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Abstract
This paper discusses continuous-time quantum walks and asymptotic state transfer in
graphs with an involution. By providing quantitative bounds on the components of the
eigenvectors of theHamiltonian, it provides an approach to achievinghigh-fidelity state
transfer by strategically selecting energy potentials based on the maximum degrees
of the graphs. The study also involves an analysis of the time necessary for quantum
transfer to occur.
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1 Introduction

We study quantum transport phenomena in a network of spin-1/2 particles with local
XX coupling and transverse magnetic fields in the Z direction applied to the nodes.
This protocol of using a spin chain for quantum information communication was
initially proposed by Bose [1] and later extended to spin networks by Christandl et
al. [2]. To describe this spin network using a graph, we define a connected and finite
graph with vertices representing qubits and edges associated with local interactions.
The network is given as a simple and connected graph G(V , E) with a vertex set V
and an edge set E . The XX -Hamiltonian is given by

H̃ =
∑

v∈V
QvZv + 1

2

∑

(uv)∈E
wuv(Xu Xv + YuYv)

where X ,Y , Z are the standard Pauli matrices, w : E → R are coupling strengths,
and Q : V → R describes the strength of the transverse magnetic field (see [3–6])
applied at each node. This transmission protocol was studied in [4–6] where numerical
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simulations showed strong transfer in the presence of large magnetic fields at the
endpoints of a spin chain. Meanwhile, [7] provided rigorous mathematical proof of
exactly in which general spin network does state transfer fidelity converge to 1 as the
strength of the magnetic field applied at the source and target node goes to infinity.
However, the relationship between the strength of the magnetic field and the strength
of the state transfer was not studied in [7]. Recently, van Bommel and Kirkland [8]
were the first to mathematically prove a quantitative relationship. They achieved this
only in the case of a spin chain with uniform couplings, relying on explicit formulas
for the eigenstates of the Hamiltonian.

Our main contribution is a generalization of the estimates of van Bommel and
Kirkland [8] to arbitrary spin networks with mirror symmetry. These includes spin
chains with non-uniform coupling as long as the coupling strength are symmetric
around the middle of the chain, but our method can handle spin networks that aren’t
one-dimensional as long as they admit an order-2 symmetry.

1.1 Main result

It is well known (see, e.g., [9]) that node-to-node quantum transportation can be
analyzed by restricting the system to its single-excitation subspace, where the solution
of the Schrödinger equation becomes what is known as the continuous-time quantum
walk:

ψ(t) = eit Hψ(0). (1.1)

Here, theHamiltonian H = AG+DQ where AG is the adjacencymatrix of the graphG,
while DQ is a diagonal matrix containing the values of the function Q. The function
ψ(t) : V → C described the state of the system at time t . The probability of the
quantumwalk getting from node u to node v at time t is given by p(t) = |〈u|eit H |v〉|2.

In the ideal scenario, if p(t) = 1 at some time t , then we say there is a perfect state
transfer between vertices u and v. However, achieving perfect state transfer demands
strict conditions. Notably, Godsil demonstrated that ratio condition is necessary for
the existence of such vertex pairs [10].

Relaxations have been introduced due to the rarity of perfect state transfer. It has
been observed before that large, equal, magnetic fields applied to u and v can lead to
transfer strength close to 1 [11]. In physics, this phenomenon is referred to as quantum
tunneling. Let us define the transfer fidelity of the network from u to v by

F(Q) = F(G, u, v, Q) = sup
t≥0

p(t). (1.2)

In the rest of the paper, we assume that Q(u) = Q(v) and Q(x) = 0 for all nodes
x �= u, v. By a slight abuse of notation, we will refer to the value Q(u) = Q(v) simply
as Q.

Lin et al. Yau [7] showed that limQ→∞ F(G, u, v, Q) = 1 provided that the graph
exhibits certain local symmetries around u and v. While they provide a complete
characterization of when F(Q) → 1, their result is not quantitative. The first—and
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so far only—rigorous quantitative result on F(Q) was published recently by van
Bommel and Kirkland [8] who quantified the convergence in (1.2) for the case of the
two endpoints of a path graph.

