good measure of similarity between the ideal and real quantum states/calculations.
In order to contrast the difference between the ideal result (simulator) and the noisy
one (physical quantum computer) we calculate the magnetization for the Ising model
and phase for the QPE, which are the most important outputs of these models.

The effect of the error mitigation technique developed in Qiskit [29] is also evalu-
ated for all these cases. The error mitigation techniques are post-processing routines
that try to minimize the errors occurring in quantum computers [30–37]. The one
developed in Qiskit consists in the elimination of the error induced during the mea-
surement processes of the physical qubits. Although this technique may succeed in
the elimination of measurement errors, it is important to notice that it scales expo-
nentially with the number of qubits, so there might be situations in which its use is
computationally really demanding.

The paper is structured as follows: in Sect. 2 we describe the proposed tool to
calculate the total error probability. In Sect. 3 and 4 we analyse the main quantities of
interest and the fidelity (respectively) of the three quantum circuits for six different
IBM computers and for different qubit chains. In Sect. 5 we comment on the error
mitigation routine of Qiskit. Finally, the conclusions are exposed in Sect. 6.

2 Calculating the total error probability

As we pointed out in the previous section, the estimation of errors in the NISQ era is
essential in the field of quantum computing. These errors come basically from three
different sources [7]:

– The error induced by the instability of the qubits. In order to have non-trivial states
we have to excite our physical qubits. The probability of finding the qubit in the
excited state decays exponentially with time [29, 38], so the larger the quantum
circuit the less likely is to find the qubit in the expected state. There are two
possible decaying mechanisms, the decay of an excited state to the ground state,
i.e. the probability of a state |1〉 to decay to a |0〉, and the change of the phase of
an excited state, for example passing from the state 1/

√
2(|0〉 + |1〉) to the state

1/
√
2(|0〉 − |1〉).

– Through the gates applied in the quantum circuit. The evaluation of any quantum
gate carries an error with it. Single-qubit gates usually carry an error probability
of the order of 10−4 to 10−3, while two-qubit gates usually carry an error of the
order of 10−3 to 10−2.

– Each qubitmeasurement induces an error due to the lack of precision in the physical
act of measure which carries an error probability of the order of 10−2.

All the errors depend on the physical hardwarewhere the circuit is run. They depend
not only on the specific machine, but also on the specific qubits and connections that
are used. For this reason, we have developed a pre-processing computational tool
that facilitates the total error probability expected for a given quantum circuit on an
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Fig. 1 QPE σx circuit for the |+〉 state. In the upper figure, the circuit is described in the chosen set of
gates. In the lower figure, the circuit is written in the (universal) set of gates implemented in imbq_belem

IBM quantummachine. We named the project “Tool for Error Description in quantum
circuits” (TED-qc). The code is open source and available at the GitLab repository
(https://gitlab.com/qjornet/ted-qc.git).

We have written our quantum circuits in Qiskit making use of more than one set of
universal quantum gates. Once the quantum circuit is written on the chosen basis, it
has to be sent to a particular quantum computer. This quantum computer transforms
the provided gates to the universal set of quantum gates it operates. In Fig. 1 we can
see how the ibmq_belem transforms the QPE operator σx for the |+〉 state circuit
described in the Qiskit’s basis into its own gates.

All the information needed to calculate the total error probability can be extracted
through IBM’s API. First of all, it gives us each gate error probability Pgate, which
takes into account which qubits have been used. The same quantum gate has different
error probability depending on the qubit that is acting on. It also gives us the error
probability committed during the measurement Pmeas. We will see that this error can
be treated and completely reduced using the error mitigation technique. Finally, IBM’s
API also provides the relaxation (τ1) and dephasing (τ2) times of the working qubits.

In order to calculate the total error probability we define the success probability,
i.e. the possibility of non-committing any error, ST , as

ST =
m∏

i=1

Si =
m∏

i=1

[1 − Pi ] , (1)

where Pi represents the error probability from any source: single- and double-qubit
gates, measurement, and qubit instabilities, andm is the total number of error sources.
The relation between the error probability and success probability is defined as P+S =
1. The total error probability is therefore computed as

PT = 1 −
gates∏

i=1

[
1 − Pgate

i

] qbits∏

α=1

[
1 − Pmeas

α

] [
1 − Pτ1

α

] [
1 − Pτ2

α

]
. (2)
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The first product in Eq. (2) accounts for all gate-related errors Pgate
i (both single and

double), whereas the second product encompasses all explicit qubit-dependent sources
of error. These include the measurement error, denoted as Pmeas

α , and the errors arising
from qubit instability, represented by Pτ1

α and Pτ2
α . While the gate and measurement

errors are directly obtained through the IBM’S API, to account for errors caused by
instability qubits Pτi

α , we consider an exponential decay of the form [29]

Pτi
α = 1 − e

− tα
τi,α (3)

where i = 1, 2 are the two instability mechanism explained before, tα is the total
circuit time of qubit α and τi,α are the relaxation and dephasing times of qubit α.
The evaluation of Eq. (3) requires the knowledge of the time it takes for any qubit
between the initialization of the circuit and themeasurement tα . This is done by adding
up how long it takes for qubit α to perform any single gate. The situation gets more
complex when dealing with two-qubit gates. The process of executing a two-qubit
gate necessitates the completion of all preceding gate operations on both qubits before
the joint operation can be executed. Consequently, after incorporating the time needed
for the two-qubit gate into the total time calculation, we are faced with the task of
comparing the cumulative times of the two qubits involved. The crucial point here is
that we do not simply add these times together. Instead, we analyse the total times
for each qubit and then adopt the longer of the two as the updated qubit time. This
approach ensures that we are accounting for the maximum time it could take, thus
capturing the full potential for instability-induced error.

