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Abstract
In this paper, we study Grover’s search algorithm focusing on continuous-time quan-
tum walk on graphs. We propose an alternative optimization approach to Grover’s
algorithm on graphs that can be summarized as follows: Instead of finding specific
graph topologies convenient for the related quantum walk, we fix the graph topology
and vary the underlying graph Laplacians. As a result, we search for themost appropri-
ate analytical structure on graphs endowed with fixed topologies yielding better search
outcomes. We discuss strategies to investigate the optimality of Grover’s algorithm
and provide an example with an easy tunable graph Laplacian to investigate our ideas.
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1 Introduction

Quantum search algorithms on graphs have a subtle relationship to the connectiv-
ity of the graph. Completely connected graphs and topologies with bridges between
completely connected components provided configuration space for efficient quantum
search [32] realizations. Search based on joined complete graphs can be realized with
atomic systems interacting with an environment bringing such scheme closer to reality
[49]. In a recent work, Pan et al., have shown that classical electric circuits perform
on par with graph-based quantum search algorithm [43]. The electrical circuit-based
approach can be generalized to perform search on multiple sites simultaneously[28].
In this work, we consider a different family of weighted graphs with self-similar struc-
ture for the configuration space quantum search algorithms. Advances in development
of fractal configurations in physical systems suggest ways to implement quantumwalk
propagation on fractal graphs. For example, Fusco et al. [24] realized fractal geome-
tries in photonic metamaterials, and on such lattices, it may be possible to implement a
quantum walk protocol developed by Kitagawa et al. [31] to perform Grover’s search.

The theory of quantum algorithms has been an active area of study over the last three
decades, see [16, 38, 39, 44] and references therein. In several applications, quantum
algorithms have been shown to outperform their classical counterparts, hence leading
to a speedup in performance [26, 46]. In this paper,we revisitGrover’s search algorithm
[1, 9, 10, 17, 20, 26, 45, 48], focusing on the continuous-time quantum walk approach
developed by [15, 23]. The Childs–Goldstone approach is very versatile and can be
realized on quantum systems of different geometrical or topological arrangements.
This feature appeared in [18, 34, 35] where it was established that a certain class of
fractal-type graphs demonstrates favorable topological properties to implement perfect
quantum state transfer. The feature is also present in [2], where Grover’s search algo-
rithmwas analyzed on databases with different topological arrangements. In this latter
case, the (analytical and numerical) investigations of quantum walk on several graphs,
such as the dual Sierpinski gaskets, T-fractals and hierarchical structures like Cayley
trees, illustrate the dependency of Grover’s algorithm on the topological structure of
these graphs.

In this paper, we propose an alternative optimization approach to Grover’s algo-
rithm on graphs. In particular, instead of finding specific graph topologies convenient
for the related quantumwalk, we fix the graph topology and vary the underlying graph
Laplacians. As a result, we search for the most appropriate analytical structure on
graphs endowed with fixed topologies yielding better outcomes in Grover’s search
algorithm. To describe our approach’s main ideas, we first introduce some basic ter-
minology and notation. We perform a Grover’s search on a database modeled by a
finite (possibly directed) graph G = (V , E). Let {p(x, y)}(x,y)∈E be a sequence of
weights assigned to the edges, where we regard the edge (x, y) as pointing from the
vertex x to y and p(x, y) as a transition probability of a quantum walker from x to y.
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We impose the following conditions

⎧
⎪⎨

⎪⎩

(x, y) ∈ E ⇔ 0 < p(x, y) ≤ 1

(x, y) /∈ E ⇔ p(x, y) = 0
∑

y:(x,y)∈E p(x, y) = 1, ∀ x ∈ V

(1)

and associate with such a sequence a probabilistic graph Laplacian on G, defined by

�G f (x) = f (x) −
∑

y:(x,y)∈E
p(x, y) f (y). (2)

We assume there exists a Hilbert space
(H, 〈., .〉) such that �G is self-adjoint (Her-

mitian),

〈�Gψ, φ〉 = 〈ψ,�Gφ〉, φ, ψ ∈ H = {
f : V → C

}
.