Theorem 1.1 [8] Let G be the path graph on at least 3 nodes and u, v be its two
endpoints. Then for Q ≥ √

2

F(Q) >

(
Q2 − 2

Q2

)2

≈ 1 − 4

Q2 (1.3)

Furthermore, this fidelity is reached within time O(Qn−2)

These bounds are derived from a careful asymptotic analysis of the difference
between the two largest eigenvalues λ1 − λ2 and their corresponding eigenvectors.

An important feature of (1.3) is that it doesn’t depend on the length of the path, n.
In this paper, we prove, in the same spirit, a general lower bound that holds for any
graph with an involution, along with an assessment of the time required for quantum
transfer to occur.

Theorem 1.2 Let G be a graph with an involution τ : V (G) → V (G) and let u =
τ(v) ∈ V (G) and maximum degree m. Then for Q ≥ m

F(Q) > 1 − 16
√
m + 1√
Q

and this fidelity is achieved within time O(Qd(u,v)−1) where d(vi , v j ) denotes the
distance between two vertices in the graph.

It turns out that to achieve the quantum state transfer from a vertex to its image with
fidelity 1 − ε, it is sufficient to choose the energy potential based on the maximum
degree of the graph, and the potential is of order O(ε−2). This is in contrast to the
energy level of O(ε−0.5) required on a path, as derived from the lower bound on fidelity
given in [8]. While the order of Q is higher, this approach extends the application to
any graph that has an involution. This result is valuable in determining the minimal
energy consumption necessary to achieve a specific probability level. Remarkably,
these bounds depend on the maximum degree of the graph and are independent of its
size.

Remark 1.3 Unfortunately, the transfer time required to reach high fidelity with this
protocol is exponential in the distance of the two nodes. There are other protocols
which achieve faster transfer, see [12, 13] for examples of “ballistic” transfer. This is
achieved at the cost of having to tune certain coupling strength to very specific, very
small (eg N−1/3) values depending on the size of the network, leading to poor error
tolerance. In contrast, the situation studied in this paper uses uniform couplings and a
magnetic field of bounded strength, which yields a much more robust protocol.

We are not aware of any setup that uses quasi-uniform couplings and bounded
magnetic fields and guarantees high-fidelity state transfer in sub-exponential time.
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The paper is structured as follows: in Sect. 2 we introduce the basic setup and all
relevant notation for graphs with an involution and the correspondingHamiltonians. In
Sect. 3 we prove the main result modulo estimates of the eigenvalues and eigenvectors.
We provide these in Sects. 3.1 and 3.2, respectively. Finally, in Sect. 3.3 we analyze
the time required to achieve strong state transfer.

2 Preliminaries

2.1 Spectral decomposition

In the current setup, the Hamiltonian H governing the continuous-time quantum walk
is the sum of the adjacency matrix of the graph and a diagonal matrix. This concept of
using an adjacency matrix as the Hamiltonian was initially introduced by Christandl
et al. [2]. We say two vertices are adjacent, denoted by vi ∼ v j , if the edge viv j is in
the edge set E(G). In the matrix presented below, Q : V → R represents the energy
potential at the vertices and the off-diagonal entry Hi j = 1 if there is an edge between
vi and v j :

H =

⎡

⎢⎢⎢⎣

Q(v1) 1(v1 ∼ v2) ... 1(v1 ∼ vn)

1(v1 ∼ v2) Q(v2) ... 1(v2 ∼ vn)
...

1(v1 ∼ vn) ... ... Q(vn)

⎤

⎥⎥⎥⎦ .

