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Abstract
We construct new stabilizer quantum error-correcting codes from generalized
monomial-Cartesian codes. Our construction uses an explicitly defined twist vec-
tor, and we present formulas for the minimum distance and dimension. Generalized
monomial-Cartesian codes arise from polynomials in m variables. When m = 1 our
codes are MDS, and when m = 2 and our lower bound for the minimum distance
is 3, the codes are at least Hermitian almost MDS. For an infinite family of param-
eters, when m = 2 we prove that our codes beat the Gilbert–Varshamov bound. We
also present many examples of our codes that are better than any known code in the
literature.

Keywords error-correction · Hermitian · MDS · Gilbert-Varshamov

1 Introduction

Certain classically intractable problems canbecome feasiblewhen approachedwith the
computational power of quantum computers. This was demonstrated through Shor’s
algorithm, which solves in polynomial time the prime factorization problem and dis-
crete logarithm problem on quantum computers [50]. Due to this fact, researchers and
companies are actively engaged in constructing quantum computers with many qubits
[10, 15]. Quantum computer implementations have higher error rates than classical
computers, making reliability a challenge. However, despite quantum information
being unclonable [18, 56], it was shown that quantum error correction techniques can
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be used [49, 53]. Over the last twenty-five years, error correction has proved to be
one of the main obstacles to scaling up quantum computing and quantum information
processing.

There is an extensive study of quantum error-correcting codes, see for example the
papers [3, 4, 11, 12, 31, 33, 52] for the binary case and [5, 6, 9, 14, 21, 24, 27, 32,
35, 40, 41, 47, 51] for the general case. Many of the known quantum error-correcting
codes are stabilizer codes. Let C be the complex field, let q be a prime power and let
n be a positive integer. A stabilizer code Q �= {0} is the common eigenspace of an
abelian subgroup of the error group Gn generated by a nice error basis on the space
C
qn (see [36, 37] for details). The code Q has minimum distance d whenever all errors

in Gn with weight less than d can be detected, or have no effect on Q, but some errors
of weight d cannot be detected. A code as above has parameters [[n, k, d]]q when it is
a qk-dimensional subspace ofC

qn and has minimum distance d (see, for instance, [12,
35]). Stabilizer quantum error-correcting codes have been studied by many authors
because they can be constructed from classical additive codes in F

2n
q , which are self-

orthogonal with respect to a trace symplectic form. In particular, stabilizer codes can
be obtained from suitable Hermitian self-orthogonal classical linear codes (see [35]
or [5, 9, 12] for details). We will utilize this construction.

Many constructions of classical codes start with a quotient polynomial ring of the
form Fq [X1, . . . , Xm]/I where I is an ideal. Affine variety codes were introduced
by Fitzgerald and Lax in [23], with a general ideal I . Our codes Cv,�,Z (defined in
the next section) are a type of generalized affine variety code, so we could use this
name. However, since the codes we define are generalized monomial-Cartesian codes,
introduced in [45], and although the definition is slightly different, we are going to
call our codes Cv,�,Z generalized monomial-Cartesian codes.

Monomial-Cartesian codes (MCCs) are a class of evaluation codes obtained as the
image of maps

evS : V� ⊂ Fq [X1, . . . , Xm]/I −→ F
n
q , evS( f ) = ( f (β1), . . . , f (βn)

)
,

where m is a positive integer larger than 1, S = S1 × · · · × Sm = {β1, . . . ,βn} is a
Cartesian-product subset of F

m
q , I is the vanishing ideal at S of Fq [X1, . . . , Xm], and

V� is an Fq -linear space generated by classes of monomials. MCCs were introduced
in [45] with only algebraic tools, see also [46]. These codes have several different
applications in the literature, such as quantum codes, locally recoverable codes (LRCs)
with availability, polar codes and (r , δ)-LRCs [13, 26, 45].

Generalized monomial-Cartesian codes arise when changing the evaluation map
evS to twist each coordinate of evS( f ) by nonzero elements of Fq . In this article,
we will use generalized MCCs, where the set S1 is a certain fixed set, and we will
use the same name for this construction, see Definition 2.3. We will use general-
izedmonomial-Cartesian codes to construct Hermitian self-orthogonal classical linear
codes and thereby construct stabilizer quantum codes.We present some evidence com-
paring our codes to codes in [8, 14, 16, 28, 38, 43, 55], which shows that they are very
good quantum codes, and sometimes optimal.

Quantum MDS codes are those achieving the quantum singleton bound; there are
many papers on this type of codes. (Some recent papers are [7, 19, 42].) The MDS
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conjecture limits the length of a q-ary quantum MDS code to be at most q2 + 2 [35].
Thus, another goal is to obtain longer q-ary codes with good parameters. With our
construction, we achieve this.

The paper is laid out as follows: After the preliminaries in Sect. 2, we present our
construction in Sect. 3. Previous works using a twist vector have proved the existence
of a twist vector with the required properties, whereas a feature of our construction
is that we define the twist vector explicitly, see (3) in Sect. 3. We present a general
construction first (Theorem 3.4) and then a more specific construction that allows us
to control the minimum distance (Theorem 3.7). In Sect. 4, we will show that our
construction with m = 1 gives MDS codes. We also prove that when m = 2 and our
lower bound for the minimum distance is 3 the codes are at least Hermitian almost
MDS. Section5 contains a proof that for an infinite family of parameters whenm = 2,
our codes beat the Gilbert–Varshamov bound. Finally, in Sect. 6 we present some
examples with small parameters that beat the best known codes in the literature.

2 Preliminaries

In this paper, we will assume that q is odd, although in this section the definitions hold
for anyq. Let us denote byN the set of positive integers andbyN0 the set of nonnegative
integers. For any two vectors a = (a0, . . . , an−1), b = (b0, . . . , bn−1) ∈ F

n
q2
, their

Hermitian inner product is defined as:

a ·h b =
n−1∑

i=0

aib
q
i ,

their Euclidean inner product is defined as:

a ·e b =
n−1∑

i=0

aibi ,

and their * product is defined as:

(a0, . . . , an−1) ∗ (b0, . . . , bn−1) = (a0 · b0, . . . , an−1 · bn−1).

Let the symbol ⊥h (respectively, ⊥e) mean dual with respect to Hermitian (respec-
tively, Euclidean) inner product. For a vector subspace (or code) C of F

n
q2
, we let C⊥h

(respectively,C⊥e ) denote the orthogonal vector subspace (the dual code) with respect
to the Hermitian (respectively, Euclidean) inner product. We denote by d(C) the min-
imum distance of C . Let s be a nonnegative integer and c = (c0, . . . , cn−1) ∈ C be a
codeword. We denote cs = (cs0, . . . , c

s
n−1) and

Cs := {cs | c ∈ C} ⊆ F
n
q2 .
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Let us denote by w(c) the Hamming weight of c. We say that two codes are isometric
if there exists a bijective mapping between them that preserves Hamming weights.

