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Abstract
For vanishing fidelity between initial and final states, two important quantum speed
limits, the Mandelstam–Tamm limit (involving energy dispersion) and Margolus–
Levitin one (involving excitation energy expectation value), have been derived. While
the generalization of the former limit to the case of arbitrary fidelity is straightforward,
the relevant generalization of the latter given in the seminal paper by Giovanetti et
al. (Phys Rev A67:052109, 2003) was based on the conjectured equality of lower
and upper bounds on the right-hand side of generalized Margolus–Levitin inequality,
verified numerically up to seven digits. Only recently there appear two proofs of the
conjecture. We provide below a very elementary new proof, based on the simplest
tools from differential calculus. Thus, the generalized Margolus–Levitin speed limit
can be derived much in the spirit of the original one valid for vanishing fidelity.

Keywords Quantum fidelity · Quantum speed limit · Margolus-Levitin bound

1 Introduction

In recent decades, much effort has been devoted to the study of the so-called quantum
speed limits, i.e., a lower bound on time it takes quantum system to evolve in some
definite way. They have been intensively studied in recent years since this problem is
of great practical importance in quantum technologies. Many forms of quantum speed
limits have been derived which involve various quantities: energy, fidelity, purity,
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entropy, etc., and concern closed (isolated) and open systems (see [1–3] for reviews
and [4, 5], for more recent references). In what follows, wewill be considering the case
of pure states of isolated systems. The prototype of quantum speed limit is the famous
Mandelstam–Tamm [6] relation which gives the lower bound on time necessary for
the quantum system to evolve from an initial state to the orthogonal one. It reads

t ≥ π

2�E
, (1)

where

�E ≡
√〈(

Ĥ − 〈
Ĥ

〉
0

)2〉
0

(2)

is the energy dispersion in the initial state (
〈
. . .

〉
0 denotes here the expectation value

in the initial state). Actually, a more general result can be derived [6–8]: for

δ ≡ |〈initial state|final state〉|2 (3)

being the fidelity between the initial and final states, the evolution time is bounded by

t ≥ arccos
√

δ

�E
. (4)

Margolus and Levitin [9] derived an alternative speed limit yielding lower bound
for the orthogonalization time in terms of expectation value of energy in initial state.
It reads

t ≥ π

2 〈H − E0〉 , (5)

with E0 being the ground state energy of initial state. The natural question arises
whether the inequality (5) may be generalized to the case of arbitrary fidelity between
the initial and the final state. Giovanetti et al. [10] have shown that the relevant bound
takes the form

t ≥ α(δ)

〈H − E0〉 , (6)

with α(δ) being some function of fidelity. Although they did not provide the closed
analytical formula forα, the upper and lower bounds for the latterwere given.Actually,
these bounds agree numerically to seven significant figures leading to the conjecture
that, in fact, they coincide. If this is the case, the exact formula for α is at our disposal.
Its form is sketched in Fig. 1

Quite recently, Hörnedal and Sönnerborn [11] provided a rigorous proof, based on
symplectic geometry, that the exact formula for α coincides with the upper bound on
it, derived in [10]. They rely heavily on symplectic geometric interpretation which
suggests a specific character of Margolus–Levitin bound. The more advanced tools
they use allow for drawing more detailed conclusions. Alternative proof of the coinci-
dence of Giovannetti et al. upper and lower bounds on α has been given in [12]. It is,
however, more involved and uses the arguments which seem to deviate significantly
from the clear reasoning presented in Ref. [10].
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Fig. 1 The function α(δ) entering Eq. (6)

In the present note, we give a straightforward proof of the equality of upper and
lower bounds on α, derived in the paper by Giovannetti et al. [10].