Since H is a real symmetric n × n matrix, it has n real eigenvalues, λ1 ≥ λ2 ≥
... ≥ λn and their corresponding eigenvectors ϕ1, ϕ2, ..., ϕn which together form an
orthonormal basis. This spectral decomposition of H helps us to compute the solution
to the Schrödinger equation. Given a vector representing the initial state ψ(0), it can
be written as a linear combination of the orthonormal basisψ(0) = ∑n

j=1 c jϕ j . In the
context of this problem, ψ(0) is usually the characteristic vector of the starting vertex
u, meaning the system starts at vertex u with probability 1. It immediately follows that

ψ(t) =
n∑

j=1

c j e
itλ j ϕ j . (2.1)

If our objective is to achieve strong state transfer between vertices u and v, we primarily
aim to find a system such that ψ(t) · ev has a significantly large squared norm

p(t) = |
n∑

j=1

ϕ j (u)ϕ j (v)eitλ j |2. (2.2)

Here, we consider the eigenvector ϕ j as a function ϕ j : V → R that returns the
corresponding entry of an vertex. Therefore, the main focus of our study revolves
around investigating how the structure of the graph and the energy potential assigned
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Fig. 1 An example graph with
involution

to its vertices influence the eigenvalues and eigenvectors at the endpoints. For instance,
if the energy potential Q on vertices u and v is relatively large compared to the potential
on other vertices, and Q � maxx∈V deg(x), then there are two eigenvalues that are
significantly larger than the rest λ1 ≥ λ2 � λ3 ≥ ... ≥ λn .

2.2 Graphs with involution

Definition 2.1 Vertices u and w are strongly cospectral if for any eigenvector ϕ of
H , ϕ(u) = ±ϕ(w). They are cospectral if this holds for at least a given orthonormal
basis of eigenvectors ϕ1, . . . , ϕn .

In many quantumwalk studies, a common aspect explored is the presence of strong
cospectrality [14] or, to some extent, cospectrality [7], since strong cospectrality is a
necessary condition for two vertices to have perfect state transfer. Consequently, if the
graph structure already exhibits cospectrality, it becomes easier for us to show strong
state transfer. A notable example of such a graph is one with involution.

Definition 2.2 G is a graph with involution if there is a bijection from the set of
vertices to itself σ : V (G) → V (G) which satisfies the following conditions,

• σ ◦ σ(u) = u
• if u ∼ v then σ(u) ∼ σ(v)

• σ preserves the potential on V , that is Q(v) = Q(σ (v))

For simplicity, we denote σ(v) by v′ in the rest of this paper. Noticeably, many
families of graphs possess involution functions, including paths, cycles, hypercubes,
complete graphs, and so on (Fig. 1).

Let S = {v ∈ V |v = v′} be the set of fixed vertices. Select a vertex from each pair of
{v, v′} that are not fixed by σ , then we get a partition of the vertex set V = N∪σN∪S.
Denote the sizes of the subsets by s = |S| and k = |N |. This divides the Hamiltonian
into a block matrix

H =
⎡

⎣
H ′ Aσ AS

Aσ H ′ AS

AT
S AT

S HS

⎤

⎦ . (2.3)

The k × k matrix H ′ and the s × s matrix HS are the Hamiltonians of the subgraphs
induced by N and S, respectively. The k× k matrix Aσ contains all the edges between
N and σN . The k × s matrix AS contains all the edges between N and S.
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Lemma 2.3 [15] Let graph G be a graphwith involution σ , and Q be its potential func-
tion. The Hamiltonian of G has eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and corresponding
eigenvectors ϕ1, ϕ2... ϕn. Then every λ j is either the eigenvalue of

H+ =
[
H ′ + Aσ AS

2AT
S HS

]
(2.4)

or the eigenvalue of H− = H ′ − Aσ .

It can be easily verified that given an eigenvector of the reducedmatrix H+a = λ j a,ϕ j

is in the form
[
a a b

]T . On the other hand, if H−c = λ j c, then λ j has corresponding

eigenvector
[
c −c 0

]T . Here a and c represents vectors in Rk , and b and 0 are vectors
in Rs .

Lemma 2.4 Denote the set of eigenvalues of H+ by π+ and the set of eigenvalues
of H− by π−, then maxλi π+ > maxλi π−. In the double-well case, that is when
Q(v) = Q(v′) � Q(vi ) for the rest of vertices, λ1 and λ2 are the largest numbers
inside π+ and π−, respectively, as long as Q(v) is significantly greater than the
maximum degree of the graph.