Theorem 2.1 ([1, 35]) Let C be a linear [n, k, d] error-correcting code over the field
Fq2 such that C ⊆ C⊥h . Then, there exists an [[n, n−2k,≥ d⊥h ]]q stabilizer quantum
code, where d⊥h stands for the minimum distance of C⊥h .

The idea in this paper is to construct codes that satisfy the hypotheses of Theorem
2.1. In order to do so, we fix a finite field Fq2 . Let Fq2 [X1, . . . , Xm] be the polynomial
ring in m ≥ 1 variables over Fq2 . For each element e = (e1, . . . , em) ∈ N

m
0 , we write

X e for Xe1
1 Xe2

2 · · · Xem
m . We will refer to e as an exponent and use the lexicographic

order in N
m
0 for the exponents. That is, given e, e′ ∈ N

m
0 , we say e < e′ if and only

if e1 < e′
1 or there exists j ∈ {2, . . . ,m} such that e1 = e′

1, . . . , e j−1 = e′
j−1 and

e j < e′
j . Any order can be used.

Let λ ∈ N such that λ | q − 1. Let A1 be the set of roots of the polynomial
Xλ(q+1)
1 − 1, which lie in Fq2 . We also consider arbitrary subsets A j ⊆ F

∗
q2

for
j = 2, . . . ,m which have cardinality greater than or equal to 2. Let a j := #A j for
j = 1, . . . ,m, so that a1 = λ(q + 1). Let

Z := A1 × · · · × Am,

which has cardinality

n :=
m∏

j=1

a j .

Let

Q j (X j ) =
∏

β∈A j

(X j − β)

be the monic polynomial in one variable whose roots are the elements of A j , then
deg(Q j ) = a j for j = 1, . . . ,m. Let I be the ideal of Fq2 [X1, . . . , Xm] generated by
the polynomials Q1(X1) = Xλ(q+1)

1 − 1 and Q j (X j ) for j = 2, . . . ,m. Let

R := Fq2 [X1, . . . , Xm]�I

and let
E := {0, 1, . . . , a1 − 1} × · · · × {0, 1, . . . , am − 1}. (1)

Given f ∈ R, in this paper f is going to denote both the equivalence class in R and
the unique polynomial representing f in Fq2 [X1, . . . , Xm]with degree in X j less than
a j , 1 ≤ j ≤ m. Thus, one can write any f ∈ R uniquely as

f (X1, . . . , Xm) =
∑

(e1,...,em )∈E
fe1,...,em X

e1
1 · · · Xem

m ,
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with fe1,...,em ∈ Fq2 . Let us denote supp( f ) = {(e1, . . . , em) ∈ E | fe1,...,em �= 0}.

Definition 2.2 Let E be as defined earlier in (1). For each nonempty subset � ⊆ E ,
define V� := { f ∈ R | supp( f ) ⊆ �}.

Note that V� is the Fq2 -vector space consisting of the Fq2 -span of {X e | e ∈ �}.
For any positive integer t , we denote by ζt a primitive t-th root of unity. Since A j

has a j elements, we choose a bijection between A j and the set {0, 1, . . . , a j −1}, and
this is going to give us an ordering of A j , j = 2, . . . ,m. Let us represent by ξ( j,s) the
elements of each set A j , where the subindex s ∈ {0, 1, . . . , a j − 1} is given by the
ordering. For α = (α1, . . . , αm) ∈ E , we define Pα ∈ Z by

Pα := (ζ
α1
λ(q+1), ξ(1,α2), . . . ξ(m,αm )),

where α1 indicates the exponent of ζλ(q+1) and α j ∈ {0, 1, . . . , a j − 1} gives the
position of the element ξ( j,α j ) ∈ A j in the ordering of A j , j = 2, . . . ,m. Every
element of Z has the form Pα for some α ∈ E . This sets up a bijection between Z and
E .

We order the set Z using the (lexicographic) order in N
m
0 restricted to E . That is,

given Pα , Pα′ ∈ Z , then Pα < Pα′ if and only if α < α′. Then, we can rename the
points in Z as

P0 := P (0,...,0), P1 := P (0,...,0,1), . . . , Pn−1 := P (a1−1,a2−1,...,am−1).

Let v = (v0, . . . , vn−1) ∈ (F∗
q2

)n , we will refer to this vector as the twist vector.
We index the coordinates of v by the elements of E , and we order the coordinates of
v in the same way as we ordered the elements of Z . That is,

v0 := v(0,...,0), v1 := v(0,...,0,1), . . . , vn−1 := v(a1−1,a2−1,...,am−1).

The linear evaluation map in Z :

evv,Z : R −→ F
n
q2 , evv,Z ( f ) = (v0 f (P0), . . . , vn−1 f (Pn−1))

is injective by the definition of R. It provides the following class of evaluation codes.

Definition 2.3 Let V� be as defined in Definition 2.2. The generalized monomial-
Cartesian code (GMCC) Cv,�,Z is the image of V� via the evaluation map evv,Z , that
is,

Cv,�,Z := evv,Z (V�) = span{evv,Z (X e) | e ∈ �} ⊆ F
n
q2 .

Since the order of the set Z will be fixed for the rest of the article, we will use the
notation evv := evv,Z and Cv,� := Cv,�,Z .
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Remark 2.4 Evaluation maps of our codes are defined on subsets of coordinate rings
of certain affine varieties, but these codes can also be introduced with algebraic tools.
Monomial-Cartesian codes were introduced in [45] using only algebraic tools. When
the set A1 ⊆ Fq2 is arbitrary, GMCCs extend monomial-Cartesian codes. This should
be the accurate definition, but for our purposes in this paper we use this particular set
A1, namely the λ(q + 1)-th roots of unity.

Here is a standard fact, that the dual of a GMCC is another GMCC.

Lemma 2.5 The dual code (Cv,�)⊥h is a GMCC Cw,� for some twist vector w.

Proof Consider any two codewords c = (c0, . . . , cn−1) ∈ C1,� and b =
(b0, . . . , bn−1) ∈ (C1,�)⊥h . Then, the following equation holds:

c0b
q
0 + · · · + cn−1b

q
n−1 = 0. (2)

Let v = (v0, . . . , vn−1) be a (fixed) vector in (F∗
q2

)n and consider Cv,�. We know that
v ∗ c = (v0c0, . . . , vn−1cn−1) ∈ Cv,� whenever c = (c0, . . . , cn−1) ∈ C1,�, because

C1,� −→ Cv,�, c �→ v ∗ c

is a bijective mapping. We use this presentation of Cv,�.
We will prove that (Cv,�)⊥h = Cw,� where w = (w0, . . . , wn−1) is defined by

wi := 1
v
q
i
for all i = 0, . . . , n − 1.