We refer to [37] for more details and for examples of such Hilbert spaces on certain
graphs. We associate each item in the database with a vertex x ∈ V or equivalently
the corresponding normalized Dirac function

ex := δx/
√〈δx , δx 〉, δx (y) :=

{
1, x = y

0, x 	= y

and denote the target vertex in Grover’s search algorithm by w ∈ V . Note that μ :
V → (0,∞),μ(x) := 〈δx , δx 〉 defines a measure on the set of vertices V . The volume
of the graph G is then given by

vol(G) :=
∑

x∈V
μ(x), μ(x) = 〈δx , δx 〉. (3)

To perform the search, one needs a driving Hamiltonian H of the quantum system. In
this work, we use (see [2, 15])

{
Hγ := γ�G − Vw,

Vw f := 〈ew, f 〉ew, f : V (G) → C,
(4)

where γ is a tunable parameter in (0,∞). The potential operator Vw is also called the
oracle Hamiltonian. As the initial state of the search, we choose the ground state of
�G

s := 1√
vol(G)

∑

x∈V (G)

δx (5)
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and the goal is to evolve s continuously to the target state ew. The success probability
of finding the target vertex w at the time t is then given by

πγ
w(t) := ∣

∣〈ew, exp(−i Hγ t)s〉
∣
∣2. (6)

Our main contribution is summarized as follows. Rather than investigating a family
of Hamiltonians {Hγ }γ∈(0,∞) on graphs of different topologies, we fix the (topology
on) graph G and vary the transition probabilities (1) of a quantum walker on G. By
doing so, we are effectively varying �G in (2). As such, we are led to the following
question: “Can we construct examples for which this approach improves Grover’s
search outcomes?”. In Sect. 3, we provide an example with an easy tunable parameter
to answering this question.

The rest of the paper is organized as follows: In Sect. 2, we will discuss strategies
to investigate the optimality of Grover’s search algorithm.We recall that the algorithm
is implemented using a family of Hamiltonians {Hγ }γ∈(0,∞) for which one is led
to determine in a systematic manner the value γopt for which Hγopt leads to optimal

search outcomes, i.e., π
γopt
w (t) is maximal in the shortest time possible (see (33) for the

definition of γopt ). In [15], Childs and Goldstone elaborated on the interplay between
the success probability (6) and the overlap probabilities

|〈s, ψ0〉|2, |〈ew,ψ0〉|2, |〈s, ψ1〉|2, |〈ew,ψ1〉|2, (7)

where ψ0 (resp. ψ1) refer to the ground (resp. first excited) state of Hγ . As such, we
focus on a better understanding of these overlap probabilities resulting in our first
main contribution Theorem 2.3. This result provides conditions (15) under which we
can approximate and relate the ψ0-eigenvalue E0 (resp. ψ1-eigenvalue E1) with the
square root of the graph’s volume, i.e.,

E0 ≈ −
√〈δw, δw〉√

vol(G)
, E1 ≈

√〈δw, δw〉√
vol(G)

. (8)

We point out that for the complete graph on N vertices the eigenvalues are given by

E0 = − 1√
N

, E1 = 1√
N

, (9)

and the sufficient conditions Theorem 2.3 are satisfied. Furthermore, in this case we
have 〈δw, δw〉 = 1 for all w ∈ V and vol(G) = N is nothing else but the number of
vertices.

In practice, it might be difficult to verify (15) for general graphs. Therefore, we
introduced the parameter γE in (14) for which the corresponding success probability
π

γE
w (t) takes the simple form (25). In fact, for a complete graph on N vertices we have

γE = γopt holds for all N , and hence, the corresponding optimal success probability
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is easily computed using (25) and given by

π
γopt
w (t) =

(N − 1

N

)
sin2

( t√
N

)
+ 1

N
. (10)

These observations have led us to the second part of this work: Does the equality
γopt = γE hold for other graphs? Or more specifically, is it possible to construct a
graph such that the following properties hold:

⎧
⎪⎨

⎪⎩

A graph with variable volumevol(G).

The optimal success probability is well approximated by(25).

E1 is well approximated by
√〈δw,δw〉√

vol(G)
.