Proof Since the graph is connected, H is an irreducible nonnegative symmetricmatrix.
By the Perron–Frobenius theorem, λ1 is strictly greater than λ2, and the components
of its corresponding eigenvector are all positive. This implies ϕ1 is symmetric and
λ1 ∈ π+.

Gershgorin’s Circle Theorem tells us that every eigenvalue is bounded by a disk
centered at some Q(vi ) with radius deg(vi ). When Q(v) is large enough such that
there is no intersection between [Q(v)−m, Q(v)+m] and [Q(vi )−m, Q(vi )+m],
both H+ and H− have a large eigenvalue close to Q(v). Therefore, the second largest
eigenvalue λ2 is in π−. ��

By applying these lemmas to the spectral decomposition (2.2), we conclude that if
u = σ(v), then

∑

λ j

ϕ j (u)ϕ j (v)eitλ j =
∑

λ j∈π+
ϕ j (u)2eitλ j −

∑

λ j∈π−
ϕ j (u)2eitλ j . (2.5)

Therefore, when the two largest eigenvalues are differed by π+2kπ
t , the sum of the

leading terms reaches its maximum ϕ1(u)2 + ϕ2(u)2. In this scenario, we can ensure
the probability is close to 1 by showing both ϕ1(u)2 and ϕ2(u)2 are close to 1

2 .

3 Achieving state transfer with high probability

As before, we assume that only the endpoints v and v′ possess a large potential Q(v) =
Q(v′) = Q,while the remainingvertices have zero potential Q(vi ) = 0 going forward.
Theorem 1.2 is a direct corollary of the following statement.
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Theorem 3.1 Let G be a graph with involution and maximum degree m. For every
small real number ε > 0, if the potential Q on v and v′ satisfies

Q ≥ 256 · (m + 1)

ε2
(3.1)

then there exists time t < π
2 (Q + m)d(v,v′)−1 such that the probability of state

transfer from v to v′ is no less than 1 − ε.

Proof When t = π
λ1−λ2

, then |ϕ1(v)2eitλ1 + ϕ2(v)2eitλ2 | = ϕ1(v)2 + ϕ2(v)2. The
bound on time t is further discussed in Sect. 3.3. In Theorem 3.4, we will prove that

both ϕ1(v) and ϕ2(v) have lower bound
√

1
2 − m

2Q2 −
√

m+1
Q−m−1 . Certainly, Q should

be large enough such that the bound is greater than 1
2 . Thus, the probability has a lower

bound depending on Q and the maximum degree m,

p(t) = |ϕ1(v)2 + ϕ2(v)2 +
∑

j=3

ϕ j (v)ϕ j (v
′)eitλ j |2

≥ (ϕ1(v)2 + ϕ2(v)2 − (1 − ϕ1(v)2 − ϕ2(v)2))2

≥ (2ϕ1(v)2 + 2ϕ2(v)2 − 1)2,

and so

p(t) ≥
⎛

⎝4 ·
(√

1

2
− m

2Q2 −
√

m + 1

Q − m − 1

)2

− 1

⎞

⎠
2

. (3.2)

To guarantee the probability exceeds 1−ε, a simple computation shows it is sufficient
for Q to satisfy

Q ≥ (m + 1)(c + 1)

c
, where c = 1

2
·
(
1

2
− 1 + √

1 − ε

4

)2

(3.3)

��

3.1 Lower bounds on �1 and �2

The purpose of this section is to derive new lower bounds on the two largest eigenvalues
that improve upon the ones given by the Gershgorin Circle Theorem.

Theorem 3.2 Label the vertices in N as v1, v2,...,vk and S’s vertices as vk+1,...,vk+s .
Denote the degree of a vertex in N ∪ S by degN∪S(vi ). Let y be a vector in R

k+s and
yi = Q−min{dist(v1,vi ),dist(v1,v′

i )}. Then

λ1 ≥ Q + Q−1 · 1 + ∑
i (degN∪S(vi ) − 1)y2i∑

i y
2
i

. (3.4)
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Proof According to Lemma 2.3, λ1 is also the largest eigenvalue of H+. The vector y
is a good approximation of the eigenvector because its entries decrease as the vertex
moves further away from v1. Therefore, by calculating the Rayleigh quotient on H+
and y, one can expect to obtain a reasonably close lower bound on λ1. Without loss
of generality, we make H+ symmetric by conjugation

H+ =
[
H ′ + Aσ

√
2AS√

2AT
S HS

]
. (3.5)

Notice that summing the nonzero entries H+
i j y j in the numerator of the quotient

is equivalent to counting the edges connected to vertex vi . Therefore, the question
becomes finding the number of vertices adjacent to vi and is closer, further away, or
of equal distance to v1.