Firstwe claim that for any b ∈ (C1,�)⊥h wehave thatw∗b = (w0b0, . . . , wn−1bn−1) ∈
(Cv,�)⊥h . To see this, choose v ∗ c ∈ Cv,� and note that

v0c0w
q
0b

q
0 + · · · + vn−1cn−1w

q
n−1b

q
n−1 = 0

using the fact that wq
i = 1/vq

2

i = 1/vi for all i , and using (2). This shows that all the
vectors w ∗ b are in (Cv,�)⊥h .

Finally note that

(C1,�)⊥h −→ (Cv,�)⊥h , b �→ w ∗ b

is a bijective mapping, which shows that (Cv,�)⊥h = Cw,�.

The length and the dimension of a GMCC are n and #�, respectively. A bound for
the minimum distance is provided in Corollary 2.8.

Lemma 2.6 The GMCCs C1,� and Cv,� are isometric.

Proof For any codeword c = (c0, . . . , cn−1) ∈ C1,�, its twisted analogue codeword
v ∗ c = (v0c0, . . . , vn−1cn−1) ∈ Cv,� under the bijective mapping C1,� → Cv,�,
c �→ v ∗ c has the same Hamming weight, this is because vi �= 0 for all i = 1, . . . , n.
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Fig. 1 In the case m = 2, we can use a grid to represent the set E so that an exponent e = (e1, e2) ∈ E
corresponds to the point with coordinates (e1, e2) in the grid and that point is labelled with the integer
D(e). Exponents in the set � ⊆ E are coloured in blue. This example shows the grid representation of E ,
where a1 = 8, a2 = 6, and � = ({0, 1, 2} × {0, 1}) ∪ {(0, 2), (1, 2)}. In this example, the lower bound for
the minimum distance of the code Cv,� for any v ∈ (F∗

q2
)n is d0

(
Cv,�

) = min{D(e) | e ∈ �} = 28 by

Corollary 2.8

Affine variety codes admit a bound on theminimumdistance, known as the footprint
bound [29]. Monomial-Cartesian codes C1,� in the sense of our Definition 2.3 (the
evaluation map is defined over the coordinate ring of some affine variety) are affine
variety codes. This fact and Lemma 2.6 prove the next lemma, stating that this bound
is also valid for GMCCs. For every exponent e ∈ E , we define

D(e) :=
m∏

j=1

(a j − e j ).

Lemma 2.7 Let Cv,� be a GMCC and let c = evv( f ) ∈ Cv,� be a codeword, f ∈ R.
Fix a monomial ordering on (N0)

m and let X e be the leading monomial of f . Then,
w(c) ≥ D(e).

Corollary 2.8 Let Cv,� be a GMCC and let d be its minimum distance. Define d0 =
d0
(
Cv,�

) := min{D(e) | e ∈ �}. Then, d ≥ d0.

Remark 2.9 Affine variety codes were introduced in [23] for any ideal I . A classical
result coming from the theory of Gröbner basis [17] implies that d ≥ d0, where d
stands for the minimum distance of an affine variety code and d0 is the cited footprint
bound [29]. Independently, inspired by the algebraic geometric codes [34] the so-
called Feng–Rao bound for the minimum distance of the dual code is derived [20].
It is known that every linear code is an algebraic geometric code. A similar bound
(Andersen–Geil) was also given for an algebraic geometric code [2]. It turns out that
for monomial-Cartesian codes the footprint bound applied to the dual code and the
Feng–Rao bound coincide [25]. Although the footprint bound is more natural for the
primal code, and the Feng–Rao bound ismore natural for the dual code, wewill always
refer to them as d0.

Lemma 2.10 Let Cv,� be a GMCC. Then, (Cv,�)⊥h and (Cv,�)⊥e are isometric.
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Proof It is straightforward because (Cv,�)⊥h = ((Cv,�)⊥e )q .

Lemma 2.11 Let Cv,� be a GMCC. Then (C1,�)⊥h and (Cv,�)⊥h are isometric.

Proof It follows from the fact that the family of GMCCs is closed under duality by
Lemma 2.5 and by Lemma 2.6.

Corollary 2.12 Let Cv,� be a GMCC. Then d((Cv,�)⊥h ) = d((C1,�)⊥e ).

Proof This is because (Cv,�)⊥h and (C1,�)⊥h are isometric (by Lemma 2.11) and also
(C1,�)⊥h is isometric to (C1,�)⊥e (by Lemma 2.10).

3 Stabilizer quantum codes from generalizedmonomial-Cartesian
codes

In the present section, we construct stabilizer quantum codes by applying Theorem
2.1 to GMCCs (Definition 2.3) with a specific twist vector. Recall from Sect. 2 that
q is an odd prime power, ζq2−1 denotes a primitive q2 − 1-th root of unity, λ ∈ N

is such that λ | q − 1, a1 = λ(q + 1), 2 ≤ a j ≤ q2 − 1 for all j = 2, . . . ,m, and
n = a1a2 · · · am . We are going to choose the twist vector defined explicitly as follows:

v = (ζ
q−1
2

q2−1
, . . . , ζ

q−1
2

q2−1︸ ︷︷ ︸
n

q+1

, 1, . . . , 1︸ ︷︷ ︸
n

q+1

, ζ
q−1
2

q2−1
, . . . , ζ

q−1
2

q2−1︸ ︷︷ ︸
n

q+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
n

q+1

) ∈ (F∗
q2)

n . (3)

Because

(
ζ

q−1
2

q2−1

)q+1

= ζ
(q+1)(q−1)

2
q2−1

= ζ
q2−1
2

q2−1
= −1

it follows that

vq+1 = (−1, . . . ,−1︸ ︷︷ ︸
n

q+1

, 1, . . . , 1︸ ︷︷ ︸
n

q+1

,−1, . . . ,−1︸ ︷︷ ︸
n

q+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
n

q+1

).

Observe that there are q + 1 blocks of −1’s or 1’s. Recall that the coordinates vα of
v are labelled and ordered in the same way as the points Pα ∈ Z . This twist vector
works as follows. For each α ∈ E ,

v
q+1
α =

{
−1 if 0 ≤ (α1 mod 2λ) ≤ λ − 1,

1 if λ ≤ (α1 mod 2λ) ≤ 2λ − 1.
(4)

Notice that vα only depends on α1. The reasonwhywe choose this specific twist vector
is going to become clear in Proposition 3.1.
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3.1 Self-orthogonality conditions

First we present some conditions for the evaluation vectors of monomials in R to be
orthogonal for the Hermitian inner product, when our twist vector is used.

