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Abstract
This paper promotes reinforcement machine learning for route-finding tasks in quan-
tum communication networks, where, due to the non-additivity of quantum errors,
classical graph path or tree-finding algorithms cannot be used. We propose using a
proximal policy optimization algorithm capable of finding routes in teleportation-
based quantum networks. This algorithm is benchmarked against the Monte Carlo
search. The topology of our network resembles the proposed 6G topology and ana-
lyzed that quantum errors correspond to typical errors in realistic quantum channels.

Keywords Routing in quantum networks · Reinforcement learning · Proximal policy
optimization · Entanglement swapping

1 Introduction

Efficient communication has played a crucial role in the evolution of all civilizations
since antiquity [1, 2]. As the evolution continued, our society began to globalize,
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and so have our communications needs, ultimately leading to the introduction of the
Internet [3]. Nowadays, even these classical communication networks seem outdated,
facing the development in the field of quantum communications [4]. The first pro-
posed quantum communications protocols were designed for a one-to-one quantum
key distribution (QKD) [5–7]. Subsequent strategies to encompass more parties have
been proposed [7, 8]. One promising approach is the so-called teleportation-based
quantum networks facilitated by standard or controlled teleportation [9, 10]. The idea
is to concatenate many teleportation-based cells into a large global network, i.e., the
quantum Internet [11]. Many studies have discussed this concept’s potential [12–14],
the network’s possible topologies [15], platforms to realize it on [16], and fundamental
problems to overcome [17].

Quantumnetworks, however, aimbeyondmereQKD,whichwemust considerwhen
designing quantum networks. The major problem that needs to be addressed is finding
an efficientmethod for optimal dynamic routing in these large-scale quantumnetworks.
It seems that teleportation (entanglement swapping) is, for now, the best method for
establishing connections between distant parties in quantum networks [18]. Also,
note that entanglement swapping is the core ingredient for quantum repeaters [19] and
relays [20], allowing combating unfavorable scaling of losses. The unique features
of quantum information prevent reliably employing classical tools such as shortest
path and tree search algorithms [21]. This paper provides solutions to the routing
problem in teleportation-based networks using reinforcement machine learning. The
connection between twodistant parties (Alice andBob) in these networks is established
by repeated use of entanglement swapping by several intermediate nodes resulting in
an entangled state φ̂ shared by the above-mentioned parties, Alice and Bob (see Fig. 1)
[22]. Once they share an entangled state, Alice and Bob are free to use it for secret
key sharing [23], quantum state teleportation [24] or dense coding [25].

Consecutive entanglement swapping in practical quantum networks will necessar-
ily result in entanglement decay. It is therefore imperative to employ methods that
minimize such an adverse effect. A recipe is provided in this paper in the form of
reinforcement machine learning that efficiently searches for the best entanglement-
preserving route possible between two given nodes.We benchmark ourmethod against
a naive Monte Carlo search and show that reinforcement learning performs consider-
ably better in terms of resulting entanglement quality as well as in searching speed.
Moreover, we present two quantum-specific examples where intelligent routing allows
restoring a partially decayed entanglement (case of amplitude damping and correlated
phase noise).

There are many possibilities to quantify the quality of the repeated entanglement
swapping and the quality of the shared entangled state betweenAlice and Bob [26, 27].
We chose the singlet fraction F as the figure of merit because for bipartite entangled
states, F can be directly used to evaluate the usefulness of φ̂ for quantum teleportation
[28]. Singlet fraction

F(φ̂) = max|ψ〉 〈ψ |φ̂|ψ〉, (1)
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Fig. 1 Schemes represent entanglement swapping from the initial to the final point in the quantum commu-
nications network. a Each node possesses pair of particles belonging to two different entanglement states
symbolized by the two black balls inside the nodes, black line between nodes depicts a quantum channel,
green node symbolizes the initial point “Alice”, red balls depict intermediate nodes used for entanglement
swapping, and blue ball represents the final point “Bob”. Bell icon mark where Bell measurement takes
place and swap icon highlights where entanglement swapping is carried out. b Characterization of the road
between the initial and final points where F0, . . . , Fn are singlet fractions shared by two neighboring nodes
(Color figure online)

is defined as the maximal overlap of the investigated state φ̂ with any maximally
entangled state |ψ〉. Maximal achievable teleportation fidelity f of a qubit state is
then calculated as:

f = 2F + 1

3
. (2)