3 The error probability in three representative quantum circuits

The tool we have developed computes the total error probability of any quantum cir-
cuit for any physical qubit chain. In order to see if the computed total error probability
corresponds to the real error induced by the physical qubits, we will perform calcu-
lations in three representative quantum circuits: the one-dimensional Ising model, the
QPE for the σx operator, and the Grover’s algorithm, in many different qubit chains
and several IBM quantum computers.

Before evaluating the effect of the total error probability in our results it is important
to remind how a quantum computer works. Any time we send a job to a quantum
computer it makes an important number of repetitions of the same quantum circuit,
given by the number of shots, and it extracts the average between all these repetitions.
So, if we say that the total error probability is, for example, of the 20%, we are saying
that 80% of the repetitions will give the correct result, but 20% may be wrong, so the
final result will be the linear combination of the 80% correct wave functions and of
the 20% possibly wrong ones.

In the three mentioned circuits we will compare the “noisy” results, i.e. the ones
obtained in a real quantum computer, with the ones obtained in the simulator. We
will compare the magnetization for the Ising model, the phase for the QPE, and the
probability of finding the target number for the Grover algorithm.

123



  181 Page 6 of 17 U. Aseguinolaza et al.

Wewill nowcomment on the results concerning the three different quantumcircuits.

3.1 The one-dimensional Isingmodel

The Ising model is one of the most studied models in Physics. It explains ferro and
antiferromagnetism, but it is also used to describe strongly correlated systems. The
Ising model is a great example of the many advantages of quantum computing, as any
electron spin can be easily mapped with a qubit, reducing a 2n problem to a linear one.

Our aim is to diagonalize the one-dimensional Ising Hamiltonian for a n = 4
antiferromagnetic interaction in the presence of an external magnetic field through the
unitary transformation U [39, 40].

H = UHdU
†, (4)

where Hd is the diagonalized Hamiltonian, and H the Ising Hamiltonian that reads

H =
n−1∑

i=1

σ x
i σ x

i+1 + λ

n∑

i=1

σz . (5)

If we apply the unitary transformation U to the eigenstates of the diagonalized
Hamiltonian, we will obtain the eigenstates in our original Hamiltonian basis

|ψ >= U |ψd > . (6)

The details of the construction of U are supplied in [39, 40].
We will calculate the ground state in the Hamiltonian basis for the case of a large

external magnetic field, 2.5 times larger than the antiferromagnetic exchange field
(λ = 2.5), and later on, we will calculate the magnetization for this ground state.
The magnetization is just the difference between spin ups and downs, or in this case
between zeros and ones.

We have chosen a big external magnetic field in order to have a ground state which
induces a magnetization close to the maximum solution; therefore, our ground state
will be similar to the state |1111〉. Due to this reason, any possible type of error in the
calculation of the circuit will pop up with a high probability in the calculation of the
magnetization. If we would have chosen other values for the external magnetic field
closer to the antiferromagnetic exchange field, or even smaller, these would induce
magnetization values around 0 and some of the errors could compensatewith the others
(the |0〉 states which become |1〉 may be compensated by the |1〉 states becoming |0〉).

The results of the ratio between the measured and the simulated magnetizations for
different physical qubit chains are presented in Fig. 2. The purple line represents the
minimumvalue of themagnetization if the error provokes themaximummagnetization
change due to the total error probability. For this value of λ, it represents the possibility
to switch from a 1 (down) to a 0 (up) for each qubit so the total change can be up
to modulus 2. Therefore, the purple line changes linearly from 1 to −1 as the error
probability goes from 0 to 1. We can see that all points for all different configurations
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Fig. 2 Ratio between themagnetization obtained in the physical qubits in different IBMquantum computers
and the exact magnetization for the n = 4 Ising model in the large external magnetic field (λ = 2.5) case as
a function of the total error probability (PT ). Each point corresponds with a different qubit chain and each
colour with a different IBM quantum computer

stand above this line, which indicates that the total error induced by the imperfection
of the physical qubits is compatible with the one that is induced taking into account
the total error probability we have calculated using our tool. These results can be
compared with the ones calculated by Cervera in Ref. [39] which were calculated
in 2018 in the IBM quantum computers. The smallest error that we obtain for the
calculation of the magnetization is smaller than 7%, while the ones in Ref. [39] for
large values of the external magnetic field are in the best scenarios of the 50%. This
is an impressive improvement of the performance of the current quantum computers;
their error has been reduced more than 7 times in just 4 years.