Proposition 3.1 Keep the same notations as before. Let q be an odd prime power and
consider the twist vector v defined in (3). Let e = (e1, . . . , em), e′ = (e′

1, . . . , e
′
m) ∈ E

be exponents of two monomials X e, X e′ ∈ R. Then, the evaluation vectors under the
map evv of these monomials are orthogonal for the Hermitian inner product if one of
the following conditions hold:

• e1 ≡ e′
1 mod q + 1, or

• e1 �≡ e′
1 mod q+1

2 .

Proof In order to compute some conditions underwhich two evaluations ofmonomials
of the quotient ring R are orthogonal for the Hermitian inner product, we have to see
when the following sum vanishes:

evv(X
e) ·h evv(X

e′) =
∑

α∈E
v
q+1
α ζ

α1(e1+qe′
1)

λ(q+1) ξ
(e2+qe′

2)

(2,α2)
· · · ξ (em+qe′

m)

(m,αm ) .

Since vα only depends on α1, we can denote by vα1 := v(α1,...,αm ) = vα and reorder
the above sum in the following way:

evv(X
e) ·h evv(X

e′) =
⎛

⎝
λ(q+1)−1∑

α1=0

vq+1
α1

ζ
α1(e1+qe′

1)

λ(q+1)

⎞

⎠

⎛

⎝
a2−1∑

α2=0

ξ
(e2+qe′

2)

(2,α2)

⎞

⎠

. . .

⎛

⎝
am−1∑

αm=0

ξ
(em+qe′

m)

(m,αm )

⎞

⎠ .

We can do that because all the coordinates vα in v that have the same α1 have the
same value. Now we study when the first factor equals 0, and we will ignore the other
factors, since the first one gives enough information for the proof. Consider then

λ(q+1)−1∑

α1=0

vq+1
α1

ζ
α1(e1+qe′

1)

λ(q+1) , (5)

which is a sum over α1 ∈ {0, 1, . . . , λ(q + 1) − 1}. We write each α1 in the form
kλ + r where 0 ≤ k ≤ q and 0 ≤ r < λ. Using this to break (5) into λ blocks of size
q + 1, using the fact that ζq+1 := ζ λ

λ(q+1) is a primitive q + 1-th root of unity and
using the structure of the twist vector v, we can write (5) as

λ(q+1)−1∑

α1=0

vq+1
α1

ζ
α1(e1+qe′

1)

λ(q+1) =
∑

0≤k≤q
0≤r<λ

v
q+1
kλ+rζ

(kλ+r)(e1+qe′
1)

λ(q+1)
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=
q∑

k=0

v
q+1
kλ ζ

k(e1+qe′
1)

q+1

+ ζ
e1+qe′

1
λ(q+1)

q∑

k=0

v
q+1
kλ+1ζ

k(e1+qe′
1)

q+1

+ · · · + ζ
(λ−1)(e1+qe′

1)

λ(q+1)

q∑

k=0

v
q+1
kλ+λ−1ζ

k(e1+qe′
1)

q+1

=
(
1 + ζ

(e1+qe′
1)

λ(q+1) + · · · + ζ
(λ−1)(e1+qe′

1)

λ(q+1)

)

( q∑

k=0

v
q+1
kλ ζ

k(e1+qe′
1)

q+1

)

.

Notice that we can do that because from (4) and the fact that 1 ≤ λ ≤ q − 1 we
have that vq+1

kλ = v
q+1
kλ+1 = · · · = v

q+1
kλ+λ−1 for all 0 ≤ k ≤ q. Now using again (4) and

the fact that ζ q+1
2

:= ζ 2
q+1 is a primitive q+1

2 -th root of unity, we rewrite the last sum

in the following way:

q∑

k=0

v
q+1
kλ ζ

k(e1+qe′
1)

q+1 =
q−1
2∑

k=0

v
q+1
2kλ ζ

2k(e1+qe′
1)

q+1 +
q−1
2∑

k=0

v
q+1
2kλ+1ζ

(2k+1)(e1+qe′
1)

q+1

=
q−1
2∑

k=0

v
q+1
2kλ ζ

2k(e1+qe′
1)

q+1 − ζ
e1+qe′

1
q+1

q−1
2∑

k=0

v
q+1
2kλ ζ

2k(e1+qe′
1)

q+1

= ζ
e1+qe′

1
q+1

⎛

⎜
⎝

q−1
2∑

k=0

ζ
k(e1+qe′

1)
q+1
2

⎞

⎟
⎠−

⎛

⎜
⎝

q−1
2∑

k=0

ζ
k(e1+qe′

1)
q+1
2

⎞

⎟
⎠

= (ζ
e1+qe′

1
q+1 − 1)

⎛

⎜
⎝

q−1
2∑

k=0

ζ
k(e1+qe′

1)
q+1
2

⎞

⎟
⎠ .

Thus, we have shown that we can write (5) as

λ(q+1)−1∑

α1=0

vq+1
α1

ζ
α1(e1+qe′

1)

λ(q+1) = P
(
ζ
e1+qe′

1
λ(q+1)

)(
ζ
e1+qe′

1
q+1 − 1

)
⎛

⎜
⎝

q−1
2∑

k=0

ζ
k(e1+qe′

1)
q+1
2

⎞

⎟
⎠ ,

where P(x) = 1 + x + x2 + · · · + xλ−1. The above product equals 0 if and only if
one of the following conditions holds:

• ζ
e1+qe′

1
q+1 − 1 = 0 ⇐⇒ e1 + qe′

1 ≡ 0 mod q + 1. That is, e1 ≡ e′
1 mod q + 1;

or
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•
(
∑ q−1

2
k=0 ζ

k(e1+qe′
1)

q+1
2

)
= 0 ⇐⇒ e1 + qe′

1 �≡ 0 mod q+1
2 . Since q ≡ −1

mod q+1
2 , this is equivalent to e1 �≡ e′

1 mod q+1
2 ; or

• P
(
ζ

(e1+qe′
1)

λ(q+1)

)
= 0. This is true if and only if ζ

(e1+qe′
1)

λ(q+1) is a λ-th root of unity

other than 1. That is equivalent to e1 + qe′
1 ≡ 0 mod q + 1 and e1 + qe′

1 �≡ 0
mod λ(q + 1), which is a particular case of the first condition.

Therefore, if either of the first two conditions hold, the sum (5) equals 0 and that
implies that evv(X e) and evv(X e′) are orthogonal for the Hermitian inner product.

Remark 3.2 Consider the case when the twist vector is 1, λ = 1 and A j is the set of

q + 1-th roots of unity, that is the solutions to Xq+1
j − 1 = 0, for every j = 1, . . . ,m.