2 Lower and upper bounds coincide

Giovanetti et al. [10] derived the lower and upper bounds

m(δ) ≤ α(δ) ≤ M(δ) (7)

on the function α(δ) as follows. The upper bound results by considering the particular
family of two-level states parametrized by one real variable ξ ∈ [0, 1],

|�ξ 〉 =
√
1 − ξ2|0〉 + ξ |E0〉 (8)

where |0〉 and |E0〉 are Hamiltonian eigenstates of energy 0 and E0, respectively. By
solving explicitly the dynamics, one easily finds the evolution time as a function of
fidelity between the initial and final state. Finally, by minimizing the latter function
over ξ ∈ [0, 1] one finds the relevant upper bound. It reads

M(δ) = 2

π
min
z2≤δ

((
1 + z

2

)
arccos

(
2δ − 1 − z2

1 − z2

))
; (9)

actually, the bound presented in [10] has a slightly different, but equivalent, form; we
prefer the expression used in [11]. The lower bound is obtained [10] by considering
the family of inequalities

cos x + q sin x ≥ 1 − ax, (10)
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Fig. 2 Configuration leading to optimal inequality (10)

for x ≥ 0, q ≥ 0. They are optimized (in the sense of choosing a the smallest real
number such that the inequality (10) holds for all real x ≥ 0) by bounding the left
hand side by the linear function tangent to it and equal to 1 for x = 0 (cf. Fig. 2).

Denoting by y the x-coordinate of the tangent point, one finds

cos y + q sin y = 1 − ay, (11)

− sin y + q cos y = −a, (12)

with y being restricted to the interval

y ∈
[
π − arctan

(
1

q

)
, π + arctan(q)

]
. (13)

Equations (11)–(13) define implicitly the function a = a(q). Once this function is
defined, the lower bound on α reads [10]

m(δ) = 2

π
min

0≤θ<2π

[
max
q≥0

(
1 − √

δ(cos θ − q sin θ)

a(q)

)]
. (14)

Our aim here is to give a simple, straightforward proof of the equality

m(δ) = M(δ). (15)

We start with simplifying the notation in Eq. (14) defining the lower bound. To this
end, let us put

ρ ≡ ρ(θ, δ) ≡ 1 − √
δ cos θ ≥ 0, (16)

σ ≡ σ(θ, δ) ≡ √
δ sin θ, (17)
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F(q, θ, δ) ≡ ρ + σq

a(q)
. (18)

Then Eq. (14) takes the form

m(δ) = 2

π
min

0≤θ<2π

(
max
q≥0

F(q, θ, δ)

)
. (19)

So, in order to prove the equality (15) our only task is to analyze carefully the behavior
of F(q, θ, δ) in the domain q ≥ 0, 0 ≤ θ < 2π , 0 ≤ δ ≤ 1. Let us note that the
main difficulty comes here from the denominator on the right-hand side of Eq. (18);
the function a(q) is defined only implicitly by solving Eqs. (11)÷(13). The main, yet
very simple, idea to deal with this problem is to parametrize the solutions to (11) and
(12) in terms of the variable y. By solving them for q and a, we find

q = 1 − cos y − y sin y

sin y − y cos y
, (20)

a = 1 − cos y

sin y − y cos y
, y > 0. (21)

The function a = a(q) is now given in parametrized form, y being the relevant
parameter.

Before entering the detailed analysis of the function a(q), let us make the following
useful remarks.With δ fixed and θ varying in the interval [0, 2π), Eqs. (16), (17) define
a circle of radius

√
δ, centered at (0, 1) in the ρ − σ plane:

(ρ − 1)2 + σ 2 = δ. (22)

It appears to be convenient to define the angle ϕ by

cosϕ ≡ σ√
ρ2 + σ 2

, sin ϕ ≡ ρ√
ρ2 + σ 2

≥ 0; (23)

then ϕ belongs to some closed subinterval of [0, π ]. The relevant geometry is depicted
in Fig. 3

Coming back to the analysis of the function a = a(q), defined implicitly by
Eqs. (20), (21), let us note that Eq. (20) implies

dq

dy
= y(y − sin y)

(sin y − y cos y)2
> 0, (24)

i.e., q is amonotonically growing function of ywherever it is defined.We are interested
in the solutions corresponding to 0 ≤ q < ∞. It is easy to check that, due to the
constraint (13), it is sufficient to consider the interval y− ≤ y ≤ y+, where y± are
determined by the conditions

1 − cos y− − y− sin y− = 0,
π

2
< y− < π, (25)
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Fig. 3 The set of points (ρ, σ ) defined by Eqs. (16), (17)

Fig. 4 The function q = q(y)

sin y+ − y+ cos y+ = 0, π < y+ <
3

2
π. (26)

Numerically, y− = 2.3311, y+ = 4.4934. In the interval [y−, y+) q(y) is mono-
tonically growing from 0 to ∞. Consequently, it is invertible. Inserting the function
y = y(q) into Eq. (21), one obtains the relevant function a = a(q). The functions
q = q(y), a = a(y) on the interval [y−, y+) are sketched in Fig. 4 and 5, respectively.