(11)

In Sect. 3, we introduce a hypercubic lattice as a Cartesian product of directed path
graphs. To keep the discussion simple, we assume that the path graph has four vertices
and that the transition probabilities of a quantum walker between these vertices are
given via a parameter p, see Figs. 1 and 2. This parameter p can be interpreted as
quantifying the database homogeneity/non-homogeneity and will play the role of the
tuning parameter of the graph volume vol(G). Despite the simplicity of this model,
we obtain interesting results when investigating the properties (11).

Our work is part of a long term study of mathematical physics on fractals and self-
similar graphs [3–8, 21, 27, 40–42], in which novel features of quantum processes
on fractals can be associated with the unusual spectral and geometric properties of
fractals compared to regular graphs and smooth manifolds.

2 Continuous-time quantumwalk on finite graphs

We start this section with some preliminary results that will be needed later for the
proof of Proposition 2.2 and Theorem 2.3. Let Ea and ψa denote the eigenvalues
and eigenvectors of Hγ , respectively. We assume that {ψa}Ea∈σ(Hγ ) is an orthonormal
basis and in this notation, E0 and ψ0 refer to the ground state, E1 and ψ1 refer to the
first excited state, and so on. For ease of discussion, we will assume in this work that
E0 and E1 are non-degenerate. For γ > 0 and z ∈ ρ(γ�G), the resolvent set of γ�G ,
we consider the following Green function

Gγ (z, w,w) := 〈ew, (γ�G − z)−1ew〉. (12)

Let {φλ | λ ∈ σ(�G) } be an orthonormal basis of eigenvectors of �G , and write

ew =
∑

λ∈σ(�G )

aw,λφλ, aw,λ = 〈φλ, ew〉. (13)

where the sum takes the eigenvalue multiplicities into account. The following result
whose proof we omit is elementary.
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Lemma 2.1 The following statements hold.

1. If Ea /∈ σ(γ�G), then 〈ew,ψa〉 	= 0.
2. If Ea /∈ σ(γ�G), then Gγ (Ea, w,w) = 1.
3. If Ea /∈ σ(γ�G), then 〈ew, (γ�G − Ea)

−1ψa〉 = 1
〈ψa ,ew〉 .

4. If z ∈ ρ(γ�G), then

⎧
⎨

⎩

Gγ (z, w,w) = ∑
λ∈σ(�G )

|aw,λ|2
γ λ−z

G ′
γ (z, w,w) = d

dz Gγ (z, w,w) = ∑
λ∈σ(�G )

|aw,λ|2
(γ λ−z)2

= 〈ew, (γ�G − z)−2ew〉.

Next, for general finite graphs we derive formulas for the overlap probabilities.

Proposition 2.2 (Overlap probabilities) Suppose that Ea /∈ σ(γ�G). Then we have

1. |〈ew,ψa〉|2 = 1
G ′

γ (Ea ,w,w)
.

2. |〈s, ψa〉|2 = 〈δw,δw〉
vol(G)E2

aG
′
γ (Ea ,w,w)

.

Proof The proof uses Lemma 2.1.

1. Given that ψa = 〈ew,ψa〉(γ�G − Ea)
−1ew, we have

1 = 〈ψa, ψa〉 = 〈ew,ψa〉〈ew,ψa〉〈ew, (γ�G − Ea)
−2ew〉

= 〈ew, (γ�G − Ea)
−2ew〉|〈ew,ψa〉|2

The statement follows by Lemma 2.1(4).
2. Recalling that �Gs = 0, we see that

−Ea〈s, ψa〉 = 〈s, (γ�G − Ea)ψa〉 = 〈s, Vwψa〉 = 〈s, ew〉〈ew,ψa〉.

Hence, |〈s, ψa〉|2 = |〈s,ew〉|2 |〈ew,ψa〉|2
E2
a

and the result follows by |〈s, ew〉|2 = 〈δw,δw〉
vol(G)

and part (1).