Then for any � ⊆ E the GMCC C1,� is an Affine Variety Code (AVC) and it is not
self-orthogonal (for the Hermitian inner product). This is because when we compute
the Hermitian inner product of the evaluations of any monomial X e = X (e1,...,em ) with
itself, one obtains that

ev1(X
e) ·h ev1(X e) =

∑

α∈E
ζ

α1e1(1+q)
q+1 ζ

α2e2(1+q)
q+1 · · · ζ αmem(1+q)

q+1

=
⎛

⎝
q∑

α1=0

ζ
α1e1(1+q)
q+1

⎞

⎠

⎛

⎝
q∑

α2=0

ζ
α2e2(1+q)
q+1

⎞

⎠ . . .

⎛

⎝
q∑

αm=0

ζ
αmem(1+q)
q+1

⎞

⎠

and every factor above is

q∑

k=0

ζ
ke1(1+q)
q+1 = q + 1 �= 0.

Thus, the evaluation of a monomial is not orthogonal to itself, and these codes are not
self-orthogonal. However, we are able to provide a twist vector v (3) to construct a
self-orthogonal GMCCCv,� which is isometric to the non-self-orthogonal AVCC1,�.
The problem of not getting evaluations of monomials to be self-orthogonal can happen
also with other twist vectors, that is why one has to choose the twist vector carefully.

3.2 Our general construction

Before stating the theorem that is the general construction of this paper, recall the
definition of the set E in the previous section. We define a subset in E which will be
useful in the following.

Definition 3.3 Let E0 :=
{
e = (e1, . . . , em) ∈ E | 0 ≤ e1 ≤ q−1

2

}
⊆ E .

The next theorem shows that the set E0 introduced in Definition 3.3 is used as a
reference to construct Hermitian self-orthogonal GMCCs.
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Fig. 2 Sets �3, �4 and �5, where m = 2, a1 = 8 and a2 = 6. We use the same conventions as in Fig. 1

Theorem 3.4 Let q be an odd prime power and let m ≥ 1, λ | q − 1, a1 := λ(q + 1)
and 2 ≤ a j ≤ q2 −1, j = 2, . . . ,m be positive integers. Let n := a1 · · · am. Consider
the twist vector v defined in (3) and the set E0 ⊆ E introduced in Definition 3.3. Let
� be a subset of E0. Then,

Cv,� ⊆ (Cv,�)⊥h .

Therefore, there exists a stabilizer quantum code with parameters

[[n, n − 2#�,≥ d]]q

where d = d((C1,�)⊥e ).

Proof Since for all (e1, . . . , em) ∈ �wehave e1 ≤ q−1
2 , the self-orthogonality follows

from Proposition 3.1. The existence and parameters of the stabilizer quantum code
follow from Theorem 2.1. Notice that d = d((Cv,�)⊥h ), but from Corollary 2.12 we
can conclude that d = d((C1,�)⊥e ).

Notice that in the above theorem we do not give an explicit bound for the minimum
distance, but it can be computed using Corollary 2.8 in every particular case.

3.3 Our specific construction

Now we are going to provide a strategy [30] to choose a set � ⊆ E0 so that we can
control the minimum distance d((C1,�)⊥e ) and it maximizes the dimension of the
resulting stabilizer quantum code. To that purpose, we need the following

Definition 3.5 Let 2 ≤ t ≤ q+3
2 be a positive integer. Define

�t :=
⎧
⎨

⎩
e = (e1, . . . , em) ∈ E

∣∣|
m∏

j=1

(e j + 1) < t

⎫
⎬

⎭
⊆ E .

Some instances of the above set are represented in Fig. 2.
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Lemma 3.6 Let �t ⊆ E be the set introduced in Definition 3.5. Then,

d
(
(C1,�t )

⊥e
)

≥ t .

Proof Using the notations in [25, Section 3], the authors define a code C(L2), where

L2 = {Xi1
1 · · · Xim

m ∈ �(s1, . . . , sm) | D⊥(Xi1
1 · · · Xim

m ) < δ⊥}.

By choosing their (s1, . . . , sm) and δ⊥ equal to our (a1, . . . , am) and t , respectively,
then we have that

L2 = {X e | e ∈ �t },

so C(L2) = C1,�t , see [25, Definition 15]. The statement follows from their equation
(8) in Section 3.

Theorem 3.7 Let q be an odd prime power and let m ≥ 1, λ | q − 1, a1 := λ(q + 1)
and 2 ≤ a j ≤ q2 −1, j = 2, . . . ,m be positive integers. Let n := a1 · · · am. Consider
the twist vector v defined in (3), a positive integer

2 ≤ t ≤ q + 3

2

and the set �t ⊆ E introduced in Definition 3.5. Then, the following inclusion holds

Cv,�t ⊆ (Cv,�t )
⊥h .

Therefore, there exists a stabilizer quantum code with parameters

[[n, n − 2#�t ,≥ t]]q .

Proof Let e ∈ �t . From
∏m

j=1(e j + 1) < t , we have that e1 < t − 1. Since t ≤ q+3
2 ,

then e1 < t − 1 ≤ q+1
2 and therefore �t ⊆ E0. So, from Theorem 3.4 we have that

Cv,�t ⊆ (Cv,�t )
⊥h .

The existence and parameters of the stabilizer quantum code follows from Theo-
rem 2.1. Notice that from Corollary 2.12 and Lemma 3.6, we have d((Cv,�t )

⊥h ) =
d((C1,�t )

⊥e ) ≥ t .

3.4 The dimension

We state a recursive formula for the dimension of the quantum code, which is shown
in [30].
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Let a, b ∈ N. Consider the case when a j = b for all j = 1, . . . ,m. We define

Vb(m, a) := #

⎧
⎨

⎩
(l1, . . . , lm)

∣
∣| l j ∈ N, 1 ≤ l j ≤ b, j = 1, . . .m,

m∏

j=1

l j ≤ a

⎫
⎬

⎭
.

In [30], they give the following recursive formula:

Vb(m, a) =
b∑

s=1

V
(
m − 1,

⌊a
s

⌋)
,

where Vb(1, a) = min{a, b}.
Observe that #�t = Vλ(q+1)(m, t−1), where all of a1, . . . , am are equal toλ(q+1).

Therefore, we can use the recursive formula described above to compute #�t , and
hence the dimension of the quantum code in Theorem 3.7. For example, when m = 2

#�t = Vλ(q+1)(2, t−1) = t−1+
⌊
t − 1

2

⌋
+
⌊
t − 1

3

⌋
+· · ·+

⌊
t − 1

t − 2

⌋
+
⌊
t − 1

t − 1

⌋
,

(6)
and when m = 3

#�t = Vλ(q+1)(3, t − 1) =
t−1∑

α=1

⌊
t−1
α

⌋

∑

β=1

⌊
t − 1

αβ

⌋
.