One can naively think that the singlet fraction of the final state shared by Alice to Bob
FAB is obtained as a product of singlet fractions of the entangled states introduced in
the repeated n entanglement swappings (see Fig. 1)

FAB =
n∏

i=0

Fi , (3)

alternatively, one can establish an effective distance d between Alice and Bob using
a logarithm of the singlet fraction

d = − log FAB = −
∑

i

log Fi . (4)

However, this is not generally true. For example, in cases of amplitude damping [29]
or correlated phase noise [30], errors can cancel each other out. If Eqs. (3) and (4)
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were to hold, one should be able to assign a single quantifier to each quantum channel
between nodes and use any graph path or tree-finding algorithm such as the Dijkstra
algorithm and find the route minimizing the distance d [31]. As we show later in this
paper, this yields suboptimal solutions. Note that even prominent dynamic algorithms
such as Bellman–Ford [32] and A* [33] cannot handle these types of errors.

One possible solution capable of handling quantum effects is a brute force in the
form of the Monte Carlo algorithm. The only downside is Monte Carlo’s exponential
scaling with the number of nodes. Such a scaling becomes a game stopper, especially
in the case of an evolving network where it needs to be repeatedly executed. Hence,
a smarter strategy needs to be adopted. In this paper, we propose using the proximal
policy optimization (PPO), an artificial intelligence-based algorithm, developed to
solve complex evolving problems [34]. This algorithm is commonly used in the gaming
industry, where we found inspiration for how to approach the routing problem. We
designed our network as a map in a game for the agent to play, intending to find the
optimal path through the quantum network. We compare the performance of the PPO
against the Monte Carlo and the Dijkstra algorithm demonstrating PPO’s virtues.

2 Quantum network topology

Wefound the inspiration for our network topology in the low-density parity-check code
structure, one of the possible topologies considered for designing the 6Gnetworks. For
the details on the topology, seeFig. 2 [35]. This network simulates a real-world scenario
where several local users form groups connected among themselves by central nodes.
We chose this particular topologymainly due to its robustness against local connection
problems, contributing to steady performance. In case of random malfunction in any
specific node, this topology offers several possible reroutes to ensure stability. Each
connection in the network structure represents a quantum channel using which two
neighboring nodes share an entangled two-qubit state. For simplicity, we limit the
network topology to a maximum of 4 connections per node. Moreover, each node can
perform entanglement swapping, i.e., Bell measurement. All shared entangled states
are fully characterized by their density matrices. This representation allows us to fully
describe how noisy or damaged each connection is. We can easily simulate different
sources of disturbance, such as white noise in the channel or amplitude damping. For
an overview of the initialization part, see Pseudocode I. These essential characteristics
enable us to simulate various scenarios in the communications network that we later
present in the Results section.

Pseudocode I: Initialization of the quantum network

define nodes [N] // vector of length N
define connections [N;4] // matrix: N nodes × max. 4 connections
define shared_states [N;4;4;4] // matrix: defines 4 × 4 (two-qubit) density matrix of shared

state per connection; for density matrices, see Eqs. (5–7)
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The ultimate goal is to distribute entangled state between Alice and Bob. As men-
tioned in the previous section, the quality of this state is given in terms of singlet
fraction FAB , which we maximize. We cast this task as a “game” for the tested algo-
rithms to play. The final reward is received in proportion to FAB . Every connection
can be used in each game only once because the used entangled pair is consumed in
entanglement swapping. We choose the initial and final users’ positions so that the
agent can successfully connect them in a given number of actions. The actions count is
further used to compare the agent performance because it represents the consumption
of resources (i.e., computational time and entangled pairs). We made the routing in
the network realistic by ensuring that even the unperturbed connections have a singlet
fraction of the distributed state F = 0.99 by adding a corresponding amount of white
noise, forcing the PPO algorithm toward the shortest path solutions. To represent white
noise, we model the shared entangled states in the form of Werner states:

ρ̂w = p|ψ−〉〈ψ−| + (1 − p)1̂/4. (5)

|ψ−〉 = (|01〉 − |10〉)/√2 represents singlet Bell state, 1̂/4 stands for the maximally
mixed state, and p is the mixing parameter. Amplitude damping, on the other hand, is
represented by generalizing the Bell states |ψ−〉 to

|ψ−
g (θ)〉 = cos(θ)|01〉 − sin(θ)|10〉, (6)

where θ ∈ [0; π
2 ] is the damping parameter. Lastly, an arbitrary phase shift can be

described as:

|ψ−
s (φ)〉 = (|01〉 − eiφ |10〉)/√2, (7)

where φ ∈ [0;π ] is the phase shift parameter and, if uncompensated and random,
renders the state shared between Alice and Bob effectively mixed.

3 Routing algorithms

We tested different algorithms capable to solve routing in quantum networks and com-
pared their performance. Namely, we tested the PPO, Dijkstra algorithm, and Monte
Carlo method on the quantum communications network (see Fig. 3). PPO is a policy
gradient method for reinforcement learning, which uses multiple epochs of stochastic
gradient ascent to perform each policy update. It is well known for the simplicity
of implementation to various problems and overall performance compared to similar
family algorithms. We use stable baseline 3 framework [36] and its implementation
of the PPO in our work.

The PPO agents starts at Alice’s node. It can choose from at most four actions
corresponding to the maximum number of connections any node can have. If the
agent chooses an invalid action (i.e., a non-existing connection), the game ends with a
negative reward. If a valid link is selected, the agent moves to the node connected by
the chosen connection (action). At this point, entanglement swapping is implemented,
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Fig. 2 This figure shows a visualization of the quantum communications network. The entangled photon
pair marked “Alice” represents the initial position for our agents, and blue circle named “Bob” marks the
ending point of the route. Full black lines set possible routes for entanglement swapping, red thick lines
highlight the optimal solution under ideal conditions, and black cubes represent primary connection nodes
between local clusters (Color figure online)

leading to a shared entangled state between Alice and the connected node. Selecting
action and implementing entanglement swapping constitutes one action. A maximum
of 15 actions limits the agent; if depleted, the game ends. The preliminary reward is
calculated at the end of each action using the formula:

Rp = FAi − FAi−1 . (8)

where FAi stands for the singlet fraction of the newly established entangled state, while
FAi−1 is the singlet fraction resulting from entanglement swapping in the preceding
action (FA0 = 1 in case of the first action). We tuned the n-steps hyperparameter
of the PPO according to the complexity of the designed quantum network topology.
Note that the n-steps hyperparameter determines the number of actions the agent
takes before updating the parameters of its policy. We kept all other hyperparameters
in default values because we did not notice significant changes when tuning them. It
is the reward function structure that has the most noticeable influence on the agent’s
performance. We save the PPO’s policy after every 100–5000 games based on the
scenarios’ complexity. If the agent reaches the final destination (Bob), it receives a
final reward

R = 100FAB . (9)
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Fig. 3 The aim is to identify the optimal approach toward route finding in the quantum networks (i.e.,
environment). The agent can choose from three unique algorithms Monte Carlo, Dijkstra, and PPO. Ulti-
mately, we can compare performance and various amounts of consumed resources and thus identify the
most suitable candidate for solving a given task

In case of the Monte Carlo algorithm, we applied the same game rules as for the
PPO. So, we can obtain a straightforward comparison. The only difference is that
Monte Carlo chooses its actions randomly in each game with no intelligent policy.
For the overview of the route-finding algorithm, see Pseudocode II. When using the
PPO algorithm, the policy predicting neural network of the PPO algorithm is used
to pick the connection in a given state (see pick connection in the Pseudocode II).
Based on the calculated reward (see calculate preliminary reward in the Pseudocode
II), the critic neural network of the PPO algorithm estimates the advantage and from it
also the loss function. Subsequently, both the aforementioned neural networks of the
PPO algorithm are updated using the back-propagation of the loss function gradient.
Detailed working principle of the PPO algorithm itself is provided in “Appendix”.