3.2 The quantum phase estimation

The QPE is an algorithm that permits the calculation of the eigenvalue of any unitary
matrix [1, 41] given the eigenstate or eigenvector. The eigenvalues of any unitary
matrix U have modulus 1; therefore, its eigenvalue equation can be written as

U |ψ >= e2π iθ |ψ >, (7)

where θ ∈ R : θ ∈ [0, 1). The QPE algorithm is crucial in quantum computing
because all quantum circuits are unitary matrices. Its role is very important in more
complex algorithms like Shor’s algorithm [42].

We will calculate the QPE for the σx operator and for the |+〉 = (1/
√
2)(|0〉+ |1〉)

eigenstate, using a total of 4 qubits, one as a register for preparing the eigenstate and
other 3 to calculate the phase. Details of the quantum circuit are shown in A.1.

The phase results for different qubit chains are shown in Fig. 3. In this case, the
expected result for θ is 0 (the eigenvalue of the |+〉 state is 1) and the purple line
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Fig. 3 Results of the phase of different qubit chains in different IBM quantum computers for QPE σx circuit
for the |+〉 state as a function of the total error probability (PT ). Each point corresponds with a different
qubit chain and each colour with a different IBM quantum computer

represents the maximum error we can generate as a function of the error probability.
As in the previous case the worst scenario is to obtain |111〉 instead of |000〉. For the
QPE circuit with 4 qubits this implies that the eigenvalue scales linearly from 0 to 7/8
as a function of the error probability. In this case, all the points stay below this line
which indicates that the calculation of the total error probability matches perfectly
with the errors induced by the imperfections of the physical qubits.

3.3 The Grover’s algorithm

The Grover’s algorithm, developed by Lov Grover in 1996, is a quantum search algo-
rithm that can greatly improve the efficiency of searching through a large dataset. In
classical algorithms, searching for an element that satisfies a certain property typically
requires O(N ) searches, where N is the size of the dataset. The Grover’s algorithm,
on the other hand, can perform this search in O(N 1/2) iterations, making it exactly
(and not only asymptotically) optimal [43].

The Grover’s algorithm can be used to find elements that satisfy a wide range of
properties, not just simple ones. It can be applied to search for a specific number in a
list of numbers, for example. The algorithm will output the target number with a high
probability if it is present in the list, and a low probability if it is not. To determine the
algorithm’s performance, the probability of finding the target element can be used as
a measure.

It is also worth noting that the Grover’s algorithm can only be used on unstruc-
tured databases and it is more efficient than classical algorithms when the number of
solutions is smaller than the size of the data set. The algorithm is also known as the
quantum search algorithm with quadratic speedup. Details of the quantum circuit are
provided in A.2.
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Fig. 4 Probability of finding the target state of the Grover’s algorithm as a function of the total error
probability (PT ). The total sample size is 2n = 4 for the triangles and 2n = 8 for the circles. Each point
corresponds with a different qubit chain and each colour with a different IBM quantum computer

We can see in Fig. 4 the results of the target probability for 2 different sizes of the
search list. In the first one, we have 2n = 4 elements, and we can see that the error
probability is, in general, very small, leading to high probabilities of finding the target
element. However, if we increase the size of our search list up to 2n = 8 elements, the
total error probability increases dramatically and the probability of finding the target
element decreases accordingly. The dashed (n = 2) and solid (n=3) lines represent
the minimum target probability [44, 45].

After evaluating the three different quantum circuits, we are able to conclude that
both the information given by the API of IBM and the total error probability estimation
tool are fully reliable.

In order to conclude the section, in Fig. 5 we present an error bar plot of our studied
circuits highlighting the three main error sources: time-related, measurement-related,
and gate operation-related errors, the latter being further differentiated into single-
and double-gate operations. The error bars represent the mean value of all indepen-
dently derived qubit errors for different qubit chains and quantum computers, with the
corresponding standard deviation also presented. In our assessment of the three repre-
sentative algorithms, the most substantial error source stems from the time factor, with
gate operation errors—particularly from double gate operations—being the secondary
contributor. Naturally, single-gate operations contribute negligible errors. Lastly, the
error magnitude derived frommeasurement is solely reliant on the considered number
of qubits n, thereby being independent of the circuit length.