When i = 1,

y1
∑

i, j

H+
i j y j ≥ Q + Q−1deg(v1). (3.6)

This is because any vertex v j adjacent to v1 has y j = Q−1; counting all the nonzero
coefficients in front of y j gives the degree of v1.

When i = 2, 3, ..., k + s,

yi
∑

i, j

H+
i j y j ≥ (Q + (degN∪S(vi ) − 1)Q−1)y2i . (3.7)

The coefficient in front of yi y j is nonzero if and only if y j = yi , y j = Qyi , or
y j = Q−1yi . Moreover, since the graph is connected, for every vertex vi , one can find
a vertex adjacent to it and is in one of the shortest paths from v1 to vi . Hence, there
must exist y j = Qyi .

Every term contains Qy2i and (degN∪S(vi )−1)Q−1y2i which immediately implies
the result. ��

Noticeably, the lower bound given in [8] for a path of length n is Q + Q−1 +
O(Q2−n), close to our result Q + Q−1 + O(Q−1) for graphs with involution.

The calculation for λ2’s lower bound follows a similar approach. Recall that λ2 is
the largest eigenvalue of H− = H ′ − Aσ . Due to the possibility of negative numbers
in the matrix, some adjustments need to be made. Consider the vertex set excluding
all fixed vertices V \S = N ∪ σN . Fix an endpoint v1 in N and assign vertex vi to N
if vi is closer to v1 than to v′

1. In case the distances are equal, vi can belong to either
N or σN . Next, define a new vector y in Rk

yi =
{
Q−dist(v1,vi ) if dist(v1, vi ) < dist(v′

1, vi )

0 if dist(v1, vi ) = dist(v1, v′
i )

. (3.8)
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Theorem 3.3 Let degN∪σN (vi ) denote the degree of vertex vi in N ∪ σN. Use the
same setting in Theorem 3.2 and the vector y defined above. The lower bound on λ2
is given by

λ2 ≥ Q − 1 + ∑
i �=1(degN∪σN (vi ) − 1)y2i∑

i y
2
i

. (3.9)

Proof Again by Rayleigh’s inequality,

λ2 ≥
∑

i yi
∑

i, j H
−
i j y j∑

i y
2
i

. (3.10)

When i = 1,

y1
∑

j

H−
1 j y j ≥ Q − 1. (3.11)

This is because starting from j = 2, 1(v1 ∼ v j ) − 1(v1 ∼ v′
j ) has to be nonnegative.

If that was not the case, then v j would be closer to v′
1 instead of v1, which would

contradict the assumption.
When i = 2, 3, ..., k, similar to the proof of the previous theorem, there exists a

vertex in N ∪σN that is adjacent to vi and is in one of the shortest paths from v1 to vi .
Consequently, there must exist a y j = Qyi . There are three cases for the coefficient
in front of yi y j . If [1(v1 ∼ v j ) − 1(v1 ∼ v′

j )] takes the form (1 − 1) or (0 − 1), it is
easy to verify that dist(v1, vi ) = dist(v1, v′

i ), which implies yi y j is zero.
Sum over yi y j only when its coefficient is (1 − 0), and it follows that

yi
∑

j

H−
i, j y j ≥ Qy2i − (degN∪σN (vi ) − 1)y2i . (3.12)

��
Notice that this lower bound is greater than Q−maxvi∈V deg(vi ), which is an improved
bound compared to the one given by the Circle Theorem.