��
To study the question of which parameter γ the Hamiltonian Hγ leads to optimal

search outcomes, we will consider the following parameters with the assumption that
each of the sets below is non-empty

⎧
⎪⎨

⎪⎩

γs := infγ∈(0,∞)

{
γ

∣
∣ such that |〈s, ψ0〉|2 = |〈s, ψ1〉|2

}

γw := infγ∈(0,∞)

{
γ

∣
∣ such that |〈ew,ψ0〉|2 = |〈ew,ψ1〉|2

}
.

γE := infγ∈(0,∞)

{
γ

∣
∣ such that E0 = −E1

}
.

(14)

The following theorem establishes a relationship between the overlap probabilities
and the eigenvalues E0, E1 and provides sufficient conditions to approximate these
eigenvalues by the square root of the graph’s volume.
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Theorem 2.3 Assume that there exist γ ∈ (0,∞) and ε > 0 such that

∣
∣
∣|〈s, ψ0〉|2 − |〈ew,ψ0〉|2

∣
∣
∣ ≤ ε. (15)

Then

∣
∣
∣E2

0 − 〈δw, δw〉
vol(G)

∣
∣
∣ ≤ ε.

Similarly, if the inequality (15) holds for ψ1, then

∣
∣
∣E2

1 − 〈δw, δw〉
vol(G)

∣
∣
∣ ≤

(
1 + 〈δw, δw〉

vol(G)

||〈s, ψ1〉|2 − |〈s, ψ0〉|2|
|〈s, ψ1〉|2|〈s, ψ0〉|2

)
ε.

Proof By Proposition 2.2(2), we have

∣
∣
∣E2

a − 〈δw, δw〉
vol(G)

∣
∣
∣ = 〈δw, δw〉

vol(G)

∣
∣
∣
1 − G ′

γ (Ea, w,w)|〈s, ψa〉|2
G ′

γ (Ea, w,w)|〈s, ψa〉|2
∣
∣
∣ (16)

= 〈δw, δw〉
vol(G)

∣
∣
∣
|〈ew,ψa〉|2 − |〈s, ψa〉|2

|〈s, ψa〉|2
∣
∣
∣ (17)

= E2
aG

′
γ (Ea, w,w)

∣
∣
∣|〈ew,ψa〉|2 − |〈s, ψa〉|2

∣
∣
∣, (18)

where in the second equality, we used 1 = G ′
γ (Ea, w,w)|〈ew,ψa〉|2 (see Proposition

2.2(1)), and in the last equality, we used Proposition 2.2(2). The result follows from
the following computations. First, we note that Lemma 2.1(4), E0 < 0 and σ(�G) ⊂
[0, 2] show

E2
0G

′
γ (E0, w,w) = E2

0

∑

λ∈σ(�G )

|aw,λ|2
(γ λ + |E0|)2 (19)

≤
∑

λ∈σ(�G )

|〈φλ, ew〉|2 = ||ew||2 = 1. (20)

Moreover, Proposition 2.2 (2) shows

∣
∣
∣E2

1G
′
γ (E1, w,w) − E2

0G
′
γ (E0, w,w)

∣
∣
∣ = 〈δw, δw〉

vol(G)

∣
∣
∣|〈s, ψ1〉|2 − |〈s, ψ0〉|2

∣
∣
∣

|〈s, ψ1〉|2|〈s, ψ0〉|2 . (21)

��
Complete graphs are examples for which the hypotheses of Theorem 2.3 are satisfied.
In fact, if we consider the probabilistic graph Laplacian of a complete graph of N
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vertices

�G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 1
N−1 . . . . . . − 1

N−1
− 1

N−1 1 − 1
N−1 . . . − 1

N−1
...

. . .
. . .

. . .
...