4 Fidelity

The fidelity is defined as a measure of similarity between two quantum states. In
particular
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Fig. 5 Error contributions in the three different studied quantum circuits. The error contributions are coming
from three main sources: time, measurement, and gate operations (single and double). The error bars
correspond to the mean value of all independently derived qubit errors, and the standard deviations are
presented

F = 〈	sim|	phys〉, (8)

where 	sim is the state obtained in the simulator and 	phys is the state obtained in the
physical qubits. The fidelity calculation is far from trivial. In quantum computing, we
do not have access to the full quantum state, but to the probabilities, therefore, methods
such as the quantum state tomography [46–48] must be used. Even though the fidelity
estimation is an active research field, the methods to calculate it are inefficient and the
computation becomes unpractical even for small systems of a few qubits. In this work
we consider the exact expression to compute the fidelity [48]

Fρσ = 1

d

∑

k

〈Wk〉ρ〈Wk〉σ , (9)

where ρ is the simulated state and σ is the physical state, d = 2n , being n the number
of qubits of the quantum circuit and k has 4n values, one for each operator that can be
created combining n Pauli matrices. The terms 〈Wk〉ρ correspond to quantum averages
of combinations of Pauli matrices (Wk) in the ρ state. Even if the formula is exact,
we can see from Eq. (9) that the number of terms increases exponentially with the
number of qubits. A 4-qubit system already contains 256 terms. As every term is
computed in a real quantum machine, the computed fidelity will contain errors. In
order to estimate these errors we may differentiate two things. On the one hand, any
single 〈Wk〉σ calculation will carry an error that can be related as follows

〈Wk〉σ � 〈Wk〉ρ ± PTσ , (10)

where the total error probability PTσ will be considered constant for every k. On the
other hand, Eq. (9) contains a sum of a high number of circuits (4n). We may assume
that all of them are independent, so in order to estimate the total error in the fidelity we
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Fig. 6 Fidelity as a function of the total error probability (PT ) for the Ising, QPE, and Grover circuits. The
purple line corresponds to the 1 − x function. The different colours correspond to the different circuits

can consider the average error and not the maximum error. By doing so the obtained
error for the confidence bound (purple line) is exactly PTσ , and, therefore, by using Eq.
(2) we can get a value for the success probability, or what is the same, a lower bound
for the fidelity (purple line). In this case, the purple line does not represent a strict
lower bound because we have considered the average error and not the maximum one.

The results for the confidence bound (purple line) for the fidelity and the computed
values are shown in Fig. 6. As we can see our results stay above the confidence line
up to the 90% of the cases.

5 Measurement error mitigation

In this section, we evaluate the effect of the error mitigation techniques in correcting
the error induced by the measurement. One way of achieving this is by using the
Qiskit measurement error mitigation function, which generates a matrix M consisting
of measurements over all the basis states of our system.

It is worth noting that the size of this basis grows exponentially as 2n , where n
is the total number of qubits. This means that for small circuits, the number of jobs
is also small, but as the size of the circuit increases, the number of jobs increases
dramatically. For example, for n = 10, it has to perform 1024 jobs, but for bigger
numbers like n = 20, the number jumps to a million jobs. Due to this, this technique
is only suitable for small circuits and its cost can be quite high.

To test the effectiveness of this error mitigation routine, we repeated previous cal-
culations using this function. The results are presented in Fig. 7, where we compare
the raw and mitigated results for the Ising model, the QPE, and the Grover’s algorithm
(Fig. 7a–c, respectively). The raw points have been calculated taking into account the
error probability induced by the measurement in Eq. (1), while the mitigated ones
have been calculated without taking it into account.
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Fig. 7 Magnetization for Ising model (left), phase of the QPE σx (centre), and Grover’s results (right)
comparison between the mitigated results (black) and the raw ones as a function of the total error probability
(PT )

Fig. 8 Oracle (left) and Amplifier (right) implementation in a n = 3 qubit register and w = |3〉 = |011〉.
The Oracle transformation is independent of w

The mitigation error technique significantly improves the raw results, as all the
points remain above the success probability line (purple line), Fig. 7. This means that
the technique is able to eliminate all the errors induced by measurement. However,
there are a few points that fall below the purple line, but since they represent less than
1%, we can still assume that the mitigation error technique is successful in eliminating
measurement errors.

Overall, measurement error mitigation is a crucial aspect of quantum computing
and the results presented in this section demonstrate the effectiveness of using the
Qiskit measurement error mitigation function.

6 Conclusions

In this work, we have developed a tool (TED-qc) that enables the calculation of the
total error probability of any quantum circuit performed in an IBMquantum computer.
This is a crucial result in the NISQ era because it permits us to advance the reliability
of the result one may obtain in any real quantum computer. The algorithm can be run
easily on any personal computer, which may help to reduce the unnecessary use of
real quantum computers. It is important to remark that it permits us to estimate the
error in any quantum calculation without comparing it with the classical one. Hence,
the TED-qc provides a general and extensible framework designed to facilitate further
progress in the field. In addition, it can be used as a pre-processing estimator for the
lower bound of the fidelity.

In order to prove the robustness of this tool we have realized a big number of
different calculations on three representative quantum circuits, the one-dimensional
Ising model, the QPE, and the Grover’s algorithm. In these cases, we have compared
the results of the physical qubits with the ones obtained in the simulator (which is
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noiseless) and we have printed them as a function of the total error probability. The
results are very satisfactory because more than 99% of the errors were smaller than
the maximum that could be predicted through the total error probability. Taking into
account the statistical nature of the way this error probability is calculated we can
assure that this concept as a measure of the error is both robust and reliable.