3.2 Lower Bounds on'1(v1) and'2(v1)

Recall the probability of quantum state transfer from vertex v1 to vertex v′
1 at time t

can be written as the following expression

p(t) =
∣∣∣∣∣∣

∑

λ j∈π+
ϕ j (v1)

2eitλ j −
∑

λ j∈π−
ϕ j (v1)

2eitλ j

∣∣∣∣∣∣

2

(3.13)
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where eigenvectors ϕ j form an orthonormal basis. To demonstrate that this probability
can be close to 1 at some time t , it suffices to prove that both ϕ1(v1) and ϕ2(v1) are
close to 1√

2
.

Theorem 3.4 Let m be the maximum degree of the graph. If Q is greater than 2m,
then the corresponding normalized eigenvectors of λ1 and λ2 satisfy

ϕ1(v1) ≥
√
0.5 − m

2Q2 −
√

m

Q − m
(3.14)

ϕ2(v1) ≥
√
0.5 − m

2Q2 −
√

m + 1

Q − m − 1
. (3.15)

Proof Consider the vector y we constructed earlier in Sect. 3.1, but this time in R2k+s .
It can be expressed as y = ∑2k+s ciϕi , a linear combination of the eigenvectors.
Denote the squared Euclidean norm of y by D. Due to the involution, y(v) = y(v′)
is true for every vertex. If λi is in π−, then its corresponding eigenvector alternates,
meaning ϕi (v) = −ϕi (v

′). On the other hand, ϕi (v) = ϕi (v
′) if λi is in π+. This

implies ci is 0 for every λi ∈ π−. By Cauchy–Schwartz inequality,

ϕ1(v1) ≥
1 −

√
D − c21√
D

. (3.16)

Denote the difference between λ1 and the Rayleigh quotient on H+ and y by ε,

ε = λ1 −
∑

λi c2i∑
c2i

(3.17)

Now the expression is left with only the eigenvalues in π+. Assume k is the second
smallest index of the eigenvalues in π+, then

D − c21 ≤ εD

λ1 − λk
. (3.18)

According toGershgorin’sCircleTheorem,λ1 andλ2 lie in the interval [Q−m, Q+m],
whereas the other eigenvalues are bounded by [−m,m]. The gap between the Rayleigh
quotient and λ1 now satisfies ε ≤ Q +m − R(H , y). It is easy to verify that the lower
bound in Theorem 3.2 also applies to R(H ,

[
a a 0

]T
) = R(H+,

[
a 0

]T
).

When all the inequalities are combined, expression (3.18) transforms into

D − c21 ≤ D · m

Q − m
. (3.19)

Let Fl be the set of vertices with minimum distance to either v1 or v′
1 equals to l. Then

the maximum possible value of the size of Fl is ml . This partition of the vertex set
gives an upper bound on D = 2(1+ Q−2|F1|+ Q−4|F2|+ ...+ Q−2d |Fd |) ≤ 2

1− m
Q2

.
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Naturally, this requires Q to be at least
√
m to ensure that the series converges. By

replacing the upper bound on D in inequality (3.16), we obtain the lower bound on
ϕ1(v1) as stated in the theorem.

To determine the lower bound on ϕ2(v1)
2, we need a similar vector ỹ, but with

alternating signs between vertex sets N and σN . Let

ỹi =

⎧
⎪⎨

⎪⎩

Q−min {dist(v1,vi ),dist(v1,v′
i )} if vi ∈ N and dist(v1, vi ) �= dist(v1, v′

i )

−Q−min {dist(v1,vi ),dist(v1,v′
i )} if vi ∈ σN and dist(v1, vi ) �= dist(v1, v′

i )

0 if dist(v1, vi ) = dist(v1, v′
i )

.

(3.20)
And if it is written as a linear combination of the eigenvectors, then coefficients c̃i = 0
for eigenvalues λi in set π+. Similarly, it follows that

ϕ2(v1) ≥
1 − √

D ·
√

m+1
Q−m−1√

D
≥

√
0.5 − m

2Q2 −
√

m + 1

Q − m − 1
(3.21)

��
Remark These lower bounds depend solely on the ratio between Q and the maximum
degree of the graph. Regardless of the number of vertices, as long as Q is significantly
larger than the maximum degree, then the probability is close to 1.