4 We obtain MDS and Hermitian almost MDS quantum codes

In this section, we prove that we can obtain quantum codes that are close to the
singleton bound. Let us recall first the quantum singleton bound.

Lemma 4.1 (QuantumSingleton bound [48]) If a stabilizer quantum codewith param-
eters [[n, k, d]]q exists, then n ≥ k + 2d − 2.

Codes attaining equality are called quantum MDS codes.

4.1 MDS

Theorem 4.2 The stabilizer quantum codes obtained from Theorem 3.7 with m = 1
are quantum MDS codes.

Proof For any given bound for the minimum distance t ∈ {2, . . . , q+3
2 }, we have

�t = {0, 1, 2, . . . , t − 2}. The parameters of the stabilizer quantum code constructed
from Theorem 3.7 are:

[[n, k, d]]q = [[λ(q + 1), λ(q + 1) − 2(t − 1),≥ t]]q .
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It is easily verified that the above parameters provide a quantum MDS code, because
k+2d ≥ λ(q +1)−2(t −1)+2t = λ(q +1)+2 = n+2 and the quantum singleton
bound gives an equality.

Some sample parameters are given in Tables 3, 4, 5, 6, 7. For example, we
obtain quantum MDS codes with parameters [[12, 8, 3]]5 in Table 4, [[8, 4, 3]]7 and
[[16, 8, 5]]7 in Table 5 and [[20, 12, 5]]9 in Table 6. We do not claim that these exam-
ples are new.

The article [54] recently appeared on the arxiv and has a construction ofMDS codes
with lengths of the form r(q2 − 1)/h where h is an even divisor of q − 1 and r ≤ h/2
(their Theorems 3, 4 and 5). This article does not provide an explicit twist vector (they
prove the existence of it). Our construction has an explicit twist vector and (in the
m = 1 case) gives codes with the same parameters.

4.2 Hermitian almost MDS

The quantum singleton defect of a parameter set n, k, d is defined to be n−(k+2d−2).
MDS codes have quantum singleton defect 0, by definition. Codes with quantum
Singleton defect 1 are called quantum almost MDS (QAMDS) codes. However, from
the statement of Theorem2.1, one can see that the quantum singleton defect of any code
constructed using Theorem 2.1 must be even, and thus, a quantum singleton defect
of 1 cannot be achieved. The smallest nonzero singleton defect of a code constructed
using Theorem 2.1 is therefore 2. This motivates the following definition.

Definition 4.3 A quantum code constructed from Theorem 2.1 with parameters
[[n, k, d]]q such that n = k + 2d is called a quantum Hermitian almost MDS
(QHAMDS) code.

In Theorem 4.2, we showed that we can construct quantumMDS codes. Recall that
the quantum MDS conjecture [35] states that n ≤ q2 + 1 for a quantum MDS code
with parameters [[n, k, d]]q and q odd. Now we are going to show that we can also
construct quantum codes with n > q2 + 1 that are at least QHAMDS. That is, they
are either QHAMDS or MDS. If the quantum MDS conjecture is true, they cannot be
MDS, and therefore they would have the best possible parameters.

Theorem 4.4 The stabilizer quantum codes obtained from Theorem 3.7 with m = 2,
n > q2 + 1 and t = 3 are at least QHAMDS.

Proof Let m = 2, t = 3 and λ and a2 be as defined in Theorem 3.7 such that
n > q2 + 1. We have �3 = {(0, 0), (1, 0), (0, 1)} (see Fig. 2). The parameters of the
stabilizer quantum code constructed from Theorem 3.7 are

[[n, k, d]]q = [[λ(q + 1)a2, λ(q + 1)a2 − 6,≥ 3]]q .

It is easily verified that the aboveparameters provide a codewhich is at leastQHAMDS.
This is because k + 2d ≥ λ(q + 1)a2 − 6 + 2 · 3 = λ(q + 1)a2 = n.
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Some examples will be given in Tables 3 to 7. In [16], the authors study ternary
quantum codes of minimum distance three. In that paper (their Theorem 4.4), quantum
codeswith parameters [[n, n−7, 3]]3 are shown for certain lengths n. For those lengths
which are a multiple of 4 and less than 64, we can improve the dimension by 1, using
the codes in Theorem 4.4. See also Table 3.

5 Whenm = 2 we can beat Gilbert–Varshamov bound

In this section, we include a proof that an infinite family of codes obtained from our
constructions will beat the quantum Gilbert–Varshamov bound when m = 2. We
remark that the codes with m > 2 can also beat the Gilbert–Varshamov bound, some
examples when m = 3 are presented in Tables 3, 4 and 6.

Let us recall the quantum Gilbert–Varshamov bound whose proof can be found in
[22]:

Theorem 5.1 (Quantum Gilbert–Varshamov Bound) Suppose that n > k ≥ 2, d ≥ 2,
and n ≡ k mod 2. If

qn−k+2 − 1

q2 − 1
≥

d−1∑

i=1

(q2 − 1)i−1
(
n

i

)
(7)

then there exists a pure stabilizer quantum code with parameters [[n, k, d]]q .
We say that a parameter set n, k, d, q beats the QGV bound if the inequality (7) is

not satisfied.
In the m = 2 case, we have the following statement, using the codes constructed

in this paper. In this statement, we are using the formula (6).

Theorem 5.2 Givenanoddprimepowerq, andgivend in the range5 ≤ d ≤ (q+3)/2,
let n be in the interval

(
(d − 1)d−1 q2

(q2 − 1)d−1 q
2(d−1)(0.7+ln(d−1))

) 1
d−1 ≤ n ≤ (q2 − 1)2

and have the form λ(q + 1)a2 where λ | (q − 1) and 2 ≤ a2 ≤ q2 − 1. Then, there
exists a quantum code with parameters

[[n, n − 2
d−1∑

j=1

⌊
d − 1

j

⌋
,≥ d]]q

and this code beats the quantum Gilbert–Varshamov bound.

Proof. We use the codes whose existence is proved in Theorem 3.7 in the casem = 2.
The upper bounds d ≤ (q + 3)/2 and n ≤ (q2 − 1)2 follow from the construction in
Theorem 3.7.
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Let

A =
d−1∑

i=1

(q2 − 1)i−1
(
n

i

)

and let

D = qn−k+2 − 1

q2 − 1

where k = n−2
∑d−1

j=1

⌊
d−1
j

⌋
(this dimension formula comes from (6) which uses our

construction with m = 2). We wish to prove that A > D under the stated hypotheses.
To prove this, we are going to let

B = 1

(d − 1)d−1 n
d−1(q2 − 1)d−2

and let

C =
(

q2

q2 − 1

)
q2(d−1)(0.7+ln(d−1))

and we will prove three things: that A > B, that B ≥ C , and that C > D. This will
complete the proof that A > D.