We have also studied the effect of the measurement error mitigation routine. This
technique eliminates the noise produced during the measurement. In order to do so it
has to perform 2n quantum jobs, being n the number of qubits we use in our quantum
circuit. We have proven that this technique may be able to eliminate all the errors
induced by the measurement. To do so we have studied the results obtained through
the mitigation error as a function of the error probability which does not include
the noise induced by the measurement. We have seen that the mitigated results are
compatible with a total error probability which excludes the noise that occurs during
themeasurement.Nevertheless, this technique needs a very high number of evaluations
and if the number of qubits we may use is high enough (more than 20), its cost may
be too high to be used.

These results have been calculated for the IBM quantum computers, and in order to
calculate the total error probabilitywe have used theAPI of the company.Nevertheless,
both the tool and the analysis can be easily extended to any other quantum computer
following the same lines we have presented here.

A Appendix: The quantum circuits

A.1 Quantum phase estimation

The QPE algorithm calculates the phase of the eigenvalue of a unitary matrix U for
a proper eigenstate ψ . The QPE uses two registers. The first one is composed of t
qubits, the bigger is t the bigger is the precision of the estimation. The second register
contains the ψ state. The circuit is described in Fig. 1, and it consists of applying t
Hadamard gates to the t first register qubits and then controlled-U (U = σx in this
case, represented with a + sign in the figure) operations in the way shown in Fig. 1.
Being ψ (the eigenstate stored in the second register) an eigenstate of U (σx ) it will
not change during the execution of the quantum circuit as the only gates applied to
it are U (σx ) gates. After the appliance of the H and controlled-U (σx ) gates the first
register will read

1

2t/2

(
|0〉 + e2π i2

t−1θ |1〉
) (

|0〉 + e2π i2
t−2θ |1〉

)
· · ·

· · ·
(
|0〉 + e2π i2

0θ |1〉
)

.

(11)

If θ can be expressed exactly by t bits using the binary fraction θ = 0.θ1...θt =
θ1
21

+ · · · + θt
2t : θ1, . . . , θt = 0, 1, then Eq. (11) may be rewritten

123



  181 Page 14 of 17 U. Aseguinolaza et al.

1

2t/2

(
|0〉 + e2π i0.θt |1〉

) (
|0〉 + e2π i0.θt−1θt |1〉

)
· · ·

· · ·
(
|0〉 + e2π i0.θ1θ2 ...θt |1〉

)
.

(12)

By taking the inverse Fourier transform of Eq. (11) the output is |θ1 . . . θt 〉 and, there-
fore, a measurement in the computational basis will give exactly θ in its binary fraction
form. It can be proven [1] that this method provides a good approximation of θ even
if it cannot be written as a binary fraction of t bits.

A.2 The Grover’s algorithm

The Grover algorithm is used to solve search problems. Let us understand a search
problem as: Given a set S = {0, 1, . . . , 2n−1} of possible solutions, find x belonging
to S such that f (x) = 1 for a certain function f . In addition, we will assume that the
element x that satisfies f (x) = 1 is unique in S, and we will denote it as w. Let n be
the number of qubits in the circuit.

To solve the search problem, we need to repeatedly apply the Oracle and Amplifier,
where the Oracle is a unitary operator Uw that satisfies

Uw|x〉 = (−1) f (x)|x〉,∀x ∈ S,

and the Amplifier is another unitary operator that performs the inversion about the
mean of amplitudes. That is, it modifies the amplitude of each state with respect to the
mean of all amplitudes.

Therefore, by iterating the Oracle + Amplifier k times, where k is the integer closest
to π

4 · √
2n , the probability of not returning the desired element is of O(1/N ), being

negligible for sufficiently large N , with N = 2n .
The construction of the Oracle depends on the element that we are searching |w〉 =

|bn−1..b1b0〉. First, the Oracle applies an X gate to the i-th qubit if the element bi = 0,
for all i = 0, . . . , n−1. Then amulti-control-Z gate is applied on all qubits, and finally,
an X gate is applied to the i-th qubit if the element bi = 0. See Fig. 8 (left) for the
Oracle’s implementation in the particular case for n = 3 qubits and w = |3〉 = |011〉.

The Amplifier is constructed by applying a column of Hadamard gates on all qubits,
a column of X gates on all qubits, a multi-control-Z gate on all qubits, and symmetri-
cally a column of X gates followed by a column of Hadamard gates on all qubits, as
can be appreciated in Fig. 8 (right) for n = 3.

Acknowledgements We acknowledge the use of IBMQuantum services for this work. The views expressed
are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum team.
We thank the support of the Government of Biscay (Bizkaiko Foru Aldundia - Diputación Foral de Bizkaia)
through Lantik and its Industry Focused Quantum Ecosystem initiative which provided access to the IBM
quantum computers. This work was supported by Programa de Red Guipuzcoana de Ciencia, Tecnología e
Innovación Proyectos de I+D, Convocatoria 2023.

