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Abstract
Quantum entanglement and quantum entropy are crucial concepts in the study of mul-
tipartite quantum systems. In thiswork, we showhow the notion of concurrence vector,
re-expressed in a particularly useful form, provides new insights and computational
tools for the analysis of both. In particular, using this approach for a general multi-
partite pure state, one can easily prove known relations in an easy way and to build
up new relations between the concurrences associated with the different bipartitions.
The approach is also useful to derive sufficient conditions for genuine entanglement
in generic multipartite systems that are computable in polynomial time. From an
entropy-of-entanglement perspective, the approach is powerful to prove properties of
the Tsallis-2 entropy, such as the subadditivity, and to derive new ones, e.g., a modified
version of the strong subadditivity which is always fulfilled; thanks to the purification
theorem these results hold for any multipartite state, whether pure or mixed.
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1 Introduction

Entanglement is a key notion in quantum mechanics and in the highly developing
field of quantum information. For bipartite systems, H = HA ⊗ HB , there are rather
simply criteria to detect and quantify the entanglement of pure states. In particular, if
the state is entangled the reduced density matrix, ρA = trBρ, corresponds to a mixed
state, with trρ2

A < 1. Accordingly, the value of the concurrence, C2 ∝ (
1 − trρ2

A

)
or

the von Neumann entropy, S = −trρA ln ρA are standard measures of entanglement.
Things getmore involved formultipartite Hilbert spaces,H = H1⊗H2⊗· · ·⊗HN .

In that case there are 2N−1−1 inequivalent bipartitions. If the system is entangled with
respect to all of them, it is called a genuine multipartite entangled state. Apart from
its theoretical importance, genuine entanglement is relevant for applications such as
quantum cryptography [1], quantum computation [2], quantum teleportation [3], high-
precision metrology [4], spin chains [5] and even biological systems [6]. The structure
of genuine entanglement is quite intricate and its complexity grows exponentially
with the number of subsystems. Actually, the problem of classifying and quantifying
the genuine entanglement of general multipartite systems is still open (see [7–14] for
relevant work in this subject).

In this work, we explore the power of the “concurrence vector” notion [15–18] to
extract powerful information about the entanglement structure of a generalmultipartite
pure state. In Sect. 2, we review the concept of concurrence vector and introduce a
simple expression which turns out to be quite useful to establish connections between
the entanglement of different bipartitions (Sect. 3). In Sect. 4, we show that this
formalism allows a simple derivation and an intuitive, geometrical, understanding
of several triangular inequalities presented in the literature. Also, it allows to obtain
new inequalities and generalize results that were only proven for a system of three
qubits (the complete proof of the latter is given in the Appendix). In Sect. 5, we
explore the concurrence from an entropy-of-entanglement perspective, showing that
the concurrence vector framework allows to easily prove the subadditivity condition
for the Tsallis-2 entropy (directly related to the concurrence), as well as the violation of
the strong subadditivity condition. In this sense, we propose a modified version of the
strong subadditivity conditionwhich is always fulfilled, and derive other new relations.
Thanks to the purification theorem these results are completely general for multipartite
states, whether pure or mixed. In Sect. 6, we exploit the concurrence vector approach
to formulate very simple sufficient conditions for genuine entanglement, which are
computable in polynomial time. Finally, the conclusions are presented in Sect. 7.
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2 Preliminaries

2.1 Notation

We start with a multipartite Hilbert space

H = H1 ⊗ H2 ⊗ · · · ⊗ HN , (1)

using indices i, j, k, · · · to design the basis vectors of H1, H2, H3... . Each index
takes as many values as the dimension of the corresponding Hilbert space. We are
not imposing any restriction here, i.e., each Hilbert space may have a different (finite)
dimension.

Consider a bipartitionH = HA⊗H
uA, and denote I the subset of indices associated

with HA and uI the complementary set of indices, associated with H
uA (in general we

will denote collective indices with capital letters). Suppose now that the system is in
a normalized pure state

|ψ〉 =
∑

i, j,k...

ai jk...|i〉| j〉|k〉 · · · , (2)

with density matrix ρ = |ψ〉〈ψ |. Then, the entanglement of this state with respect to
the previous bipartition is often quantified by the concurrence [19–27],

C2
I |uI = 2

(
1 − trρ2

A

)
, (3)

where ρA is the reduced density matrix, i.e., after tracing in uI . (Other normalizations
of C2

I |uI , as well as alternative equivalent definitions, can be found in the literature.)

The important point is that the state is biseparable if and only if C2
I |uI = 0.