...
. . . − 1

N−1 1 − 1
N−1

− 1
N−1 . . . . . . − 1

N−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (22)

and set γ = N−1
N , then a direct computation of the overlap probabilities gives

⎧
⎨

⎩

|〈s, ψ0〉|2 = |〈ew,ψ0〉|2 =
√
N+1

2
√
N

|〈s, ψ1〉|2 = |〈ew,ψ1〉|2 =
√
N−1

2
√
N

.
(23)

It follows that (15) holds for any ε > 0, the eigenvalues are given by (9), and that,
by definition, we have γE = N−1

N . We remark that the Hamiltonian in [2, 15] is
defined using the graph Laplacian D − A, where D (resp. A) is the degree (resp.
adjacency) matrix of the graph. By the regularity of complete graphs, the probabilistic
graph Laplacian (22) coincides with the graph Laplacian up to a multiple constant,
i.e., (N − 1)� = (D− A). Using either operators has no impact on the analysis since

γ� − Vw = γ̃ (D − A) − Vw

where γ = (N − 1)γ̃ . In particular, γ = γE = N−1
N if and only if γ̃ = 1

N , in
which case, as proved in [15], a quantum search on complete graphs recovers the
optimal quadratic speedup. Therefore, for complete graphs, Theorem 2.3 implies that
E0 = −E1. The following result gives the consequences of assuming that E0 = −E1
for a given graph with a fixed topology.

Proposition 2.4 Suppose that there exists γ ∈ (0,∞) such that E0 = −E1, then

|〈ew,ψ1〉|2
|〈s, ψ1〉|2 = |〈ew,ψ0〉|2

|〈s, ψ0〉|2 . (24)

Consequently, we have 〈ψ1, s〉〈ew,ψ0〉 = −ei2θ 〈ψ0, s〉〈ew,ψ1〉 for some phase θ ∈
[0, π). Moreover, the success probability reduces to

πγ
w(t) = 4|〈s, ψ0〉|2 |〈ew,ψ1〉|2 sin2(E1t + θ) + C + R(t) (25)

where C and R(t) are given by

{
C := |〈ew,ψ0〉|2|〈s, ψ0〉|2 + |〈ew,ψ1〉|2|〈s, ψ1〉|2 − 2|〈s, ψ0〉|2 |〈ew,ψ1〉|2
R(t) := 2Re

(
A(t)r(t)

) + |r(t)|2
(26)
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Fig. 1 Graph G and the corresponding probabilistic graph Laplacian �G . When p = 1/2, �G becomes
the standard probabilistic graph Laplacian

with

{
A(t) := 〈ew,ψ0〉〈ψ0, s〉 exp(−i E0t) + 〈ew,ψ1〉〈ψ1, s〉 exp(−i E1t)

r(t) := ∑
a≥2〈ew,ψa〉〈ψa, s〉 exp(−i Eat).

(27)

Proof The first result follows by Proposition 2.2 (1) & (2). To prove the second result,
we use 〈ew, exp(−i t Hγ )s〉 = A(t) + r(t) and compute

πγ
w(t) = |〈ew,ψ0〉|2|〈s, ψ0〉|2 + |〈ew,ψ1〉|2|〈s, ψ1〉|2

+ 〈ew,ψ0〉〈ψ0, s〉〈ew,ψ1〉 〈ψ1, s〉 exp(i(E1 − E0)t)

+ 〈ew,ψ0〉 〈ψ0, s〉〈ew,ψ1〉〈ψ1, s〉 exp(−i(E1 − E0)t)

+ A(t)r(t) + A(t)r(t) + r(t)r(t).

Using the first result, we add the second and third terms together

−|〈s, ψ0〉|2 |〈ew,ψ1〉|2 exp(i2(E1t + θ)) − |〈s, ψ0〉|2 |〈ew,ψ1〉|2 exp(−i2(E1t + θ))

= −2|〈s, ψ0〉|2 |〈ew,ψ1〉|2 cos(2(E1t + θ))

= 4|〈s, ψ0〉|2 |〈ew,ψ1〉|2 sin2(E1t + θ) − 2|〈s, ψ0〉|2 |〈ew,ψ1〉|2.