Author Contributions JB designed the project; UA, NS, JJ, and GS performed the calculations. All the
authors contributed to the preparation of the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

123



Error estimation in current... Page 15 of 17   181 

Declarations

Conflict of interest The authors declare no conflict of interest. The authors have no relevant financial or
non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary
Edition, 10th edn. Cambridge University Press, Cambridge (2011)

2. Feynman, R.P.: Simulating physics with computers. Int. J. Theoret. Phys. 21(6/7), 467–488 (1982)
3. Lidar, D.A., Brun, T.A.: Quantum Error Correction. Cambridge University Press, Cambridge (2013)
4. Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

https://doi.org/10.1103/RevModPhys.87.307
5. Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Progr.

Phys. 80(10), 106001 (2017). https://doi.org/10.1088/1361-6633/aa7e1a
6. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Hei-

monen, H., Kottmann, J.S., Menke, T., Mok, W.-K., Sim, S., Kwek, L.-C., Aspuru-Guzik, A.: Noisy
intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022). https://doi.org/10.1103/
RevModPhys.94.015004

7. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the nisq era. Quantum
Sci. Technol. 5(4), 044007 (2020). https://doi.org/10.1088/2058-9565/abae7d

8. Porter, M.D., Joseph, I.: Observability of fidelity decay at the Lyapunov rate in few-qubit quantum
simulations. Quantum 6, 799 (2022). https://doi.org/10.22331/q-2022-09-08-799 https://doi.org/10.
22331/q-2022-09-08-799

9. Kandala,A.,Mezzacapo,A., Temme,K., Takita,M.,Brink,M.,Chow, J.M.,Gambetta, J.M.:Hardware-
efficient variational quantum eigensolver for smallmolecules and quantummagnets. Nature 549(7671),
242–246 (2017). https://doi.org/10.1038/nature23879

10. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of
molecular energies. Science 309(5741), 1704–1707 (2005). https://doi.org/10.1126/science.1113479

11. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai,
K., Yuan, X., Cincio, L., Coles, P.J.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644
(2021). https://doi.org/10.1038/s42254-021-00348-9

12. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao,
F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney,W., Dunsworth,
A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S.,
Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey,
E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa,
F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M.,
Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C.,
Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C.,
Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga,
B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using
a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/10.
1038/s41586-019-1666-5

13. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/
10.22331/q-2018-08-06-79 https://doi.org/10.22331/q-2018-08-06-79

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.22331/q-2022-09-08-799
https://doi.org/10.22331/q-2022-09-08-799
https://doi.org/10.22331/q-2022-09-08-799
https://doi.org/10.1038/nature23879
https://doi.org/10.1126/science.1113479
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79


  181 Page 16 of 17 U. Aseguinolaza et al.

14. Xiao, X., Freericks, J.K., Kemper, A.F.: Determining quantum phase diagrams of topological Kitaev-
inspired models on NISQ quantum hardware. Quantum 5, 553 (2021). https://doi.org/10.22331/q-
2021-09-28-553

15. Dalzell, A.M., Harrow, A.W., Koh, D.E., La Placa, R.L.: How many qubits are needed for quantum
computational supremacy? Quantum 4, 264 (2020). https://doi.org/10.22331/q-2020-05-11-264

16. Georgopoulos, K., Emary, C., Zuliani, P.: Modeling and simulating the noisy behavior of near-term
quantum computers. Phys. Rev. A 104(6), 062432 (2021)

17. Patel, T., Potharaju, A., Li, B., Roy, R.B., Tiwari, D.: Experimental evaluation of nisq quantum com-
puters: error measurement, characterization, and implications. In: SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE (2020)

18. Nation, P.D., Kang, H., Sundaresan, N., Gambetta, J.M.: Scalable mitigation of measurement errors
on quantum computers. PRX Quantum 2(4), 040326 (2021)

19. Weidenfeller, J., Valor, L.C., Gacon, J., Tornow, C., Bello, L., Woerner, S., Egger, D.J.: Scaling of the
quantum approximate optimization algorithm on superconducting qubit based hardware. Quantum 6,
870 (2022). https://doi.org/10.22331/q-2022-12-07-870 https://doi.org/10.22331/q-2022-12-07-870

20. Setiawan, F., Groszkowski, P., Ribeiro, H., Clerk, A.A.: Analytic design of accelerated adiabatic gates
in realistic qubits: General theory and applications to superconducting circuits. PRX Quantum 2,
030306 (2021). https://doi.org/10.1103/PRXQuantum.2.030306

21. ...Wu, Y., Bao, W.-S., Cao, S., Chen, F., Chen, M.-C., Chen, X., Chung, T.-H., Deng, H., Du, Y., Fan,
D., Gong, M., Guo, C., Guo, C., Guo, S., Han, L., Hong, L., Huang, H.-L., Huo, Y.-H., Li, L., Li, N.,
Li, S., Li, Y., Liang, F., Lin, C., Lin, J., Qian, H., Qiao, D., Rong, H., Su, H., Sun, L., Wang, L., Wang,
S., Wu, D., Xu, Y., Yan, K., Yang, W., Yang, Y., Ye, Y., Yin, J., Ying, C., Yu, J., Zha, C., Zhang, C.,
Zhang, H., Zhang, K., Zhang, Y., Zhao, H., Zhao, Y., Zhou, L., Zhu, Q., Lu, C.-Y., Peng, C.-Z., Zhu,
X., Pan, J.-W.: Strong quantum computational advantage using a superconducting quantum processor.
Phys. Rev. Lett. 127, 180501 (2021). https://doi.org/10.1103/PhysRevLett.127.180501