2.2 The concurrence vector

Consider again the previous bipartition H = HA ⊗ H
uA. Clearly, the state (2) is

separable as long as it can be written as

|ψ〉 =
(

∑

I

αI |I 〉
)

⊗
⎛

⎝
∑

uI

β
uI |uI 〉

⎞

⎠ , (4)

so that

ai jk... = aI uI = αIβuI . (5)
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Then, if we view aI uI as a matrix of coefficients, for a separable state it has rank=1,
which means that all its 2 × 2 minors are vanishing. Denoting by

[a]{I1 I2}{uI1 uI2} = aI1 uI1aI2 uI2 − aI1 uI2aI2 uI1 (6)

the minor corresponding to the rows I1, I2 and columns uI1, uI2, the state is biseparable
iff

∑

I1<I2,uI1<uI2

∣∣[a]{I1 I2}{uI1 uI2}
∣∣2 = 1

4

∑

I1,I2,uI1,uI2

∣∣[a]{I1 I2}{uI1 uI2}
∣∣2 = 0. (7)

Here I1, I2 (uI1, uI2) run over all possible values of I (uI ). The latter expression is actually
equivalent to the concurrence definition (3). To check this, notice that

1

4

∑

I1,I2,uI1,uI2

∣
∣[a]{I1 I2}{uI1 uI2}

∣
∣2 = 1

4

∑

I1,I2,uI1,uI2

[a]{I1 I2}{uI1 uI2}
[
a†

]

{uI1 uI2}{I1 I2}

= 1

2

∑

I1,I2

[
aa†

]

{I1 I2}{I1 I2}
, (8)

where the last expression is just the sum of the principal minors of the reduced density
matrix aa† = ρA. On the other hand, by Cauchy-Binet theorem,

1

2

∑

I1,I2

[ρA]{I1 I2}{I1 I2} = 1

2

∑

I1 �=I2

λI1λI2 = 1

2
(1 −

∑
λ2I ) = 1

2
(1 − trρ2

A), (9)

where λI are the eigenvalues of ρA, and we have used
∑

λI = 1. In summary, the
concurrence definition (3) is equivalent to

C2
I |uI =

∑

I1,I2,uI1,uI2

∣∣[a]{I1 I2}{uI1 uI2}
∣∣2 = ‖ �CI |uI‖2, (10)

where the “concurrence vector” is the ordered list of all the minors of the matrix of
coefficients aI uI :

�CI |uI = {[a]{I1 I2}{uI1 uI2}} = {aI1 uI1aI2 uI2 − aI1 uI2aI2 uI1}. (11)

Note that, denoting D = dimH, the concurrence vector has length D2, since aI uI has
D entries. The previous notion of concurrence vector has been already considered in
the literature [15–18].
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2.3 A useful expression

Let us express the concurrence vector (11) in a more useful way. First define the
(dimension D2) vector �A, with components

Ai1 j1k1...; i2 j2k2... = (ai1 j1k1...) (ai2 j2k2...) (12)

for all possible values of the indices. Notice that Ai1 j1k1...; i2 j2k2... are simply the coef-
ficients of the state |ψ〉 ⊗ |ψ〉 ∈ H ⊗ H. If all the coefficients are real the entries of
�A coincide with those of the density matrix, but this is not the general case. Under a
permutation of the i−index, say Pi , associated with the Hilbert spaceH1, �A changes
as1

Pi �A = {(ai2 j1k1...) (ai1 j2k2...)}. (13)

This is simply a certain re-ordering of the components of �A. Note that Pi are Her-
mitian linear operators satisfying P2

i = 1 and [Pi , Pj ] = 0. Let us now consider an
“elementary bipartition”, i.e., one between one of the initial parties and the rest, say
H1 ⊗ (H2 ⊗ H3 ⊗ · · · ). Then the concurrence vector (11) (with I = i) reads

�Ci |ui = {ai1ui1ai2ui2 − ai1ui2ai2ui1} = (1 − Pi ) �A. (14)

Similarly, the concurrence vector (11) associated to the bipartitionH = (H1 ⊗H2)⊗
(H3 ⊗ · · · ) reads

�Ci j |ui j = {ai1 j1 Ŋi1 j1 ai2 j2 Ŋi2 j2 − ai1 j1 Ŋi2 j2 ai2 j2 Ŋi1 j1} = (1 − Pi Pj ) �A. (15)

These expressions are straightforwardly extended for other bipartitions. In general, for
a bipartition I |uI , with I = i, j, ...,m (or any other subset of indices) the concurrence
vector reads

�CI |uI = �C
uI |I = (1 − PI ) �A ≡ (1 − Pi Pj · · · Pm) �A. (16)

Mathematically, the elementary permutations, Pi , Pj , . . . are the generators of the
group of all permutations of indices, {PI }, which is a commutative ZN

2 group. Note
that PI �A = P

uI
�A since �A is obviously symmetric under the interchange of all indices.

So, the group contains 2N−1 inequivalent permutations, corresponding to the possible
bipartitions ofH. This includes the trivial bipartitionH = HA ⊗ ∅, corresponding to
the identity of the group. So, there are in fact 2N−1 − 1 non-trivial permutations and
bipartitions. For each one, the associated concurrence vector is given by (16). Note
also that (1 − PI ) are “projectors”, satisfying (1 − PI )2 = 2(1 − PI ).

Next, we will exploit the notion of concurrence vector and its latter expression (16)
to derive some direct consequences.