��

3 Hypercubic lattices

In this section, we introduce a one-parameter family of Laplacians on the hypercubic
lattice and investigate Grover’s search algorithm numerically when using these Lapla-
cians.Given a finite directed path graphG = (V , E)with the vertices V := {0, 1, 2, 3}
and the edges E := {(x, y) ∈ V × V | |x − y| = 1}. We consider a quantum walk
on G, where the transition probabilities {p(x, y)}(x,y)∈V×V and the corresponding
probabilistic graph Laplacian �G are given for some p ∈ (0, 1) in Fig. 1. Note that
�G generates a quantum walk on G with reflecting boundaries. This class of Lapla-
cians was first investigated in [47] and arises naturally when studying the unit interval
endowedwith a particular fractalmeasure. Formore on this Laplacian and some related
work, we refer to [11, 13, 14, 19, 36].
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Fig. 2 Graph G2 = G′ × G′′,
where G′ = G′′ = G and G is
the graph in Fig. 1. The transition
probabilities are given by �G2

We equip the vertices set V with a measure, μ : V → [0,∞) and assume that it
satisfies the Kolmogorov’s cycle condition [22, 25, 29, 30], i.e.,

μ(0) = 1, μ(x) = μ(x − 1)
p(x − 1, x)

p(x, x − 1)
, x ∈ V . (28)

One can easily verify that �G is self-adjoint (Hermitian) with respect to the inner
product

〈 f , g〉G =
∑

x∈V
f (x)g(x)μ(x), (29)

where f , g ∈ HG := span{ δx | x ∈ V }. A d-dimensional hypercubic lat-
tice is constructed as the d-fold Cartesian product of finite directed path graphs
Gd = G ′ × G ′′ × .., where G ′ = G ′′ = . . . = G. For simplicity, we restrict our
illustration to products of two graphs as the extension to higher-dimensional products
is straightforward. We follow [12] and denote by a prime anything having to do with
the first graph and by a double prime anything having to do with the second graph. We
recall that a Cartesian product of two graphs G ′ = (V ′, E ′) and G ′′ = (V ′′, E ′′) is a
graph G2 = G ′ ×G ′′ with the set of vertices V (G2) = {(x ′, x ′′) | x ′ ∈ V ′, x ′′ ∈ V ′′ },
where two vertices x̄ = (x ′, x ′′) and ȳ = (y′, y′′) are adjacent, i.e., (x̄, ȳ) ∈ E(G2)

if and only if (x ′, y′) ∈ E ′ and x ′′ = y′′ or (x ′′, y′′) ∈ E ′′ and x ′ = y′. We define a
Laplacian on G2 as a (normalized) Kronecker sum of �G ′ and �G ′′ , i.e.,

�G2 := 1

2

(
�G ′ ⊗ I + I ⊗ �G ′′

)
, (30)
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where I is an identity matrix. An example of the quantum walk generated by �G2

is illustrated in Fig. 2. We associate each vertex x̄ = (x ′, x ′′) ∈ V (G2) with δx̄ :=
δx ′ ⊗ δx ′′ , the tensor product δx ′ and δx ′′ . It follows that �G2 is self-adjoint on the
Hilbert space HG2 = span{ δx̄ | x̄ = (x ′, x ′′) ∈ V (G2) } equipped with the inner
product

〈 f , g〉 =
∑

x̄∈V (G2)

f (x̄)g(x̄)μ2(x̄),

{
〈δx̄ , δȳ〉 := 〈δx ′ , δy′ 〉G ′ 〈δx ′′ , δy′′ 〉G ′′

μ2(x̄) := 〈δx̄ , δx̄ 〉 (31)

3.1 Homogeneous versus non-homogeneous structures

When p = 1
2 , then �Gd recovers the standard probabilistic graph Laplacian as a

generator of a symmetric quantum walk on Gd . In this case, it easy to compute that
the symmetrizing measure (31) is the degree of the vertex, i.e.,

μd(x̄) = 〈δx̄ , δx̄ 〉 = μ(x1) . . . μ(xd) = 2d ,

where x̄ = (x1, . . . , xd) ∈ V (Gd) is a non-boundary vertex. In particular, the measure
is constant on the interior vertices, and as such, we say that Gd homogeneous. On the
other hand, when p 	= 1

2 , then �Gd generates an asymmetric quantum walk on Gd .
Consequently, the measure is vertex-dependent and varies on the interior vertices.
In this case, we say Gd is non-homogeneous. For an interpretation from a physics
viewpoint and the relation to fractal media, the reader is referred to the introduction
of [14].