Dijkstra’s algorithm, on the other hand, needs more information and the data struc-
ture of the task. Unlike the previous agents, it needs to know the exact topology of
the communications network ahead as well as information about each connection.
Therefore, the Dijkstra algorithm does not operate under the same conditions as the
previously mentioned agents. At the expense of requiring all the information, it is very
efficient at finding distance d from Alice to Bob. A brief description on the working
principle of the PPO andDjikstra algorithms is presented in “Appendix”, and the entire
Python code is available as Digital Supplement.
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Pseudocode II: Route-finding

set agent_node = Alice
set agent_state = singlet // initial state held by the agent
actions_used = 0
repeat:

actions_used = actions_used + 1
pick connection // from current node to a next one

// PPO initially randomly, subsequently based on learned policy
// Monte Carlo always randomly

update agent_state // execute entanglement swapping on present state held by
the agent using density matrix of chosen connection

calculate singlet fraction of agent_state
calculate preliminary reward // see Eq. (8)
set agent_node = next node // depending on the connection chosen

until: agent_node = Bob
or actions_used >15
or no available connections exist at agent_node calculate final reward // see Eq. (9)

4 Results

Firstly, we investigate routing in a quantum network burdened solely by white noise.
This scenario is close to the classical network because white noise is additive and
cannot be compensated. In a quantum network, however, other types of errors can
occur. As examples of such errors, we consider amplitude damping and correlated
phase noise, which we investigate in the second and third subsections. Finally, a
dynamically evolving network noise is considered in the last subsection.

4.1 Network affected by white noise

We start with a completely operational network (see the first topology in Fig. 9 in
Appendix). A singlet fraction F = 0.99 characterizes all connections. Optimal routing
through this network between Alice and Bob involves 6 intermediary nodes. Then,
we started introducing damaged connections (i.e., connections with F = 0.6), thus
increasing the number of the intermediary nodes (8,10,12,14,16) required for finding
the optimal solution. The optimal routing paths, under those circumstances, are shown
in Fig. 9 aswell. The performances of the three agents (PPO,MonteCarlo,Dijkstra) are
summarized in Table 1. The results show that theMonte Carlo method performs worst
than PPO even in the case of the simplest scenario (fully operational network with 6
intermediary nodes to find a solution). The more complex scenarios become, the more
prominent the PPO’s performance gain is. More specifically, in the case of a network
where at least 16 intermediary nodes are required to find a solution, PPO outperforms
theMonte Carlomethod by a factor of about 13000. For visualization, see Fig. 4. Given
the additivity of white noise, the Dijkstra algorithm significantly outperforms both
PPO andMonte Carlo in these almost classical scenarios if the complexity surpasses 8
intermediary nodes to complete the task. However, the situation significantly changes
with the introduction of purely quantum noise.
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Table 1 Results of the three agents applied to the networks of different complexities

Intermediary nodes (count) 6 8 10 12 14 16

Number of actions

PPO 780 1280 6880 7680 11,840 41K

Monte Carlo 1758 11,766 259K 683K 11M 546M

Dijkstra 2025

This complexity is parametrized by the minimal number of intermediary nodes (first row of the table) that
need to be visited in order to find a valid routing solution. The number of actions is the average number of
actions required to find a solution for a particular topology. Here M = 106 and K = 103

Fig. 4 The graph compares the
performance of the PPO
algorithm, represented by the
red (right) columns, and the
Monte Carlo algorithm, depicted
by black (left) columns, on
different scenarios requiring a
given number of passes through
intermediary nodes in the
quantum networks (Color figure
online)

4.2 Network affected by amplitude damping

Amplitude damping, as introduced in Eq.6, skews the amplitude balance toward one
of the two components (|01〉 or |10〉). As a result, the singlet fraction decreases.
Two connections with mutual opposite component damping can rebalance the ampli-
tudes increasing the singlet fraction (at the expense of overall losses). This feature
is intractable by greedy or dynamic algorithms such as Dijkstra, Bellman–Ford, or
A*. In order to use those algorithms, one needs to save all preliminary solutions and
compare them, which would cause exponential scaling of the algorithm complexity.
Ultimately, the agent needs to figure out that in order to complete the task, it needs
to find such a route where individual amplitude damping cancels each other out as
much as possible. We forced the agent to use this strategy by designing scenarios
where the agent must choose at least one amplitude-damped connection to reach the
final destination. Moreover, the resulting singlet fraction is maximized when a second
(opposite) amplitude-damped connection is chosen by the agent. Similar to the previ-
ous subsection, we present the agent with scenarios ranging from 6 to 16 intermediary
nodes (see Fig. 10).