123



Note on the Margolus–Levitin quantum speed limit for... Page 7 of 13 167

Fig. 5 The function a = a(y).

In order to analyze the function a = a(q), note that

da

dy
= sin y(sin y − y)

(sin y − y cos y)2
(27)

and
da

dq
=

da/dy

dq/dy
= − sin y

y
. (28)

In order to find the explicit formofm(δ) (cf. Eq. (19)), one has to findfirst themaximum
of F(q, θ, δ) for q ∈ [0,∞), θ and δ fixed; so we are looking for maxq≥0 F(q, θ, δ).

According to the discussion above, one can, equivalently, consider F as the function
of y on the interval [y−, y+). It reads

F(q(y), θ, δ) = ρ(sin y − y cos y) + σ(1 − cos y − y sin y)

1 − cos y
(29)

or, using (16), (17) and (23),

F(q(y), θ, δ) =
√

ρ2 + σ 2

(
cosϕ − cos(ϕ + y) − y sin(ϕ + y)

1 − cos y

)
. (30)

So, we have to find the maximal value of F(q(y), θ, δ) on the interval [y−, y+). As
always, the maximum may arise either at the internal point or at the end point of the
interval. In order to compute the relevant maximal value, we find first the derivative

dF(q(y), θ, δ)

dy
=

√
ρ2 + σ 2 · (y − sin y)(cosϕ − cos(ϕ + y))

(1 − cos y)2
. (31)
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Fig. 6 The inequalities (34) are obeyed for all (ρ, σ )

The maximal value can be attained in the internal point of [y−, y+) only provided the
derivative (31) vanishes. This is possible iff

cos(ϕ + y) = cosϕ. (32)

Keeping in mind that 0 ≤ ϕ ≤ π and π
2 < y− ≤ y < y+ < 3

2π < 2π , one finds the
unique solution to Eq. (32)

y = 2π − 2ϕ. (33)

However, y ∈ [y−, y+) yielding the following restrictions on ϕ

π − 1

2
y+ < ϕ ≤ π − 1

2
y−. (34)

The inequalities (34) provide the necessary conditions for F(q(y), θ, δ) to attain
the maximal value at the internal point of the interval [y−, y+). On the contrary, if
0 ≤ ϕ ≤ π − 1

2 y+ or π − 1
2 y− < ϕ ≤ π , dF(q(y),θ,δ)

dy does not vanish at the interval
[y−, y+) and attains its maximal value at one of its end points.

The value of ϕ depends, by virtue of Eqs. (16), (17) and (23), on δ and θ . Fixing
δ and varying 0 ≤ θ < 2π , one finds that ϕ varies over some closed subinterval of
[0, π ]. There are a priori two possibilities:
(i) for all ϕ the inequalities (34) are obeyed. This is illustrated in Fig. 6.

123



Note on the Margolus–Levitin quantum speed limit for... Page 9 of 13 167

Then, for any ϕ Eq. (32) has the unique solution in the interval [y−, y+). Moreover,
one easily finds

d2F(q(y), θ, δ)

dy2

∣∣∣∣
F ′(y)=0

= (y − sin y) sin(ϕ + y)

(1 − cos y)2
. (35)

Now, by virtue of (33), ϕ + y = 2π − ϕ so that π + 1
2 y+ > ϕ + y ≥ π + 1

2 y− and
sin(ϕ + y) < 0. Therefore, F(q(y), θ, δ) attains unique maximum at y = 2π − 2ϕ.
It equals

Fmax =
√

ρ2 + σ 2

(
π − ϕ

sin ϕ

)
(36)

or

Fmax =
(

ρ2 + σ 2

ρ

)
arccos

(
−σ√

ρ2 + σ 2

)
. (37)

According to equation (19), the lower bound m(δ) is obtained by minimalizing Fmax
over the points (ρ, σ ) running the circle (22). It is obvious that theminimum is attained
for σ ≤ 0. Defining

