
Quantum Information Processing (2023) 22:449
https://doi.org/10.1007/s11128-023-04204-w

PauliComposer: compute tensor products of Pauli matrices
efficiently

Sebastián Vidal Romero1,2 · Juan Santos-Suárez3

Received: 29 May 2023 / Accepted: 28 November 2023 / Published online: 15 December 2023
© The Author(s) 2023

Abstract
We introduce a simple algorithm that efficiently computes tensor products of Pauli
matrices. This is done by tailoring the calculations to this specific case, which allows
to avoid unnecessary calculations. The strength of this strategy is benchmarked against
state-of-the-art techniques, showing a remarkable acceleration. As a side product, we
provide an optimized method for one key calculus in quantum simulations: the Pauli
basis decomposition of Hamiltonians.

Keywords Tensor product · Kronecker product · Pauli matrices · Quantum
mechanics · Quantum computing

1 Introduction

Pauli matrices [1] are one of the most important and well-known set of matrices
within the field of quantum physics. They are particularly important in both physics
and chemistry when used to describe Hamiltonians of many-body spin glasses [2–
7] or for quantum simulations [8–13]. The vast majority of these systems are out of
analytic control so that they are usually simulated through exact diagonalization which
requires their Hamiltonians to be written in its matrix form. While this task may be
regarded as a trivial matter in a mathematical sense, it involves the calculation of
an exponentially growing number of operations. Furthermore, description of quantum

B Sebastián Vidal Romero
sebastian.vidal@tecnalia.com

Juan Santos-Suárez
juansantos.suarez@usc.es

1 TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain

2 Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644,
48080 Bilbao, Spain

3 Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela,
15705 Santiago de Compostela, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-04204-w&domain=pdf
http://orcid.org/0000-0002-4675-4452
http://orcid.org/0000-0001-9360-2411

449 Page 2 of 13 S. Vidal Romero, J. Santos-Suárez

systems viaMatrix Product States (MPS) [14], DensityMatrixRenormalizationGroup
(DMRG) [15] and Projected Entangled Pair States (PEPS) [16] also involves large-
scale Hamiltonians, as well as Lanczos method [17], whose formulation has been
efficiently encoded on quantum hardware recently [18].

In this work, we present the PauliComposer (PC) algorithm which significantly
expedites this calculation. It exploits the fact that any Pauli word only has one element
different from zero per row and column, so a number of calculations can be avoided.
Additionally, each matrix entry can be computed without performing any multiplica-
tions. Even though the exponential scaling of the Hilbert space cannot be avoided, PC
can boost inner calculations where several tensor products involving Pauli matrices
appear. In particular, those that appear while building Hamiltonians as weighted sums
of Pauli strings or decomposing an operator in the Pauli basis.

The PC algorithm could be implemented in computational frameworks inwhich this
sort of operations is crucial, such as the Python modules Qiskit [19], PennyLane [20],
OpenFermion [21] and Cirq [22]. It can also potentially be used in many other applica-
tions, such as the Pauli basis decomposition of the Fock space [23] and conventional
computation of Ising model Hamiltonians to solve optimization problems [24–27],
among others.

The rest of the article is organized as follows: in Sect. 2 we describe the algorithm
formulation in depth, showing a pseudocode-written routine for its computation. In
Sect. 3, a set of tests is performed to show that a remarkable speed-up can be achieved
when compared to state-of-the-art techniques. In Sect. 4, we show how this PC algo-
rithm can be used to solve relevant problems. Finally, the conclusions drawn from the
presented results are given in Sect. 5. We provide proofs for several statements and
details of the algorithm in the appendices.

2 Algorithm formulation

In this section, we discuss the PC algorithm formulation in detail. Pauli matrices are
hermitian, involutory and unitary matrices that together with the identity form the set
σ{0,1,2,3} = {I , X ,Y , Z}. Given an input string x = xn−1 . . . x0 ∈ {0, 1, 2, 3}n , the
PC algorithm constructs

P(x) := σxn−1 ⊗ σxn−2 ⊗ · · · ⊗ σx0 . (1)

Let us denote its matrix elements as Pj,k(x) with j, k = 0, . . . , 2n − 1. It is
important to remark that for each row j , there will be a single column k(j) such that
Pj,k(j) �= 0 (see Appendix 1). The solution amounts to a map from the initial Pauli
string to the positions and values of the 2n nonzero elements. This calculation will
be done sequentially; hence, the complexity of the algorithm will be bounded from
below by this number.