1 If we view Ai1 j1k1,...; i2, j2k2,... as an D × D matrix (analogous to the density matrix associated with
|ψ〉〈ψ |), then this permutation is equivalent to perform a partial transpose in the i−index.
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3 Connection between the entanglements of different bipartitions

The idea of concurrence vector allows to derive the entanglement of any of the 2N−1−1
different bipartitions from the entanglement of the N elementary bipartitions. In other
words, we can use the concurrence vectors of the latter as building blocks to construct
any other concurrence.

For example, the concurrence of two parts with respect to the rest, say �Ci j |ui j , is

related to the elementary ones, �Ci |ui �C j |uj , by

�Ci j |ui j = (1 − Pi Pj ) �A = Pj

(
(1 − Pi ) − (1 − Pj )

) �A = Pj

( �Ci |ui − �C j |uj
)

, (17)

or equivalently

�Ci j |ui j = (1 − Pi Pj ) �A =
(
(1 − Pi ) + Pi (1 − Pj )

) �A = �Ci |ui + Pi �C j |uj . (18)

More generically, the concurrence vector, �CI |uI , of an arbitrary bipartition, say I =
{i, j, ....,m, n}, can be expressed as

�CI |uI = (1 − Pi Pj · · · Pn) �A
= [

(1 − Pi ) + (
Pi − Pi Pj

) + · · · + (
Pi Pj ...Pm − Pi Pj ...Pm Pn

) ] �A
= �Ci |ui + Pi �C j |uj + Pi Pj �Ck|uk + · · · + Pi Pj · · · Pm �Cn|un . (19)

This shows that the information contained in the N elementary concurrence vectors is
enough to built any other concurrence vector, and thus the corresponding concurrence,
C2
I |uI = ‖ �CI |uI‖2.

4 Triangular inequalities

Consider a tripartition of the Hilbert space {i, j, ui j}. The corresponding concurrence
vectors are related by Eq. (17), which can be written as

Pj �Ci j |ui j = �Ci |ui − �C j |uj . (20)

As these three vectors form a triangle, their lengths satisfy the triangular inequality.
Since ‖Pi �Ci j |ui j‖ = ‖ �Ci j |ui j‖ = Ci j |ui j , the inequality reads

Ci j |ui j ≤ Ci |ui + C j |uj (21)

(and permutations of the three terms). This triangular inequality has been shown in
previous literature, e.g., in refs [13, 14]. With the use of concurrence vectors it is a
quite trivial result since the involved vectors form a triangle (with a permutation of
components in one of them). This provides a transparent geometrical interpretation of
the triangular inequality.
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We can also show very easily the (stronger) inequality for the squared of the con-
currences [28],

C2
i j |ui j ≤ C2

i |ui + C2
j |uj (22)

(and permutations). To see this notice that

C2
i j |ui j = ‖(1 − Pi Pj ) �A‖2 = ‖(1 − Pi ) �A − (1 − Pj ) �A‖2

= C2
i |ui + C2

j |uj − 2 �A†(1 − Pi )(1 − Pj ) �A, (23)

where the last term is negative semidefinite:

− 2 �A†(1 − Pi )(1 − Pj ) �A = −1

2
�A†((1 − Pi )(1 − Pj )

)2 �A

= −1

2
‖(1 − Pi )(1 − Pj ) �A‖2 ≤ 0. (24)

Clearly, relations (21, 22) hold for any tripartition of the Hilbert space, i.e., the
indices i, j can be replaced by collective indices I , J when I ∩ J = ∅. If I ∩ J �= ∅
we simply note that

�CI�J |ŐI�J = (1 − PI PJ ) �A = PJ

(
(1 − PI ) − (1 − PJ )

) �A = PJ

( �CI |uI − �CJ | uJ

)
,

(25)

where I � J = I ∪ J \ I ∩ J is the set of indices in either I or J , but not in both.
Hence, analogous expressions to Eqs. (23, 24) can be obtained,

C2
I�J |ŐI�J = C2

I |uI + C2
J | uJ − 2 �A†(1 − PI )(1 − PJ ) �A,

−2 �A†(1 − PI )(1 − PJ ) �A = −1

2
‖(1 − PI )(1 − PJ ) �A‖2 ≤ 0, (26)

and in consequence the triangular inequalities (21, 22) generalize to non-disjoint sub-
systems as

CI�J |ŐI�J ≤ CI |uI + CJ | uJ ,

C2
I�J |ŐI�J ≤ C2

I |uI + C2
J | uJ . (27)

On the other hand, in ref. [29] itwas shown that, if the systemconsists of three qubits,
the inequality (22) becomes an equality only when either Ci |ui or C j |uj are vanishing;
otherwise the “≤” sign in (22) becomes strict inequality “<”. In Appendix A we show
that this interesting result holds for any tripartition, independently of the dimension
of the subsystems. As a consequence, the area of the “concurrence triangle” built up
with the squared concurrences of a tripartite system is a consistent measure of genuine
entanglement. This entanglement measure was advocated in ref.[14, 29] for systems
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of three qubits, but this result shows that it can be extended to arbitrary dimension of
the subsystems. Besides, the same property holds for non-disjoint tripartitions, i.e.,
Eq.(27) becomes an strict equality iff either CI |uI or CJ | uJ are vanishing.