To show that A > B, we will use the estimate for binomial coefficients
(n
k

)
> ( nk )k .

Then

A =
d−1∑

i=1

(q2 − 1)i−1
(
n

i

)
>

(
n

d − 1

)
(q2 − 1)d−2

>

(
n

d − 1

)d−1

(q2 − 1)d−2

= 1

(d − 1)d−1 n
d−1(q2 − 1)d−2 = B.

To prove that B ≥ C , rearranging the hypothesis

(
(d − 1)d−1 q2

(q2 − 1)d−1 q
2(d−1)(0.7+ln(d−1))

) 1
d−1 ≤ n

yields precisely that B ≥ C .

123



86 Page 18 of 25 B. Barbero-Lucas et al.

Table 1 Some instances of the range of lengths of codes (from Theorem 5.2 only) that beat the quantum
Gilbert–Varshamov bound

d q
7 9 11 13 17

5 742-2304 1438-6400 2450-14400 3818-28224 7800-82944

6 d >
q+3
2 3848-6400 7022-14400 11600-28224 26006-82944

7 d >
q+3
2 d >

q+3
2 None None 72590-82944

To prove that C > D, we will use the fact that if r ≥ 4 then Hr < 0.7+ ln r where
Hr is the r -th harmonic number defined by Hr =∑r

j=1
1
j . Then,

d−1∑

j=1

⌊
d − 1

j

⌋
<

d−1∑

j=1

d − 1

j

= (d − 1)Hd−1

< (d − 1)(0.7 + ln(d − 1)) since d − 1 ≥ 4.

It follows that

D = qn−k+2 − 1

q2 − 1

<
qn−k+2

q2 − 1

=
(

q2

q2 − 1

)
qn−k

=
(

q2

q2 − 1

)
q
2
∑d−1

j=1

⌊
d−1
j

⌋

<

(
q2

q2 − 1

)
q2(d−1)(0.7+ln(d−1)) = C .

In this theorem, we assumed that d ≥ 5 because of the constant 0.7, which is a
choice. The cases d = 3 and d = 4 can be proved separately. They could be included
in the proof above but the constant 0.7 would have to be larger. Similarly, we could
have stated the theorem for d ≥ 6 and the constant would be smaller, it would be
0.68. Then, the d = 5 case would need to be handled separately. As d gets larger, the
constant gets smaller and approaches the Euler–Mascheroni constant.

We show Table 1 where for each q between 7 and 17 and d = 5, 6, 7 we give the
range of values of n for which the quantum Gilbert–Varshamov bound is beaten, as
given by Theorem 5.2.

A separate special analysis for each d, or using better estimates in the proof, or using
a computer, will give a better range of values for n than the statement of Theorem 5.2.
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For example, when q = 7 and d = 5, computer calculations show that the Gilbert–
Varshamov bound is beaten by our codes as soon as n > 295, whereas the proof of
Theorem 5.2 gives n ≥ 742. As another example, when q = 11 and d = 7, the range
of values of n as given by the statement of Theorem 5.2 is empty (in the table we
wrote ‘none’). However, there are in fact values of n that beat the Gilbert–Varshamov
bound. We state one example [[7200, 7172, 7]]11 in Table 7.

We also remark that Theorem 5.2 is form = 2. A similar result will hold form > 2.

5.1 d = 3

In the previous theorem, we assumed that d ≥ 5 to obtain a slightly stronger statement.
We will treat the case that d = 3 (and m = 2) separately, and we will complete the
analysis in detail now. We omit the d = 4 case, which is similar.

Suppose d = 3. By the formula (6) we have that �3 has 3 elements, see also Fig. 2.
The two sides of the Gilbert–Varshamov bound become

qn−k+2 − 1

q2 − 1
= q8 − 1

q2 − 1
= q6 + q4 + q2 + 1

and

d−1∑

i=1

(q2 − 1)i−1
(
n

i

)
= n +

(
n

2

)
(q2 − 1).

To beat the G–V bound, we obtain a condition which is a quadratic polynomial in n,
namely we require that

n +
(
n

2

)
(q2 − 1) − (q6 + q4 + q2 + 1) > 0.

Solving the quadratic yields that the G–V bound is beaten when

n >
q2 − 3 +√8q8 + q4 − 6q2 + 1

2(q2 − 1)
.

For m = 2 the largest possible n is (q − 1)(q + 1)(q2 − 1). Therefore, for each valid

n which is a multiple of q +1 between q2−3+
√

8q8+q4−6q2+1
2(q2−1)

and (q2 −1)2 we obtain
a code of that length that beats the G–V bound.

We show Table 2 where for each q and d = 3 we state the range of values of n for
which Gilbert–Varshamov bound is beaten.

In the d = 4 case (details omitted), the polynomial in n would be cubic instead of
quadratic.
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Table 2 Some instances of the range of lengths of codes fromTheorem 3.7with d = 3 that beat the quantum
Gilbert–Varshamov bound

q 3 5 7 9 11

Range of lengths 15-64 38-576 72-2304 117-6400 174-14400

Table 3 A q = 3 sample of codes

m a1 a2 a3 Quantum code Beats QGV Comment

1 4 [[4, 0, 3]]3 No MDS

1 8 [[8, 4, 3]]3 Yes MDS

2 4 5 [[20, 14, 3]]3 Yes QHAMDS

2 4 6 [[24, 18, 3]]3 Yes QHAMDS

2 4 7 [[28, 22, 3]]3 Yes QHAMDS

2 4 8 [[32, 26, 3]]3 Yes QHAMDS, equals [[32, 26, 3]]3 in [16]

2 8 5 [[40, 34, 3]]3 Yes QHAMDS, beats [[40, 33, 3]]3 in [16]

2 8 6 [[48, 42, 3]]3 Yes QHAMDS, equals [[48, 42, 3]]3 in [16]

2 8 7 [[56, 50, 3]]3 Yes QHAMDS, beats [[56, 49, 3]]3 in [16]

2 8 8 [[64, 58, 3]]3 Yes QHAMDS, beats [[64, 57, 3]]3 in [16]

3 8 3 3 [[72, 64, 3]]3 Yes Beats [[72, 62, 3]]3 in [39]

3 4 8 4 [[128, 120, 3]]3 Yes Length not obtained with m = 1, 2

Table 4 A q = 5 sample of codes

m a1 a2 a3 Quantum Code Beats QGV Comment

1 6 [[6, 2, 3]]5 No MDS

1 12 [[12, 8, 3]]5 Yes MDS

1 12 [[12, 6, 4]]5 Yes MDS

2 6 5 [[30, 24, 3]]5 No QHAMDS, beats [[33, 13, 3]]5 in [8]