As a first step, it is worth noting that Pauli string matrices are either real (all
elements are ±1) or purely imaginary (all are ±i). This depends on nY , the number
of Y operators in P(x). We can redefine Ỹ := iY , so that σ̃{0,1,2,3} = {I , X , Ỹ , Z}
and P̃(x) := σ̃xn−1 ⊗ · · · ⊗ σ̃x0 . As a result, every entry in P̃(x) will be ±1. This

123

PauliComposer: compute tensor products of Pauli matrices efficiently Page 3 of 13 449

implies that there is no need to compute any multiplication: the problem reduces to
locating the nonzero entries in P̃(x) and tracking sign changes. The original P(x) can
be recovered as P(x) = (−i)nY mod 4 P̃(x).

We will now present an iterative procedure to compute P̃ by finding for each row
j the nonzero column number k(j) and its corresponding value P̃j,k(j). For the first
row, j = 0, the nonzero element P̃0,k(0), can be found at

k(0) = [y(xn−1) . . . y(x0)]10, (2)

where [·]10 is the decimal representation of a bit string and y(xi) tracks the diagonality
of σxi , where y(xi) is equal to 0 if xi = {0, 3} (thus σxi ∈ {I , Z}) and 1 otherwise
(thus σxi ∈ {X ,Y }). The value of this entry is

P̃0,k(0) = +1 �⇒ P0,k(0) = (−i)nY mod 4. (3)

The following entries can be computed iteratively. At the end of stage l, with
l = 0, · · · , n − 1, all nonzero elements in the first 2l+1 rows of Pj,k(j) will have been
computed using the information given by the substring xl . . . x0. At the next step, l+1,
the following 2l rows are filled using the ones that had already been computed, where
the row–column relation k(j) is given by

k(j + 2l) = k(j) + (−1)y(xl)2l , j = 0, . . . , 2l − 1. (4)

The second term of the RHS of this relation takes into account the way that the blocks
of zeros returned at stage l affect the new relative location of the nonzero blocks within
the new 2l+1 × 2l+1 subcomposition. Its corresponding values are obtained from the
previous ones, up to a possible change of sign given by

Pj+2l ,k(j+2l) = εl Pj,k(j), (5)

with εl equal to 1 if xl ∈ {0, 1} and −1 otherwise. This εl is nothing but a parameter
that takes into account if σxl introduces a sign flip. In Algorithm 1 a pseudocode that
summarizes the presented algorithm using (2)-(5), is shown.

For the particular case of diagonal Pauli strings (only I and Z matrices), there is
no need to compute the row–column relation k(j), just the sign assignment is enough.
Even if this is also the case for anti-diagonal matrices, we focus on the diagonal
case due to its relevance in combinatorial problems [24–27]. See Algorithm 2 for the
pseudocode of this case (PDC stands for PauliDiagonalComposer).

123

449 Page 4 of 13 S. Vidal Romero, J. Santos-Suárez

Algorithm 1: PC: compose n Pauli matrices
input : xn−1xn−2 . . . x0 ← string with xi ∈ {0, 1, 2, 3}

1 n ← len(x)
2 nY ← number of Y matrices in x
3 j ← range(0, 2n − 1) // rows
4 k,m ← empty 2n-array // columns/entries
5 k(0) ← y(xn−1) . . . y(x0) in base 10
6 m(0) ← (−i)nY mod 4

7 for l ∈ range(0, n − 1) do
8 k(2l : 2l+1 − 1) ← k(0 : 2l − 1) + (−1)y(xl)2l

9 if xl ∈ {0, 1} then // εl = 1
10 m(2l : 2l+1 − 1) ← m(0 : 2l − 1)
11 else // εl = −1
12 m(2l : 2l+1 − 1) ← −m(0 : 2l − 1)

output: P(x) as a sparse matrix stacking (j, k,m)