3.3 Time t of achieving strong state transfer

So far, we have demonstrated that given the maximum degree of the graph, one can
ensure the probability of quantum state transfer between v and v′ to be arbitrarily close
to 1 by selecting a sufficiently large Q. For practical purposes, we also need to ensure
that the time t = π

λ1−λ2
, when |ϕ1(v1)eitλ1 + ϕ2(v1)eitλ2 | is at its maximum, is not

too large. To find a lower bound on λ1 − λ2, we will first take a detour and study the
eigenvectors using the reduced 2 × 2 matrix first introduced in [7].

Lemma 3.5 [7] H is the adjacency matrix of a simple connected graph with potential
Q on vertices u, v. Let λ be an eigenvalue of H with corresponding eigenvector ϕ. If
ϕ(u) = μ and ϕ(v) = ν, then μ and ν satisfy

[
Zuu(λ) Zuv(λ)

Zuv(λ) Zvv(λ)

] [
μ

ν

]
= (1 − Q

λ
)

[
μ

ν

]
(3.22)

where Zxy(λ) = ∑
P:x→y

1
λ|P| denotes the sum of 1

λ|P| over all walks from x to y; |P|
is the length of the walk.

Proof To construct a function f : V (G) → R which we claim to be an eigenvector
of H , let f (u) = μ, f (v) = ν, and H f (x) = λ f (x) for all x ∈ V (G)\{u, v}. Since
f (x) = A f (x)

λ
sums over all vertices y adjacent to x and divides f (y) by λ, we can
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compute f (x) by summing over all possible walks from the endpoints u and v to x .
In particular,

f (x) = μ ·
∑

P:x→u

1

λ|P| + ν ·
∑

P ′:x→v

1

λ|P ′| . (3.23)

In order for f to be the actual eigenvector of H , λ f (x) = H f (x) should also be
true at the endpoints:

λ f (u) = Q f (u) +
∑

x∼u

f (x) ; λ f (v) = Q f (v) +
∑

x∼v

f (x). (3.24)

Dividing both sides of Eqs. (3.24) by λ, we get the following equality when x is one
of the endpoints

f (x) = Q

λ
f (x) + μ ·

∑

P:x→x

1

λ|P| + ν ·
∑

P ′:x→v

1

λ|P ′| , (3.25)

which is exactly what the 2 × 2 linear system in the lemma describes. ��
Theorem 3.6 Given a graph with an involution and potential Q on v and v′. If the
maximum degree is m and the distance from v to v′ is d, then

λ1 − λ2 >
2

(Q + m)d−1 . (3.26)

Proof When the graph has an involution σ and u = σ(v), taking a walk from u to
itself is equivalent to taking a walk from v to v. Thus, the matrix in Lemma 3.5 has
eigenvectors

[
1 1

]T and
[
1 −1

]T . According to Lemma 2.3, μ = ν if λ ∈ π+ and
μ = −ν if λ ∈ π−. Therefore, λ1 and λ2 satisfy

λ1(Zvv + Zvv′) = λ1 − Q and λ2(Zvv − Zvv′) = λ2 − Q. (3.27)

After comparing these two equations, we obtain

λ1 − λ2 =
∑

P:v→v

(
1

λ
|P|−1
1

− 1

λ
|P|−1
2

)
+

∑

P:v→v′

(
1

λ
|P|−1
1

+ 1

λ
|P|−1
2

)
. (3.28)

Moving the first summation to the left-hand side, it becomes

(λ1 − λ2)

(
1 + n2

λ1λ2
+ n3(λ1 + λ2)

λ1λ2
+ ...

)
> λ1 − λ2. (3.29)

Here nk is the number ofwalks from v to itself of length k. The right-hand side contains
1

λd−1
1

and 1
λd−1
2

. Therefore,
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λ1 − λ2 >
1

λd−1
1

+ 1

λd−1
2

>
2

(Q + m)d(v,v′)−1
. (3.30)

Consequently, the time it takes for p(t) to be arbitrarily close to 1 is less than π
2 (Q +

m)d−1. ��
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