3.2 Numerical results

In this section, we present some numerical results on the Grover’s search algorithm on
the graph G5 and provide the python codes in [33]. Note that the number of vertices
is |V (G5)| = 1024. The target vertex w ∈ V (G5) is assumed to be one of the corners
of G5. Our focus is to analyze the search algorithm based on the homogeneity versus
non-homogeneity of the database, i.e., p = 1/2 versus p 	= 1/2. To this end, we
plot the overlap probabilities and the eigenvalues E0, E1 as functions of γ , after
which we determine and discuss their intersections at the points γs , γw and γE . Before
proceeding, it is worth mentioning that for the complete graph of N vertices, where
N ≥ 2, we have γs ≤ γE ≤ γw. When N = 2, we have γs = 0 and γw = ∞, while
for large N , we see that

γs ≈ γE ≈ γw ≈ 1. (32)

In the case of G5, the plots of the overlap probabilities are depicted for several p in
Fig. 3. The case p = 0.91 (top left panel in Fig. 3) is particularly interesting and is
qualitatively similar to the results for the complete graphs; see [15, Figure 1] for a
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Fig. 3 Overlap probabilities as a function of γ for G5: (top left) p = 0.91, (top right) p = 0.5, (bottom
left) p = 0.4, (bottom right) p = 0.1

Table 1 Numerical computation
of γs , γw , γE and γopt for G5
and different values of p

p γs γw γE γopt

0.91 1.0197 1.0197 1.0197 1.0195

0.5 1.1515 1.1528 1.1521 1.1520

0.4 1.2063 1.2099 1.2081 1.2061

0.1 1.7935 1.9035 1.8438 1.785

comparison. We determine γs , γw and γE in Table 1, and observe that in all cases

γs ≤ γE ≤ γw,

where for larger p, γE is increasingly squeezed between γs and γw.
We also compute the success probability π

γ
w(t) as a function of the time t and γ ,

see Fig. 4. Then we determine for which values (t, γ ) the success probability π
γ
w(t) is

optimal, i.e.,

(topt , γopt ) := inf
γ

inf
t

{
(t, γ ) ∈ [0, vol(G)] × (0,∞) : πγ

w(t) attains abs. max.
}
.

(33)
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Fig. 4 Contour plot of the success probability π
γ
w(t) as a function of the time t and γ for G5: (top left)

p = 0.91, (top right) p = 0.5, (bottom left) p = 0.4, (bottom right) p = 0.1

We observe that for p = 0.91, we have γopt ≈ γE ≈ γs ≈ γw, see Table 1. (Note that
for the complete graph of N vertices,we haveγopt = γE for any N ≥ 2.) Subsequently,
we determine E0 and E1 as the eigenvalues of the ground and first excited state of

Hγopt . For comparison, we also compute
√ 〈δw,δw〉

vol(G5)
using

vol(G5) =
(
2 + 2

1 − p

)5
.

Note that 〈δw, δw〉 = 1 for w located at one of the corners of G5. Again, the results

for E0 and E1 are in better agreement with
√ 〈δw,δw〉

vol(G5)
the larger we choose p. We plot

the success probability π
γ
w(t) as a function of t , where we set γ = γopt , see Fig. 5.

Concerning the observation that γopt ≈ γE for p = 0.91, we note that the graph in
the top left panel in Fig. 5 is in very good agreement with the analytical formula (25),
i.e.,

π
γopt
w (t) ≈ 0.89 sin2(E1t) (34)

where the value of E1 is given in Table 2. In contrast to the complete graphs where
γopt = γE holds for any number of vertices, we observe in G5 that the deviation of γE
from γopt increases for smaller values of p. In this case, formula (25) is less suitable
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Fig. 5 Plot of the success probability π
γ
w(t) as a function of time t for G5. We set γ = γopt in all panels:

(top left) p = 0.91, (top right) p = 0.5, (bottom left) p = 0.4, (bottom right) p = 0.1

Table 2 Numerical computation

of E0, E1, topt and
π
2

√
vol(G5)〈δw,δw〉

for G5 and different values of p

p E0 E1
√ 〈δw,δw〉

vol(G5)
topt

π
2

√
vol(G5)〈δw,δw〉

0.91 −0.0004 0.0002 0.0003 4380 4535.8

0.5 −0.010 0.0099 0.0113 159.4 138.52

0.4 −0.0130 0.01189 0.0152 125.8 103.18

0.1 −0.0135 0.0085 0.0273 154.6 57.54

for analyzing of π
γopt
w (t). Indeed, Fig. 5 (bottom right panel) illustrates how π