The agents’ performance is summarized in Table 2 and plotted in Fig. 5. One can
notice that due to these complex initial conditions, both Monte Carlo and PPO algo-
rithms require more actions to solve the initial (i.e., 6 intermediary nodes) scenario.
However, one can observe a similar difference in scaling between PPO and Monte
Carlo as in the previous scenario, i.e., Monte Carlo scales considerably less favorably.
The PPO outperforms theMonte Carlo from the beginning, and in the case of the most
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Table 2 Results of the two agents applied to the networks of different complexity, including effects such
as amplitude damping

Intermediary nodes (count) 6 8 10 12 14 16

Number of actions

PPO 1740 13K 14K 15K 54K 60K

Monte Carlo 2730 38K 257K 5.5M 13.7M 546M

This complexity is parametrized by the minimal number of intermediary nodes (first row of the table) that
need to be visited in order to find a valid routing solution. The number of actions is the average number of
actions required to find a solution for a particular topology. Here M = 106 and K = 103

Fig. 5 The graph compares the
performance of the PPO
algorithm, represented by the
red (right) columns, and the
Monte Carlo algorithm, depicted
by black (left) columns, on
different scenarios in the
quantum networks where we
also introduced connections
affected by amplitude damping
(Color figure online)

complex scenario, i.e., 16 intermediary nodes, the PPO outperforms the Monte Carlo
method by a factor of about 9000.

4.3 Network affected by correlated phase noise

This subsection demonstrates how agents handle another type of reversible damage
caused by the correlated phase noise. These scenarios are motivated by one of the
practical approaches toward quantum information distribution proposed by Xu et al.
[30]. Testing Dijkstra algorithms is again pointless for the reasons we mentioned in
the previous subsection. To demonstrate the versatility of the PPO agent, a brand new
set of scenarios involving 6–16 intermediary nodes were generated. For more details,
see Fig. 11. In the current scenario, the agent starts from the initial node Alice and in
the first action, it can only choose from paths damaged by the correlated phase noise.
The agent aims to search the network for a suitable path to reverse the initial correlated
phase shift. If successful, it must then find the final node, Bob.

Results of this test are shown in Table 3 and plotted in Fig. 6. One can notice that
the result once again supports PPO algorithm superiority.

4.4 Evolving quantum network

Ultimately, we test the agents on dynamically evolving scenarios in our quantum
network. The agents’ goal in this final test is to maximize the overall functionality of
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Table 3 Results of the two agents applied to the networks of different complexity, including effects such
as correlated phase noise

Intermediary nodes (count) 6 8 10 12 14 16

Number of actions

PPO 1320 2700 10K 20K 27K 39K

Monte Carlo 2129 13K 123K 1.4M 10.9M 60M

This complexity is parametrized by the minimal number of intermediary nodes (first row of the table) that
need to be visited in order to find a valid routing solution. The number of actions is the average number of
actions required to find a solution for a particular topology. Here M = 106 and K = 103

Fig. 6 The graph compares the
performance of the PPO
algorithm, represented by the
red (right) columns, and the
Monte Carlo algorithm, depicted
by black (left) columns, on
different scenarios, staged in the
quantum networks where we
also introduced connections
causing correlated phase noise
(Color figure online)

Fig. 7 Illustration of the Agents’ performance on the evolving quantum communication network. Thin
stripes show the overall functionality of the quantum network throughout its evolution, and the thick stripes
show the functionality during each scenario of its evolution