Finally, using the general expression (19) one can go beyond tripartitions and derive
other inequalities. An obvious one comes from the fact that the vectors involved in
(19) form a (non-necessarily flat) polygon, so they satisfy the polygonal inequality
(i.e., the extension of the triangular inequality to polygons). Since the permutations
do not modify the norm of the various vectors involved, we conclude that

CI |uI ≤ Ci |ui + C j |uj + · · · + Cm| um,

C2
I |uI ≤ C2

i |ui + C2
j |uj + · · · + C2

m| um, (28)

as well as

CI�J�···�M| ŔI�J�···�M ≤ CI |uI + CJ | uJ + · · · + CM| uM ,

C2
I�J�···�M| ŔI�J�···�M ≤ C2

I |uI + C2
J | uJ + · · · + C2

M| uM (29)

(and permutations).
A straightforward way to get new inequalities among concurrences is to consider

the inequality

�A†(1 − PI )(1 ± PJ )(1 ± PK ) · · · (1 ± PM ) �A ≥ 0. (30)

Since (1 ± P) = (1 ± P)2/2, the l.h.s. of this equation is positive semidefinite, and
it can be expressed as a combination of concurrences.

5 Subadditivity and strong subadditivity

From an entropy-of-entanglement perspective, the concurrence can be identified (up
to a normalization factor) with the so-called Tsallis-2 (or “linear”) entropy [30–32]

C2
I |uI = 2

(
1 − trρ2

A

)
≡ 2 S2 (ρA) , (31)

where we have kept the notation previously introduced. Some of the well-known
properties of the von Neumann entropy, SVN(ρ) = −tr (ρ log ρ), are also shared by
S2(ρ)[33]. In particular, given two subsystems, HA ⊗ HB , the S2−entropy satisfies
the subadditivity conditions [34, 35]:

|S2 (ρA) − S2 (ρB) | ≤ S2 (ρAB) ≤ S2 (ρA) + S2 (ρB) . (32)

Theprevious second inequality actually corresponds to thepositivity of an information-
theory quantity known as mutual information, associated with the total amount of
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correlations in ρAB [36]

I (A : B) ≡ S2 (ρA) + S2 (ρB) − S2 (ρAB) ≥ 0. (33)

Now, these results stem trivially from the triangular inequalities (21, 22) by simply
considering a tripartition of the Hilbert space,H = HA ⊗HB ⊗H

ŊAB , and identifying
the indices i, j with the subsystemsHA ⊗HB . We stress that the subadditivity condi-
tion holds for an arbitrary density matrix ρAB . In this context,HŊAB can be considered
as an extension of the Hilbert spaceHA ⊗HB , so that the global state becomes pure,
which is always possible thanks to the purification theorem.

In addition, we observe the following interesting property. Since the triangular
inequality (22) becomes an equality iff eitherCi |ui orC j |uj are vanishing (see discussion
in Sect. 4 and a proof in Appendix A), it follows that the subadditivity condition (33)
is saturated iff the entropy of one of the two subsystems is vanishing:

S2 (ρA) + S2 (ρB) − S2 (ρAB) = 0 ⇐⇒ S2 (ρA) = 0 or S2 (ρB) = 0. (34)

Further relations concerning the Tsallis-2 entropy have been tested and, among
them, special attention has been paid to the strong subadditivity [37]. For a generic
entropy, S(ρ), strong subadditivity reads

S (ρABC ) + S (ρB) ≤ S (ρAB) + S (ρBC ) , i.e. I (A : B) ≤ I (A : BC) , (35)

where the last expression indicates that correlations are non-decreasing under the
extension of one of the subsystems. It is well known that von Neumann entropy,
SVN(ρ), satisfies the strong subadditivity condition [37]. In contrast, generically the
Tsallis-2 entropy, S2(ρ), does not satisfy it, as it was proven in ref. [38] by constructing
several counterexamples. We can easily check this result using the concurrence-vector
approach. Consider a Hilbert space partitioned as H = HA ⊗ HB ⊗ HC ⊗ H

ŐABC ,
i.e., {i, j, k, Ňi jk}. In terms of concurrences, condition (35) for S2(ρ) would read

C2
i jk| Ňi jk + C2

j |uj − C2
i j |ui j − C2

jk|Ňjk ≤ 0. (36)

However, the l.h.s. of this relation is exactly the quantity:

2 �A† (
(1 − Pi Pj Pk) + (1 − Pj ) − (1 − Pi Pj ) − (1 − Pj Pk)

) �A
= −2 �A†Pj (1 − Pi )(1 − Pk) �A, (37)

which is not negative semidefinite, showing that strong subadditivity (36) can be
violated for particular choices of the state �A. E.g., for (1−Pi Pj ) �A = 0, i.e.,C2

i j |ui j
= 0,

the expression (37) becomes

2 �A†(1 − Pj )(1 − Pk) �A ≥ 0. (38)
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This inequality is strict iff, moreover, C2
j |uj ,C