Algorithm 2: PDC: compose n diagonal Pauli matrices
input : xn−1xn−2 . . . x0 ← string with xi ∈ {0, 3}

1 n ← len(x)
2 j, k ← range(0, 2n − 1) // rows/columns
3 m ← empty 2n-array // entries
4 m(0) ← 1
5 for l ∈ range(0, n − 1) do
6 if xl = 0 then // εl = 1
7 m(2l : 2l+1 − 1) ← m(0 : 2l − 1)
8 else // εl = −1
9 m(2l : 2l+1 − 1) ← −m(0 : 2l − 1)
output: P(x) as a sparse matrix stacking (j, k,m)

The PC algorithm is able to circumvent the calculation of a significant amount of
operations. When generic Kronecker product routines (see Appendix 2) are used for
the same task, the amount of multiplications needed for computing a Pauli string is
O[n22n] and O[n2n] for dense and sparse matrices, respectively. In contrast, the PC
algorithm, considering the worst-case scenarios, needs

• {I , Z}⊗n : O[2n] changes of sign.
• Otherwise: O[2n] sums and O[2n] changes of sign.

In all cases, our algorithm can significantly outperform those that are not specifically
designed for Pauli matrices.

On top of that, this method is also advantageous for computing weighted Pauli
strings. Following (3), W := ωP , with arbitrary ω, can be computed by defining
W0,k(0) = ω(−i)nY mod 4 which avoids having to do any extra multiplication. This
change is reflected in Algorithm 1 by changing line 6 to m(0) ← ω(−i)nY mod 4

and line 4 to m(0) ← ω in Algorithm 2. This is specially important as it can be

123

PauliComposer: compute tensor products of Pauli matrices efficiently Page 5 of 13 449

Table 1 Computer specifications

Processor Intel Core i7-11850H (16 × 2.50GHz)

RAM 32.0GB (DDR4)

OS Ubuntu 22.04.1 LTS (×64)

MATLAB [31] 9.12.0.1884302 (R2022a)

Python [34] 3.9.12

NumPy [35] 1.23.2 SciPy [36] 1.9.0

Qiskit [19] 0.38.0 PennyLane [20] 0.23.1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10−5

10−4

10−3

10−2

10−1

100

101

n

E
xe
cu

ti
on

ti
m
es

(s
)

Naive Mixed Alg993 Tree PC/PDC

Fig. 1 (Color online) Execution times for computing general (solid line) and diagonal (dashed) n-Pauli
strings using different methods

used to compute Hamiltonians written as a weighted sum of Pauli strings, where
H = ∑

x ωx P(x).

3 Benchmarking

In this section, we analyze the improvement that the PC strategy introduces against
other known algorithms labeled as Naive (regular Kronecker product), Algorithm
993 (Alg993) [28], Mixed and Tree [29, 30]. Further details can be found
in Appendix 2. We benchmark these algorithms using MATLAB [31] as it is profi-
cient at operating with matrices (it incorporates optimized routines of the well-known
BLAS and LAPACK libraries [32, 33]). The PC avoids matrix operations, and thus, it
would not be ideal to implement it using MATLAB. Instead, we use Python [34] since
many quantum computing libraries are written in this language [19–22]. See Table 1
for a full description of the computational resources used.

Concerningmemory needs, with this algorithm only 2n nonzero elements out of 22n

are stored. This is exactly the same as using sparse matrices, thus, no major improve-
ment is to be expected. As for the computational time, we compare how different

123

449 Page 6 of 13 S. Vidal Romero, J. Santos-Suárez

algorithms behave as the length n of the Pauli string increases. In Fig. 1 execution
times for general and diagonal Pauli strings are shown. For the PCmethods, we use the
PC routine (Algorithm 1) for the general case and the PDC routine (Algorithm 2) for
the diagonal one. In accordance to our theoretical analysis, the PC algorithm proves
to be the best performing routine.