22. Headley, D., Müller, T., Martin, A., Solano, E., Sanz, M., Wilhelm, F.K.: Approximating the quantum
approximate optimization algorithmwith digital-analog interactions. Phys. Rev. A 106, 042446 (2022).
https://doi.org/10.1103/PhysRevA.106.042446

23. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H.,
Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the cooper pair box.
Phys. Rev. A 76, 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319

24. Proctor, T., Rudinger, K., Young, K., Nielsen, E., Blume-Kohout, R.: Measuring the capabilities of
quantum computers. Nat. Phys. 18, 75–79 (2022). https://doi.org/10.1038/s41567-021-01409-7

25. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers
using randomizedmodel circuits. Phys.Rev.A 100, 032328 (2019). https://doi.org/10.1103/PhysRevA.
100.032328

26. Nishio, S., Pan, Y., Satoh, T., Amano, H.,Meter, R.V.: Extracting success from ibm’s 20-qubitmachines
using error-aware compilation. J. Emerg. Technol. Comput. Syst. (2020). https://doi.org/10.1145/
3386162

27. Quetschlich, N., Burgholzer, L., Wille, R.: Predicting Good Quantum Circuit Compilation Options
(2023)

28. Vadali, A., Kshirsagar, R., Shyamsundar, P., Perdue, G.N.: Quantum circuit fidelity estimation using
machine learning. Quantum Mach. Intell. 6, 1 (2023). https://doi.org/10.1007/s42484-023-00121-4

29. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., Cabrera-
Hernández, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-Gonzales, A.D.,
Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D.L.P., Torre, E.D.L., Ding, D.,
Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch, A., Fuhrer, A., Gambetta,
J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I., Havlicek, V., Hellmers, J., Herok,
Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A., Kanazawa, N., Karazeev, A., Krsulich, K.,
Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-Fernández, F.J., McClure, D.T., McKay, D., Meesala,
S., Mezzacapo, A., Moll, N., Rodríguez, D.M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J.,
Paik, H., Pérez, J., Phan, A., Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P.,
Ryu, M., Sathaye, N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S.,
Smolin, J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish,
M., Turner,W., Vogt-Lee, D., Vuillot, C.,Wildstrom, J.A.,Wilson, J.,Winston, E.,Wood, C.,Wood, S.,
Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit:An Open-source Framework for Quantum Computing.
Zenodo (2019). https://doi.org/10.5281/zenodo.2562111

123

https://doi.org/10.22331/q-2021-09-28-553
https://doi.org/10.22331/q-2021-09-28-553
https://doi.org/10.22331/q-2020-05-11-264
https://doi.org/10.22331/q-2022-12-07-870
https://doi.org/10.22331/q-2022-12-07-870
https://doi.org/10.1103/PRXQuantum.2.030306
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevA.106.042446
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/s41567-021-01409-7
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1145/3386162
https://doi.org/10.1145/3386162
https://doi.org/10.1007/s42484-023-00121-4
https://doi.org/10.5281/zenodo.2562111


Error estimation in current... Page 17 of 17   181 

30. Kandala, A., Temme,K., Córcoles, A.D.,Mezzacapo,A., Chow, J.M., Gambetta, J.M.: Errormitigation
extends the computational reach of a noisy quantum processor. Nature 567(7749), 491–495 (2019).
https://doi.org/10.1038/s41586-019-1040-7

31. Berg, E.v.d., Minev, Z.K., Kandala, A., Temme, K.: Probabilistic error cancellation with sparse Pauli-
Lindblad models on noisy quantum processors. arXiv (2022). https://doi.org/10.48550/ARXIV.2201.
09866 arXiv:2201.09866

32. Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits. Phys. Rev.
Lett. 119, 180509 (2017). https://doi.org/10.1103/PhysRevLett.119.180509

33. Czarnik, P., Arrasmith, A., Coles, P.J., Cincio, L.: Error mitigation with Clifford quantum-circuit
data. Quantum 5, 592 (2021). https://doi.org/10.22331/q-2021-11-26-592 https://doi.org/10.22331/
q-2021-11-26-592

34. Cai, Z.: Quantum error mitigation using symmetry expansion. Quantum 5, 548 (2021). https://doi.org/
10.22331/q-2021-09-21-548 https://doi.org/10.22331/q-2021-09-21-548

35. LaRose, R., Mari, A., Kaiser, S., Karalekas, P.J., Alves, A.A., Czarnik, P., El Mandouh, M., Gordon,
M.H., Hindy, Y., Robertson, A., Thakre, P., Wahl, M., Samuel, D., Mistri, R., Tremblay, M., Gardner,
N., Stemen, N.T., Shammah, N., Zeng, W.J.: Mitiq: A software package for error mitigation on noisy
quantum computers. Quantum 6, 774 (2022). https://doi.org/10.22331/q-2022-08-11-774 https://doi.
org/10.22331/q-2022-08-11-774