2
k|uk �= 0 (see discussion after Eq.(27) and

Appendix A), thus leading to the violation of the strong subadditivity. An example of
this setup is a state |Bell〉AB ⊗ |Bell〉C ŐABC ∈ HA ⊗ HB ⊗ HC ⊗ H

ŐABC .
On the other hand, the quantity (37) becomes obviously negative semidefinite for

Pj �A = �A, i.e., C2
j |uj = 0,

− 2 �A†(1 − Pi )(1 − Pk) �A ≤ 0, (39)

so in this case the strong subadditivity is fulfilled. Actually, this instance is equivalent
to the “ordinary” subadditivity (32) for the tripartitionH = HA ⊗ HC ⊗ H

ŊAC .
Notice also that for C2

i |ui = 0 or C2
k|uk = 0 Eq.(37) vanishes, so the strong subaddi-

tivity holds as an equality.
To finish this section, let us construct a modified version of the strong subadditivity

which does always hold for the Tsallis-2 entropy (31). Expanding the inequality (see
Eq. (30))

�A†(1 − Pi )(1 + Pj )(1 − Pk) �A ≥ 0 (40)

we get

C2
i jk| Ňi jk + C2

j |uj ≤ C2
i j |ui j + C2

jk|Ňjk +
(
C2
i |ui + C2

k|uk − C2
ik| uik

)
, (41)

where the term within brackets is positive semidefinite, see Eq. (22), and represents
the departure from the strong subadditivity condition (36). In terms of the Tsallis-2
entropy this softened version of strong subadditivity reads

S2 (ρABC ) + S2 (ρB) ≤ S2 (ρAB) + S2 (ρBC ) +
[
S2 (ρA) + S2 (ρC ) − S2 (ρAC )

]
,

where the positivity (semi)definiteness of the term in brackets is equivalent to the
ordinary subadditivity condition (32). In terms of mutual information this relation
reads I (A : B) ≤ I (A : BC) + I (A : C). Since we can exchange B ↔ C , it can be
expressed as

|I (A : B) − I (A : C)| ≤ I (A : BC) . (42)

On the other hand,we can yet construct an alternative subadditivity using the general
relation (27). By considering a Hilbert space partitioned as H = HA ⊗ HB ⊗ HC ⊗
H

ŐABC , and identifying I = {i, j}, J = { j, k}, we get

C2
ik| uik ≤ C2

i j |ui j + C2
jk|Ňjk . (43)

In terms of entropies:

S2 (ρAC ) ≤ S2 (ρAB) + S2 (ρBC ) , (44)
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which is a kind of triangular inequality for the S2−entropies. Analogously to the
ordinary subadditivity, the fact that relation (43) becomes an equality iff either Ci j |ui j
or C jk|Ňjk are vanishing (see Appendix A), it follows that

S2 (ρAC ) = S2 (ρAB) + S2 (ρBC ) ⇐⇒ S2 (ρAB) = 0 or S2 (ρBC ) = 0. (45)

Concerning the mutual information, further inequalities can also be derived. In par-
ticular, applying Eq. (30) to the combination (1 − Pi )(1 − Pj )(1 − Pk) we obtain a
non-negative condition over the tripartite information [39]

S2 (ρAB) + S2 (ρBC ) + S2 (ρAC ) ≤ S2 (ρA) + S2 (ρB) + S2 (ρC ) + S2 (ρABC )

⇒ I (A : B : C) ≥ 0, (46)

where I (A : B : C) = I (A : B) + I (A : C) − I (A : BC). The sign of this quantity
for the von Neumann entropy has been explored in the literature [39]. For the case
of holographic theories it has been proven to be non-positive (Monogamy of Mutual
Information) [40], i.e., exactly the opposite behavior as the one found above for the
Tsallis-2 entropy. The same relation in a similar context was obtained in refs. [41, 42].

6 Sufficient conditions for genuine entanglement

Let us now use the idea of concurrence vector and its expression (16) to derive new
sufficient conditions for genuine entanglement, which are computable in polynomial
time.

For the sake of the clarity of the discussion, let us denote P1, P2, . . . PN the elemen-
tary permutations associated with the indices i, j, k, . . . , corresponding to the Hilbert
spaces H1 ⊗ H2 ⊗ · · · ⊗ HN .
N even

Consider the vector

�VN = (1 − P1)(1 − P2) · · · (1 − PN−1) �A, (47)

which is a linear combination of all the concurrences:

�VN =
∑

I⊂{1,2,...N−1}
(−1)#I (1 − PI ) �A =

∑

I⊂{1,2,...N−1}
(−1)#I �CI |uI , (48)

where #I is the cardinality of I . The subscript N indicates that the (1 − PN ) factor
has been left outside the product in Eq. (47). In this way, we avoid the duplication of
concurrences, since (1 − PI ) �A and (1 − P

uI )
�A are equal and correspond to the same

bipartition. Now suppose that there exists a permutation P� = Pσ1 Pσ2 · · · Pσm with
m odd, such that

(1 − P�) �A = 0. (49)
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In other words, suppose that the state is separable along the bipartition �|u�. Without
loss of generality, we can suppose σ1, σ2, · · · σm ≤ N − 1 (otherwise, consider the
equivalent permutation P

u� instead of P�). Then, Eq. (47) vanishes since the terms of
the sum can be paired as:

�VN = 1

2

∑

I⊂{1,2,...N−1}
(−1)#I ((1 − PI ) − (1 − PI P�)) �A = 0. (50)

In consequence, if �VN �= 0, this is a sufficient condition to exclude any separable
“odd” bipartition. It is remarkable that this check of the ∼ 2N−2 odd bipartitions is
carried out by N − 1 simple operations on �A.