On a more technical note, when using the PC routine, matrices with complex val-
ues (nY odd) take twice as much time as real-valued ones (nY even). Consequently,
we compute their execution times separately and then average them. Moreover, it is
convenient to choose when to use PC or PDC as the latter can be up to 10 times faster.

4 Real use cases of the PauliComposer algorithm

The PC algorithm can be used to perform useful calculations in physics. In this section,
the Pauli basis decomposition of a Hamiltonian and the construction of a Hamiltonian
as a sum of weighted Pauli strings are discussed in detail. Another worth mentioning
scenario is the digital implementation of the complex exponential of a Pauli string,
i.e., e−iθ P(x) = cos(θ)I − i sin(θ)P(x).

Pauli basis decomposition of a Hamiltonian.—The decomposition of a Hamilto-
nian written as a 2n × 2n matrix into the Pauli basis is a common problem in quantum
computing. Given a general Hamiltonian H , this decomposition can be written as
H = ∑

x ωx P(x) with x = xn−1 . . . x0 and P(x) as in (1). The coefficients ωx are
obtained from the orthogonal projection as

ωx = 1

2n
tr[P(x)H] = 1

2n

2n−1∑

j=0

Pj,k(j)(x)Hk(j), j . (6)

Following the discussion in Sect. 2, the double sum collapses to a single one in (6)
since there is only one nonzero element per row and column. Each of these weights can
be computed independently, which allows for a parallel implementation. Additionally,
in some special cases, it can be known in advance if some ωx will vanish:

• If H is symmetric, strings with an odd number of Y matrices can be avoided
(2n−1(2n + 1) terms).

• If H is diagonal, only strings composed by I and Z will contribute (2n terms).

The operations made by PauliDecomposer (PD) are

• If H is diagonal (O[2n] strings): O[22n] operations.
• Otherwise (O[22n] strings): O[23n] operations.

This PD algorithm checks if the input matrix satisfies one of the aforementioned cases
and computes the coefficients using the PC routine and (6), discarding all vanishing
Pauli strings. This workflow considerably enhances our results, especially for diagonal
matrices.

In Table 2 and Fig. 2, we tested the most extended methods for decomposing matri-
ces into weighted sums of Pauli strings against PD, using Python [34] to compare their

123

PauliComposer: compute tensor products of Pauli matrices efficiently Page 7 of 13 449

Ta
bl
e
2

E
xe
cu
tio

n
tim

es
(i
n
se
co
nd

s)
fo
rd

ec
om

po
si
ng

an
ar
bi
tr
ar
y
2n

×2
n
m
at
ri
x.
H
er
e,
P
C
an
d
P
D
C
ca
lc
ul
at
io
ns

w
er
e
m
ad
e
co
m
pu
tin

g
w
ei
gh
ts
se
qu
en
tia
lly

an
d
in
pa
ra
lle
l

n
2

3
4

5
6

7
8

9
10

N
on
-h
er
m
iti
an

m
at
ri
x
H
N
H

P
C
(s
eq
ue
nt
ia
l)

0.
00

05
0.
00

21
0.
01

2
0.
07

8
0.
55

4.
06

31
.2

25
4

20
08

P
C
(p
ar
al
le
l)

0.
09

4
0.
09

3
0.
11

0.
15

0.
38

2.
10

13
.5

94
.3

71
9

Q
is
ki
t

0.
00

15
0.
00

50
0.
02

0
0.
14

1.
16

8.
78

92
.3
8

13
98

26
93

8

H
er
m
iti
an

m
at
ri
x
H
H

P
C
(s
eq
ue
nt
ia
l)

0.
00

04
0.
00

21
0.
01

2
0.
07

8
0.
56

4.
24

32
.8
6

26
1

20
07

P
C
(p
ar
al
le
l)

0.
06

8
0.
07

0
0.
07

9
0.
12

0.
33

1.
99

13
.0
2

96
.5

64
7

Q
is
ki
t

0.
00

10
0.
00

35
0.
01

8
0.
10

1.
47

12
.0
2

10
8

12
95

26
84

8

Pe
nn
yL

an
e

0.
00

13
0.
00

60
0.
03

0
0.
15

2.
23

10
.6
6

97
.6

20
19

35
01

4

Sy
m
m
et
ri
c
m
at
ri
x
H
S

P
C
(s
eq
ue
nt
ia
l)