ω ≡ √
δ cos θ, −√

δ ≤ ω ≤ √
δ, (38)

and taking into account the above remark allows us to write

Fmax =
(
1 − 2ω + δ

1 − ω

)
arccos

( √
δ − ω2

√
1 − 2ω + δ

)
. (39)

Using the identity arccos(2τ 2 − 1) = 2 arccos τ , we rewrite (39) as

Fmax =
(
1 − 2ω + δ

2(1 − ω)

)
arccos

(
δ − 1 + 2ω − 2ω2

1 − 2ω + δ

)
. (40)

Finally, we note that

z = δ − ω

1 − ω
(41)

defines one-to-onemapping of the interval [−√
δ,

√
δ] onto itself. Equations (40), (41)

imply

Fmax =
(
1 + z

2

)
arccos

(
2δ − 1 − z2

1 − z2

)
(42)

yielding Eq. (15).

(ii) For some points on the circle (22), the inequalities (34) are violated. This is illus-
trated in Fig. 7. For any point (ρ, σ ) belonging either to the arc AB or CD, the
derivative dF(q(y),θ,δ)

dy is nonvanishing in the interval [y−, y+). Consider first the

arc AB. Then 0 ≤ ϕ ≤ π − 1
2 y+ and it is easy to see that dF(q(y),θ,δ)

dy > 0 in the
interval [y−, y+). Therefore, the maximum is attained for y → y+ and reads
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Fig. 7 Geometric setting for violating the inequalities (34)

FAB = −σ

cos y+
. (43)

On the contrary, on the arc CD π − 1
2 y− < ϕ ≤ π and dF(q(y),θ,δ)

dy < 0 on the
whole interval [y−, y+). Therefore, the maximum is attained for y = y− and reads:

FCD = α

sin y−
. (44)

On the remaining arcs AC and BD, the inequalities (34) do hold and the rea-
soning leading to Eq. (37) remains valid. In order to find the minimal value of
maxq≥0 F(q, θ, δ) over the circle (22), we have to compare FAB , Eq. (43), FCD ,
Eq. (44) and Fmax, Eq. (37). To this end, we define ψ ≡ π − ϕ and parametrize the
points (ρ, σ ) by ψ (in general, to any ψ there correspond two points on the circle).
The relevant parametrization of the circle (22) is presented in Fig. 8.

The coordinates (ρ, σ ) of two intersection points obey the equations

ρ + σ tanψ = 0, (45)

(ρ − 1)2 + σ 2 − δ = 0, (46)

which yield

ρ = sin2 ψ ± sinψ

√
δ − cos2 ψ, (47)
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Fig. 8 Parametrization of the circle (22)

σ = − sinψ cosψ ∓ cosψ

√
δ − cos2 ψ. (48)

Then

Fmax =
(
2 + δ − 1

sin2 ψ ± sinψ
√

δ − cos2 ψ

)
ψ, (49)

FAB = sinψ cosψ ± cosψ
√

δ − cos2 ψ

cos y+
, (50)

FCD = sin2 ψ ± sinψ
√

δ − cos2 ψ

sin y−
. (51)

Now, it is straightforward to check that

Fmax − FAB = sinψ ± √
δ − cos2 ψ

2 sinψ

(
2ψ − sin 2ψ

cos y+

)
. (52)

On the AB arc, 2π ≥ 2ψ ≥ y+ > π and the right-hand side is nonnegative; it
vanishes for 2ψ = y+ which corresponds to the points A and B. Moreover, FAB takes
the minimal value at A. As a result, Fmax and FAB attain the same minimal value on
the AB arc.
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Analogously,

Fmax − FCD = sinψ ± √
δ − cos2 ψ

2 sinψ

(
2ψ − 1 − cos 2ψ

sin y−

)
. (53)

On the CD arc, 0 ≤ 2ψ ≤ y− and the right-hand side is nonnegative; it vanishes for
2ψ = y− which corresponds to the points C and D. FCD takes the minimal value at
C . Again we conclude that Fmax and FCD attain the same minimal value on the CD
arc.

It follows from the above discussion that also in the (ii) case one obtains the correct
value of m(δ) by minimalizing Fmax on the whole circle (18). Therefore, we can refer
to the reasoning described in (i). This concludes the proof.
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