the network throughout the evolutions. These scenarios reflect the realistic behavior
of real-world quantum networks where various errors appear at random places and
times. The entire routing task lasts for 106 actions, during which the quantum network
undergoes ten scenarios (i.e., ten events when various connections become damaged
or unperturbed). The evolution continues regardless of the agent’s success. In this
final test, we use all three types of errors discussed in previous chapters, namely white
noise, amplitude dumping, and correlated phase noise. To make the interpretation of
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the results clear, we set some ground rules. Suppose the agent finds a solution (i.e.,
a path between Alice and Bob with F > 0.8) to the current scenario. In that case, it
will use this solution for as long as its singlet fraction remains F > 0.8 (i.e., until
the scenario evolves). PPO agent at that point also saves its current policy. After the
situation evolves, both agents search for a new solution. PPO starts searching from the
last saved policy and Monte Carlo randomly from scratch. Each evolution introduces
errors so that the previous solution is no longer valid (F < 0.8). Hence, agents need
to find a new route. This condition does not mimic the natural network behavior,
but it is the most extreme case where the PPO agent faces the most disadvantageous
conditions. All evolutions of the quantum network are depicted in Fig. 12. Resulting
success rates are shown in Fig. 7. From the obtained results, it is clear that if we let
agents deal with an undamaged or slightly damaged network (scenarios 1,2,10), both
agents can keep the network functional for more than 95% of the time. If the scenario
becomes a bit more complex (scenario 6), the PPO agent noticeably outperforms the
Monte Carlo agent. For even more complex scenarios, Monte Carlo could not find a
solution in a given amount of actions. Due to these poor results, Monte Carlo kept the
network functional for 33.1% of the overall time. On the other hand, the PPO found
a solution in 10/10 scenarios and kept the network functional for 93.4% of the overall
time.

5 Conclusions

This paper compares three different algorithms (PPO, Dijkstra, and Monte Carlo) for
route-finding in quantum communication networks. We benchmark these algorithms
on various scenarios in a realistic network topology using singlet fraction as the fig-
ure of merit. In these scenarios, we introduce additive white noise as well as purely
quantum errors such as amplitude damping and correlated phase noise.

We explicitly show that the non-additivity of quantum errors prevents traditional
graph path or tree-finding algorithms (Dijkstra) from finding the optimal solution.
While the Monte Carlo search allows finding such optimal solutions, its exponential
scaling makes its deployment prohibitive in large complex networks. We demonstrate
that reinforcement machine learning in the form of the PPO algorithm circumvents
the limitations of both aforementioned approaches. It can cope with purely quantum
errors and, simultaneously, does not suffer from unfavorable scaling.

Our numerical model reveals that the PPO advantage over mereMonte Carlo search
becomes significant when the number of intermediary nodes in the path increases
(e.g., for 16 intermediary nodes, PPO outperforms Monte Carlo by a factor of several
thousand). Moreover, in a dynamically evolving quantum network, the PPO could
maintain an operational route for about 93% of the time, while Monte Carlo for less
than 33%.

We believe that our research further promotes reinforcement learning as an invalu-
able method for improving quantum communications.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11128-024-04287-z.
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Appendix

Dijkstra algorithm

The Dijkstra algorithm is designed to find the shortest distance from one node to every
other node in the network. The working principle of this algorithm is as follows. In
the first step, we choose the initial node, i.e., Alice. Then, the algorithm starts filling
a table storing all the information about the distances from the initial node to every
other node. Distance is set to infinity if there is a nonexisting direct connection from
the initial node. In the next step, it moves from the initial node to the closest node.
The distance table is updated by replacing nonoptimal (longer) distances with optimal
(shorter) distances from the initial node to every node, assuming the new path passes
through the current node. This procedure continues until the algorithm visits all nodes
and obtains the optimal path from Alice to all nodes. For an illustration, see Fig. 8 and
Table 4.

PPO algorithm

Proximal policy optimization [34] is a type of deep reinforcement learning algorithm
developed as a successor to Deep mind [37]. Unlike Deep mind, PPO uses online
learning, which means that PPO does not use a replay buffer to store past experiences.
Once the batch of experiences has been used to do gradient updates of the policy, these
experiences are discarded. PPO also simplified the implementation of the trust region,
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Table 4 Description of the
evaluation of the Dijkstra
algorithm on the illustrative
communication network
showcased in Fig. 8

Phase 1 2 3 4 5
Unvisited nodes B,C,D,E B,D,E B,D D
Current node A C E D B

Distance

A → A 0 0 0 0 0

A → B 9 7 7 7 7

A → C 1 1 1 1 1

A → D ∞ 7 4 4 4

A → E 10 2 2 2 2

Here, each phase contains five actions (corresponding to the number
of nodes)

which significantly improved the efficiency of the reinforcement learningmethod. The
primary motivation behind the trust region is to limit rapid changes in the policy, thus
allowing the agent to train more efficiently. Unlike the original trust region policy opti-
mization TRPO [38], which introduces a rather complex clip function, PPO simplified
the implementation of this function, making it much more practical (Figs. 9, 10, 11,
12).