γopt
w (t)

for p = 0.1 exhibits a more irregular and oscillatory behavior.
Finally, we observe that topt decreases with (large) p and is comparable to

π
2

√
vol(G5)〈δw,δw〉 , see Table 2. For example, π

γopt
w (t) for p = 0.91 attains its maximum

at topt ≈ 4380, which is not practical for searching a database of 1024 elements. On
the other hand, Fig. 6 seems to suggest that choosing smaller p might improve the
optimal time of Grover’s search algorithm. For example, when p = 0.4, we observe a
slight improvement from the homogeneous case p = 0.5, see the corresponding topt
values in Table 2. However, it seems that this improvement in Grover’s optimal time
is lost when p get smaller, e.g., see the case p = 0.1 in Table 2.
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Fig. 6 Square root of the graph volume as a function of p for G5

4 Conclusions

In this paper, we discussed strategies for the application of Childs–Goldstone approach
[15] to Grover’s quantum walk on graphs. A database is modeled by a finite (possi-
bly directed) graph G, and the search algorithm is implemented using the family of
Hamiltonians {Hγ }γ∈(0,∞) in (4). Theorem 2.3 provides conditions (15) on the over-
laps probabilities that are sufficient to approximate and relate the eigenvalues E0, E1
with the square root of the graph’s volume. Complete graphs are examples for which
the conditions (15) hold for γ = N−1

N and any ε > 0, but this is not the case for the
hypercubic lattices, see, for instance, the top right panel in Fig. 3 (the homogeneous
case p = 0.5). On the other hand, we were able to tune the overlap probabilities
on hypercubic lattices by inducing non-homogeneity measured by the parameter p.
Indeed, the top left panel in Fig. 3 evidences for p = 0.91 the existence of γ for which
we have

|〈s, ψ0〉|2 ≈ |〈ew,ψ0〉|2 ≈ |〈s, ψ1〉|2 ≈ |〈ew,ψ1〉|2.

To deal with graphs for which it might be unfeasible to check (15), we introduced
γE (14) resulting in a simplified formula for the corresponding success probability
π

γE
w (t) (25). In particular, to understand π

γE
w (t), we need to analyze the following

quantities: E1, R(t) and the overlap probabilities

|〈s, ψ0〉|2, |〈ew,ψ0〉|2, |〈s, ψ1〉|2, |〈ew,ψ1〉|2.

This can be done rigorously for the complete graph of N vertices, where γE = N−1
N

and π
γE
w (t) is given by (10). Furthermore, complete graphs are particularly interesting

as γE = γopt , i.e., HγE leads to optimal search outcomes.We then askwhether equality
γopt = γE hold for other graphs, or whether we can construct a graph for which the
properties (11) hold.

For this, we propose an approach for optimizing Grover’s algorithm on hypercubic
lattice graphs. In particular, in Sect. 3,wefix the graph topology (as hypercubic lattices)
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and instead vary the analysis structure on these graphs; this is done by varying the
considered Laplacians. The main ideas of this approach are numerically demonstrated
on hypercubic lattices. We restricted our investigation on G5 and focus on graph
homogeneity/non-homogeneity effects onGrover’s quantumwalk. In upcomingwork,
we will extend our investigation to effects related to varying d and the location of the
target vertex w.

In summary, we observe that the results for larger p resemble those of the com-
plete graphs qualitatively, in particular γopt ≈ γE , and the corresponding success
probability is well approximated by (25). On the other hand, Grover’s optimal times
grow exponentially with p in a pattern similar to the graph volume increase in Fig. 6.
Choosing smaller p, like p = 0.4, leads to a slight improvement in Grover’s optimal
time compared to the homogeneous case p = 0.5. But this improvement does not
continue with a further decrease of p as the case p = 0.1 in the bottom right panel in
Fig. 5 shows.
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