The previous condition though says nothing about the possibility of (1−P�) �A = 0
where P� = Pσ1 Pσ2 · · · Pσm with m even (again we can assume σ1, σ2, · · · σm ≤
N − 1). To probe this instance we construct the following N − 1 vectors

�W (1)
N = (1 + P1)(1 − P2) · · · (1 − PN−1) �A,

�W (2)
N = (1 − P1)(1 + P2) · · · (1 − PN−1) �A,

...

�W (N−1)
N = (1 − P1)(1 − P2) · · · (1 + PN−1) �A. (51)

I.e., �W (k)
N is like �VN , with the sign of Pk flipped. It can also be expressed as a linear

combination of concurrences:

�W (k)
N =

∑

I⊂{1,2,...N−1}
(−1)[I ]k (−1)#I (1 − PI ) �A

=
∑

I⊂{1,2,...N−1}
(−1)[I ]k (−1)#I �CI |uI , (52)

where [I ]k = 1 (0) for k ∈ I (k /∈ I ). Now, if k ∈ �, the previous expression can be
cast as

�W (k)
N = 1

2

∑

I⊂{1,2,...N−1}
(−1)[I ]k (−1)#I

[
(1 − PI ) − (1 − PI P�)

] �A = 0. (53)

Consequently, if (1 − Pσ1 Pσ2 · · · Pσm ) �A = 0, with m even, at least one �W (k)
N must

vanish. Correspondingly, if all �W (k)
N �= 0, this suffices to exclude the possibility of

a separable even bipartition. Note that the condition for m even requires (N − 1)2

operations, still a polynomial task.
In summary, the conditions �VN �= 0, �W (k)

N �= 0 ∀k are sufficient to guarantee that
the state is genuinely entangled.
N odd
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Suppose that there exists a permutation P� = Pσ1 Pσ2 · · · Pσm such that

(1 − P�) �A = 0. (54)

Without loss of generality, we can suppose m odd (otherwise, consider the equivalent
permutation P

u� instead of P�). Now, if σ1, σ2, · · · σm ≤ N − 1, then �VN , defined by
Eq. (47), vanishes, as discussed around Eq. (50). Of course, it may happen that not all
σ1, σ2, · · · σm ≤ N − 1. However, if we consider the following N vectors

�V1 = (1 − P2)(1 − P3) · · · (1 − PN ) �A,

�V2 = (1 − P1)(1 − P3) · · · (1 − PN ) �A,

...

�VN = (1 − P1)(1 − P2) · · · (1 − PN−1) �A, (55)

it is clear that all the indices σ1, σ2, · · · σm will be contained in at least one of them.
Then, at least one �Vk = 0.

Consequently if all �Vk �= 0, then the state is genuinely entangled. This check
accomplishes N 2 operations.

Incidentally, for N = 3 the previous conditions, i.e., �V1 �= 0, �V2 �= 0, are also
necessary conditions for genuine entanglement since, as discussed in Sect. 4, (1 −
Pi )(1 − Pj ) �A = 0 ⇐⇒ (1 − Pi ) �A = 0 or (1 − Pj ) �A = 0.

7 Summary and conclusions

Quantum entanglement and quantum entropy are crucial concepts in the study of mul-
tipartite quantum systems. In this work, we have shown how the notion of concurrence
vector, Eq. (11), re-expressed in the particular useful form (16) (which is central for
the present work), provides new insights and computational tools for the analysis of
both.

In a multipartite system, states with genuine entanglement are by definition those
that are entangled under any possible bipartition. Using the approach described here
for a general multipartite pure state, it is easy to obtain equalities that relate the
concurrence vectors of different bipartitions, and thus about the genuine entanglement
of the system. On the one hand, this provides interesting geometrical insights, e.g.,
the well-known triangular inequality for concurrences arises from the trivial fact that
the corresponding concurrence vectors form a triangle. On the other hand, it allows to
prove known relations in an easyway and to build up newones.An example of the latter
is the fact that the triangular inequality C2

AB|ŊAB ≤ C2
A| uA

+C2
B| uB

becomes an equality
iff CA| uA = 0 or CB| uB = 0; a result that was proven in ref. [29] only for the three-qubit
case. In consequence, the area of the triangle built up with the squared concurrences is
a sound measurement of genuine entanglement for generic tripartite systems, as was
proposed in refs. [14, 29] for the three-qubit case. The present concurrence-vector
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approach is also useful to derive sufficient conditions for entanglement in generic
multipartite systems that are computable in polynomial time.