Let us define the PPO policy as

LPPO
t (θ) = Êt

[
LCLIP
t (θ) − c1L

V F
v (θ) + c2S [πθ ] (st )

]
(10)

where LCLIP
t represents the clipped version of the normal gradient objective, LV F

t is
squared-error loss responsible for updates of the baseline network, S stand for entropy
bonus term, which ensures that the agent does enough exploration during training, and
st represents the current state. Hyperparameters c1 and c2 set the contribution of LV F

t
and S to the final policy. The clipped version of the normal gradient objective

LCLIP
t (θ) = Êt

[
min

(
rt (θ) Ât ; clip (rt (θ) , 1 − ε, 1 + ε)

)
Ât

]
(11)

represents the core of the whole algorithm. The expectation operator Êt is taken over
theminimum of the two terms rt and clip (rt , 1 − ε, 1 + ε)where ε ranges from {0, 1}.

Fig. 8 Depiction of an
illustrative communications
network where the red circle A
marks the initial position and the
numbers beside the connections
correlate to the distance (Color
figure online)
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Fig. 9 The figure shows various quantum network scenarios where we consider connections affected by
white noise only. We prepared scenarios ranging from simplest solvable using 6 intermediary nodes to
complex requiring up to 16 intermediary nodes. The thick red line marks one of the optimal solutions to
the presented scenario, and the double blue dashed lines represent irreversibly damaged connections (Color
figure online)
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Fig. 10 The figure shows various quantum network scenarios where we consider connections affected
by white noise and amplitude dumping. We prepared scenarios ranging from simplest solvable using 6
intermediary nodes to complex requiring up to 16 intermediary nodes. The thick red line marks one of
the optimal solutions to the presented scenario, double blue dashed lines represent irreversibly damaged
connections, and black chain marks connections cause amplitude damping (Color figure online)

123



Routing in quantum communication networks using... Page 17 of 20 89

Fig. 11 The figure shows various quantum network scenarios where we consider connections affected by
white noise and correlated phase noise. We prepared scenarios ranging from simplest solvable using 6
intermediary nodes to complex requiring up to 16 intermediary nodes. The thick red line marks one of
the optimal solutions to the presented scenario, double blue dashed lines represent irreversibly damaged
connections, and wrap-around lines mark connections causing correlated phase noise (Color figure online)

123



89 Page 18 of 20 J. Roik et al.

Fig. 12 The figure shows evolving quantum communications network and the response of the PPO agent
to those changes. The thick red line marks the PPO’s solution in the final iterations before the change in
the current scenario. Double-blue dashed lines represent damaged connections, wrap-around lines mark
connections causing correlated phase noise and black chain marks connections causing amplitude damping
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rt defines the objective for normal policy gradients,which pushes policy toward actions
that yield a higher positive advantage over the baseline. Estimation of the advantage
function Ât can be positive or negative, which dictates the effect of the min operator.
The probability ratio rt determines the relation between newly updated policy outputs
and the previous old version of the network. If the rt is > 1, the action becomes more
likely than it was in the old policy version. On the other hand, if < 1, the action
becomes less likely than it was before the last gradient step. Policy πθ is represented
by a neural network fed by observed states of the environment as input and gives
suggestions of action as output. Ât has two contributors, discounted sum

Dt =
∞∑

k=0

γ krt+k (12)

and baseline estimation Bt . A discounted sum of rewards Dt is a weighted sum of
all rewards rt+k the agent receives during each time step k of the current episode.
Parameterγ ranges from0 to 1 and sets howmuch the agent values immediate reward rt
over future rewards.Baseline estimation Bt gives an estimate of the Ât , trying to predict
the final return of the episode from the current state. Since Bt is also implemented as
a neural network, the result is a noisy value function estimation.
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