2 6 6 [[36, 30, 3]]5 No QHAMDS

2 6 6 [[36, 26, 4]]5 No Length not obtained with m = 1

2 6 7 [[42, 36, 3]]5 Yes QHAMDS

2 6 13 [[78, 72, 3]]5 Yes QHAMDS, beats [[80, 68, 3]]5 in [8]

2 6 13 [[78, 68, 4]]5 Yes Beats [[78, 60, 4]]5 in [43]

2 6 16 [[96, 86, 4]]5 Yes Same as in [43]

2 6 19 [[114, 104, 4]]5 Yes Length not obtained with m = 1

2 6 22 [[132, 122, 4]]5 Yes Beats [[132, 118, 4]]5 in [55]

2 12 24 [[288, 282, 3]]5 Yes QHAMDS

2 12 24 [[288, 278, 4]]5 Yes Beats [[288, 275, 4]]5 in [28]

3 24 13 2 [[624, 612, 4]]5 Yes Same as in [28]

3 24 24 2 [[1152, 1144, 3]]5 Yes Length not obtained with m = 1, 2
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Table 5 A q = 7 sample of codes

m a1 a2 a3 Quantum Code Beats QGV Comment

1 8 [[8, 4, 3]]7 No MDS

1 16 [[16, 12, 3]]7 Yes MDS

1 16 [[16, 10, 4]]7 Yes MDS

1 16 [[16, 8, 5]]7 Yes MDS

1 24 [[24, 20, 3]]7 Yes MDS, same as [54]

1 48 [[48, 44, 3]]7 Yes MDS

2 8 7 [[56, 50, 3]]7 No QHAMDS

2 8 8 [[64, 58, 3]]7 No QHAMDS, beats [[65, 53, 3]]7 in [38]

2 8 8 [[64, 54, 4]]7 No Length not obtained with m = 1

2 8 8 [[64, 48, 5]]7 No Beats [[65, 41, 5]]7 in [38]

2 8 9 [[72, 66, 3]]7 Yes QHAMDS, beats [[75, 63, 3]]7 in [43]

2 8 9 [[72, 56, 5]]7 No Beats [[75, 51, 5]]7 in [43]

2 8 15 [[120, 114, 3]]7 Yes QHAMDS, beats [[126, 114, 3]]7 in [8]

2 8 21 [[168, 162, 3]]7 Yes QHAMDS, beats [[168, 158, 3]]7 in [8]

2 8 21 [[168, 158, 4]]7 Yes Beats [[168, 152, 4]]7 in [8]

2 8 25 [[200, 190, 4]]7 Yes Same as in [43]

2 8 48 [[384, 378, 3]]7 Yes QHAMDS, same as in [14]

2 8 48 [[384, 374, 4]]7 Yes Same as in [14]

2 8 48 [[384, 368, 5]]7 Yes Same as in [14]

2 16 27 [[432, 422, 4]]7 Yes Beats [[432, 419, 4]]7 in [28]

3 16 48 2 [[768, 760, 3]]7 Yes Length not obtained with m = 1, 2

Table 6 A q = 9 sample of codes

m a1 a2 a3 Quantum Code Beats QGV Comment

1 10 [[10, 6, 3]]9 No MDS

1 20 [[20, 16, 3]]9 Yes MDS

1 20 [[20, 14, 4]]9 Yes MDS

1 20 [[20, 12, 5]]9 Yes MDS

1 40 [[40, 36, 3]]9 Yes MDS

2 10 10 [[100, 80, 6]]9 Yes Length not obtained with m = 1

2 10 24 [[240, 230, 4]]9 Yes Beats [[246, 228, 4]]9 in [43]

2 10 55 [[550, 534, 5]]9 Yes Length not obtained with m = 1

3 80 80 2 [[12800, 12792, 3]]9 Yes Length not obtained with m = 1, 2

123



86 Page 22 of 25 B. Barbero-Lucas et al.

Table 7 A q = 11 sample of codes

m a1 a2 a3 Quantum Code Beats QGV Comment

1 12 [[12, 8, 3]]11 No MDS

1 12 [[12, 6, 4]]11 Yes MDS

1 12 [[12, 4, 5]]11 Yes MDS

1 60 [[60, 56, 3]]11 Yes MDS

1 60 [[60, 54, 4]]11 Yes MDS

1 60 [[60, 52, 5]]11 Yes MDS

2 12 15 [[180, 174, 3]]11 Yes QHAMDS, beats [[183, 171, 3]]11 in [43]

2 12 15 [[180, 164, 5]]11 No Beats [[183, 159, 5]]11 in [43]

2 60 120 [[7200, 7172, 7]]11 Yes Length not obtained with m = 1

6 Examples

Tables 3, 4, 5, 6, 7 show some samples of small values of the parameters of the quantum
codes constructed with Theorem 3.7. For their minimum distance, we give the lower
bound t provided by Theorem 3.7. We remind the reader of our notation: q is an odd
prime power, a1 can be any λ(q + 1) where λ is a divisor of q − 1, and a2 and a3 can
take any value between 2 and q2 − 1.

Note that for codes [[n, k, d]]q = [[n, k,≥ t]]q constructed from Theorem 3.7 we
must have t ≤ q+3

2 = 3 when q = 3, and t ≤ q+3
2 = 4 when q = 5.

Recall also codes with n + 2 = k + 2d are called MDS codes and codes with
n = k + 2d are called QHAMDS codes. We also say in the sixth column if that code
beats the quantum Gilbert–Varshamov bound in the sense explained before Theorem
5.2.

In order to compare different quantum codes one may use the length extension,
subcode and smaller distance propagation rules, as stated in [44] for example. We
therefore say that a quantum [[n, k, d]]q code beats a quantum [[n′, k′, d ′]]q code if
at least one of the following holds:

• n < n′ and k = k′ and d = d ′ (length extension)
• n = n′ and k > k′ and d = d ′ (subcode)
• n = n′ and k = k′ and d > d ′. (smaller distance)

In other words, decreasing n, or increasing k, or increasing d, while keeping other
parameters fixed, results in a better code. This is well known, see [44] for example,
where the authors say that “...all other parameters being equal, we record the smallest
n, the largest k, the largest d,...”.

In the tables below we give some examples of codes that result from our construc-
tion, and compare them to the best known codes in the literature. In some cases, we
improve on the best known.

It is possible to have more than one improvement. For example, a [[78, 72, 3]]5
code beats a [[80, 68, 3]]5 code in two ways, because it has a smaller n and also has a
larger k.
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Finally, the article [54] recently appeared on the arxiv and has a construction of
MDS codes with lengths of the form r(q2 − 1)/h where h is an even divisor of q − 1
and r ≤ h/2 (their Theorems 3, 4 and 5). Some of the MDS codes appearing in our
tables may also be obtained with their construction.
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