Froman entropy-of-entanglement perspective, the concurrence of a bipartite system
in a pure state can be identified (up to a normalization factor) with the so-called
Tsallis-2 entropy, S2(ρA), in one of the two subsystems. This allows to use the present
approach to easily prove relations such as the subadditivity of S2. Likewise, it is a
useful tool to prove new relations, e.g., a modified version of the strong subadditivity
which is always fulfilled. Thanks to the purification theorem all these results hold for
any multipartite state, whether pure or mixed.

All this shows that the concurrence vector approach is a useful tool for the study of
the entanglement and the entropy of multipartite systems.
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Appendix A. The equality in the triangular relation

As mentioned in Sect. 4, for a system of three qubits the triangular inequality

C2
i j |ui j ≤ C2

i |ui + C2
j |uj (56)

becomes an equality iff either Ci |ui = 0 or C j |uj = 0. This interesting result was proven
in ref. [29]. Here we extend it to any tripartite system or any tripartition, independently
of the dimensions of the involved Hilbert spaces.

From Eqs. (23, 24) the equality in the relation (56) is equivalent to the condition

(1 − Pi )(1 − Pj ) �A = 0, (57)
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where �A is the vector of the coefficients of the state |ψ〉⊗ |ψ〉 ∈ H⊗H, see Eq. (12).
Taking into account that for any bipartition I |uI the concurrence reads C2

I |uI = ‖(1 −
Pi ) �A‖2, our goal is to prove that Eq. (57) requires (1− Pi ) �A = 0 or (1− Pj ) �A = 0.

3 qubits and 3 qutrits

Let us first consider the case of three qubits, so that

Ai jk; i ′ j ′k′ = (ai jk) (ai ′ j ′k′) (58)

with all indices taking two possible values, 0 and 1. Thus, in this case Eq. (57) repre-
sents (23)2 quadratic equations in the ai jk variables. Actually, most of them are trivial,
i.e., the l.h.s. of (57) is identically zero. For the non-trivial ones has always the form
±q0, ±q1 or ±q2, with

q0 = a010a100 − a000a110,

q1 = a011a101 − a001a111, (59)

q2 = a011a100 + a010a101 − a001a110 − a000a111

(notice that q1 = q0|ai j0←→ai j1 ). Consequently, Eq. (57) is equivalent to

{q0, q1, q2} = {0, 0, 0}. (60)

Incidentally, a similar result was obtained in refs. [43, 44] for different linear combina-
tions of these vectors. By a careful (and lengthy) inspection it is possible to check that
the only consistent possibility to fulfill Eq. (60) is indeed that either (1− Pi ) �A = 0 or
(1− Pj ) �A = 0. However, a more expeditious way to show this is the following. Using
Singular, a computer algebra system for polynomial computations [45] it is easy to
prove that

‖(1 − P1) �A‖2‖(1 − P2) �A‖2 = s0q0 + s1q1 + s2q2 (61)

for some -sextic- polynomials {s0, s1, s2} on the variables ai jk, a∗
i jk . (The explicit form

of s0, s1, s2 is quite longish and of no particular interest, so we omit it.). Thus, indeed,
Eq. (57) requires (1 − Pi ) �A = 0 or (1 − Pj ) �A = 0 and the statement is proven for
three qubits.

A similar computation shows that the same statement holds for a system of three
qutrits, i.e., when the indices of �A in Eq. (58) take the values 0, 1, 2. In this case,
the calculation is more involved: Eq. (57) represents (33)2 quadratic equations, 54
of which are non-equivalent. The complexity of Eq. (57) grows geometrically with
the dimension of the Hilbert spaces of the three subsystems. However, the result for
three qutrits is all we need to recursively extend statement to any dimension, as shown
below.
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Extension to arbitrary dimension

The above result for three qutrits can be re-stated in the following way. Given, by
hypothesis, Eq. (57), if (1− Pj ) �A �= 0 for some component(s) of �A, then necessarily
(1 − Pi ) �A = 0 for all components. (Of course the same holds for i ↔ j .)

It is convenient at this point to define the restriction of the vector �A to a subset of
components, i.e., to the subspace spanned by a subset of indices. E.g.,

�A(i1i2) ( j1 j2) (k1k2) = {ai jk ai ′ j ′k′ } with i, i ′ ∈ {i1, i2}, j, j ′ ∈ { j1, j2}, k, k′ ∈ {k1, k2}.
(62)

Note that the action of Pi , Pj or Pk on this restricted vector keeps it inside the same
subspace. In this notation, the previous result for qutrits reads as follows. Given a state
such that (1 − Pi )(1 − Pj ) �A = 0 and

(1 − Pj ) �A(i1i2) ( j1 j2) (k1k2) �= 0 (63)

(for some component(s)), then

(1 − Pi ) �A(i1i2i3) ( j1 j2 j3) (k1k2k3) = 0. (64)

To extend this result to higher dimensions, let us consider the multipartite Hilbert
space