36. Suchsland, P., Tacchino, F., Fischer, M.H., Neupert, T., Barkoutsos, P.K., Tavernelli, I.: Algorithmic
Error Mitigation Scheme for Current Quantum Processors. Quantum 5, 492 (2021). https://doi.org/10.
22331/q-2021-07-01-492 https://doi.org/10.22331/q-2021-07-01-492

37. Funcke, L., Hartung, T., Jansen, K., Kühn, S., Stornati, P., Wang, X.: Measurement error mitigation
in quantum computers through classical bit-flip correction. Phys. Rev. A 105, 062404 (2022). https://
doi.org/10.1103/PhysRevA.105.062404

38. McKay, D.C., Alexander, T., Bello, L., Biercuk,M.J., Bishop, L., Chen, J., Chow, J.M., Córcoles, A.D.,
Egger, D., Filipp, S., et al.: Qiskit backend specifications for openqasm and openpulse experiments.
arXiv preprint arXiv:1809.03452 (2018)

39. Cervera-Lierta, A.: Exact Ising model simulation on a quantum computer. Quantum 2, 114 (2018).
https://doi.org/10.22331/q-2018-12-21-114 https://doi.org/10.22331/q-2018-12-21-114

40. Verstraete, F., Cirac, J.I., Latorre, J.I.: Quantum circuits for strongly correlated quantum systems. Phys.
Rev. A 79, 032316 (2009). https://doi.org/10.1103/PhysRevA.79.032316

41. Dutkiewicz, A., Terhal, B.M., O’Brien, T.E.: Heisenberg-limited quantum phase estimation of multiple
eigenvalues with few control qubits. Quantum 6, 830 (2022). https://doi.org/10.22331/q-2022-10-06-
830 https://doi.org/10.22331/q-2022-10-06-830

42. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172

43. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4), 2746 (1999)
44. In a noisless evaluation of the Grover’s algorithm, the probability of finding the target state after k

iterations is P = sin2 ((2k + 1)θ) with θ = arcsin(2−n/2). Since we consider k ≈ π
4

√
2n − 1

2 we

can write P = sin2
((

π2
n
2 −1 + 1

)
arcsin

(
2− n

2
))

45. Watrous, J.: Lecture Notes on Quantum Computation. https://cs.uwaterloo.ca/~watrous/QC-notes/
QC-notes.13.pdf (2006)

46. Elben, A., Vermersch, B., Bijnen, R., Kokail, C., Brydges, T., Maier, C., Joshi, M.K., Blatt, R., Roos,
C.F., Zoller, P.: Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett.
124(1), 010504 (2020)

47. Lanyon, B., Maier, C., Holzäpfel, M., Baumgratz, T., Hempel, C., Jurcevic, P., Dhand, I., Buyskikh,
A., Daley, A., Cramer, M., et al.: Efficient tomography of a quantum many-body system. Nat. Phys.
13(12), 1158–1162 (2017)

48. Flammia, S.T., Liu, Y.-K.: Direct fidelity estimation from few pauli measurements. Phys. Rev. Lett.
106(23), 230501 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.48550/ARXIV.2201.09866
https://doi.org/10.48550/ARXIV.2201.09866
http://arxiv.org/abs/2201.09866
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.22331/q-2021-11-26-592
https://doi.org/10.22331/q-2021-11-26-592
https://doi.org/10.22331/q-2021-11-26-592
https://doi.org/10.22331/q-2021-09-21-548
https://doi.org/10.22331/q-2021-09-21-548
https://doi.org/10.22331/q-2021-09-21-548
https://doi.org/10.22331/q-2022-08-11-774
https://doi.org/10.22331/q-2022-08-11-774
https://doi.org/10.22331/q-2022-08-11-774
https://doi.org/10.22331/q-2021-07-01-492
https://doi.org/10.22331/q-2021-07-01-492
https://doi.org/10.22331/q-2021-07-01-492
https://doi.org/10.1103/PhysRevA.105.062404
https://doi.org/10.1103/PhysRevA.105.062404
http://arxiv.org/abs/1809.03452
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1103/PhysRevA.79.032316
https://doi.org/10.22331/q-2022-10-06-830
https://doi.org/10.22331/q-2022-10-06-830
https://doi.org/10.22331/q-2022-10-06-830
https://doi.org/10.1137/S0097539795293172
https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.13.pdf
https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.13.pdf

	Error estimation in current noisy quantum computers
	Abstract
	1 Introduction
	2 Calculating the total error probability
	3 The error probability in three representative quantum circuits
	3.1 The one-dimensional Ising model
	3.2 The quantum phase estimation
	3.3 The Grover's algorithm


	4 Fidelity
	5 Measurement error mitigation
	6 Conclusions
	A Appendix: The quantum circuits
	A.1 Quantum phase estimation
	A.2 The Grover's algorithm

	Acknowledgements
	References