H = H1 ⊗ H2 ⊗ H3, (65)

with dimHn = dn ≥ 4. Our hypothesis is again Eqs. (57) and (63) in some subspace
corresponding to the indices {(i1i2) ( j1 j2) (k1k2)}, i.e., some subspace of three qubits.
Let us consider the addition of a fourth set of indices {i4 j4k4}. Our goal is to show
that

(1 − Pi ) �A(i1i2i3i4) ( j1 j2 j3 j4) (k1k2k3k4) = 0. (66)

Since we have shown that we can go from Eqs. (63) and (64) for any new indices
i3, j3, k3, it follows that Eq. (66) is satisfied by many subsets of components, namely
those corresponding to extend the three qubits of Eq. (63) to any three qutrits:

(1 − Pi ) �A(i1i2i3) ( j1 j2 j3) (k1k2k3) = 0,

(1 − Pi ) �A(i1i2i3) ( j1 j2 j3) (k1k2k4) = 0,

(1 − Pi ) �A(i1i2i3) ( j1 j2 j4) (k1k2k4) = 0, (67)

etc.

Hence, the only components to check are those Ai jk; i ′ j ′k′ = (ai jk) (ai ′ j ′k′) where i =
i3, i ′ = i4 (or vice versa) and/or j = j3, j ′ = j4 (or vice versa) and/or k = k3, k′ = k4

123



Entanglement and entropy in multipartite systems: a useful Page 17 of 19 56

(or vice versa). Let Apqr;p′q ′r ′ = (apqr ) (ap′q ′r ′) be one of such components. We have
to show that (1 − Pi )Apqr;p′q ′r ′ = 0, i.e.,

(apqr ) (ap′q ′r ′) = (ap′qr ) (apq ′r ′). (68)

FromEq. (63), there must be some component of �A(i1i2) ( j1 j2) (k1k2) different from zero.
Suppose Ai1 j1k1; i2 j2k2 = (ai1 j1k1) (ai2 j2k2) �= 0 (the argument goes the same for any
other component). Then the following chain of equalities follow from Eq. (67):

(ai1 j1k1) (ai2 j2k2) (apqr ) (ap′q ′r ′) = (apj1k1) (ap′ j2k2) (ai1qr ) (ai2 p′r ′)

= (ai2 j1k1) (ai1 j2k2) (ap′qr ) (apq ′r ′)

= (ai1 j1k1) (ai2 j2k2) (ap′qr ) (apq ′r ′). (69)

Canceling the common factor in the first and latter expression, which by hypothesis
is different from zero, we obtain

(apqr ) (ap′q ′r ′) = (ap′qr ) (apq ′r ′) (70)

as desired. Consequently, Eq. (66) holds.
The extension of the previous result to any other set of indices is straightforward.

E.g., if we enlarge the dimension of H1 up to 6, so that there two new possibilities:
i5, i6, the whole argument holds for

(1 − Pi ) �A(i1i2 i ′ i ′′) ( j1 j2 j3 j4) (k1k2k3k4) = 0, (71)

with (i ′ i ′) ∈ {(i3i5), (i3i6), (i4i5), (i4i6), (i5i6)}. This includes all the components of
�A(i1i2i3i4i5i6) ( j1 j2 j3 j4) (k1k2k3k4), thus

(1 − Pi ) �A(i1i2i3i4i5i6) ( j1 j2 j3 j4) (k1k2k3k4) = 0. (72)

In a similar fashion the result is extended to arbitrary dimensions of the three subsys-
tems.

Extension to non-disjoint systems

When considering non-disjoint systems we have to deal with collective indices, I , J
such that I ∩ J �= ∅. Then, as was shown in Sect. 4, the triangular inequality for the
square concurrences reads

C2
I�J |ŐI�J ≤ C2

I |uI + C2
J | uJ , (73)

where I � J = I ∪ J \ I ∩ J is the set of indices in either I or J , but not in both.
Following a procedure analogous to the one in previous subsections, it is straightfor-

ward to show that this relation becomes an equality iff eitherCI |uI orCJ | uJ are vanishing.
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More precisely, one starts by considering a tetrapartition {i, j, k, Ňi jk}, identifying
I = {i, k}, J = { j, k}. Then Eq. (73) becomes

C2
i j |ui j ≤ C2

ik| uik + C2
jk|Ňjk . (74)

From Eq. (26) the equality in this relation (74) is equivalent to the condition

− 2 �A†(1 − Pi Pk)(1 − Pj Pk) �A = 0 ⇐⇒ (1 − Pi Pk)(1 − Pj Pk) �A = 0. (75)

So our goal is to prove the following implication

(1 − Pi Pk)(1 − Pj Pk) �A = 0 �⇒ (1 − Pi Pk) �A = 0 or (1 − Pj Pk) �A = 0. (76)

As for the disjoint case the strategy is to show “by brute force” (using Singular) that
this is indeed the case for 4 qutrits, and then extend the result in a recursive way
to higher dimensions. The procedure is completely analogous, but rather long and
tedious, so we prefer to spare the reader.
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