0.
00

03
0.
00

10
0.
00

58
0.
03

6
0.
24

1.
78

14
.0
5

10
8

79
4

P
C
(p
ar
al
le
l)

0.
05

9
0.
05

9
0.
06

1
0.
07

8
0.
13

0.
48

2.
75

20
.1

14
0

Q
is
ki
t

0.
00

10
0.
00

36
0.
01

8
0.
10

1.
45

11
.0
7

10
5

13
20

26
39

9

Pe
nn
yL

an
e

0.
00

11
0.
00

54
0.
02

7
0.
13

1.
36

9.
22

91
.5
2

14
77

31
58

3

D
ia
go
na
lm

at
ri
x
H
D

P
D
C
(s
eq
ue
nt
ia
l)

0.
00

01
0.
00

02
0.
00

06
0.
00

18
0.
00

68
0.
02

5
0.
09

4
0.
37

1.
49

P
D
C
(p
ar
al
le
l)

0.
05

5
0.
05

7
0.
05

9
0.
06

0
0.
06

0
0.
06

4
0.
07

8
0.
12

0.
35

Q
is
ki
t

0.
00

10
0.
00

35
0.
01

8
0.
10

1.
46

11
.0

10
3

12
70

25
97

7

Pe
nn
yL

an
e

0.
00

10
0.
00

47
0.
02

3
0.
11

1.
20

8.
29

86
.2

13
70

30
94

1

123

449 Page 8 of 13 S. Vidal Romero, J. Santos-Suárez

2 3 4 5 6 7 8 9 1010−4
10−3
10−2
10−1
100
101
102
103
104
105

(a)

n

E
xe
cu

ti
on

ti
m
es

(s
)

PC
Qiskit

2 3 4 5 6 7 8 9 10

(b)

n

PC
Qiskit
PennyLane

2 3 4 5 6 7 8 9 1010−4
10−3
10−2
10−1
100
101
102
103
104
105

(c)

n

E
xe
cu

ti
on

ti
m
es

(s
)

PC
Qiskit
PennyLane

2 3 4 5 6 7 8 9 10

(d)

n

PDC
Qiskit
PennyLane

Fig. 2 (Color online) Execution times for decomposing 2n ×2n (a) non-hermitian HNH, (b) hermitian HH,
(c) symmetric HS and (d) diagonal HD matrices with different methods. For PC and PDC, solid (dotted)
line depicts sequential (parallelized) decomposition. See Table 2. As expected, notice that the larger n, the
higher impact of parallelization

performance. In particular, we used the SparsePauliOp class from Qiskit [19] and
the decompose_hamiltonian function from PennyLane [20] (only works with
hermitian Hamiltonians). To the best of authors’ knowledge, both routines are based
on Naive approach without inspecting the input matrix nature before proceeding.

Four types of random 2n×2n matrices were generated, namely non-hermitian HNH,
hermitian HH, symmetric HS and diagonal HD matrices. The PD vastly outperforms
Qiskit and PennyLane routines, specially for the symmetric and diagonal cases.

Building of aHamiltonian as a sum of weighted Pauli strings.—ManyHamiltoni-
ans are written in terms of weighted Pauli strings. Our method can compute weighted
Pauli strings directly without extra computations. In Fig. 3, we show a performance
comparison of the presented methods for computing Hamiltonians written as sums of
weighted Pauli strings. The Hamiltonian used is similar to the one proposed in [27],

H =
n−1∑

i=0

αiσ
i
3 +

n−1∑

i< j

βi jσ
i
3σ

j
3 , (7)

being the corresponding weights �α and �β arbitrary and σ i
3 as defined in (B2). This

Hamiltonian is computed using Algorithm 3, which uses the PDC routine (see Algo-
rithm 2) with two inputs: the string x ∈ {0, 3}n to compute and the weights to
consider. In the PDC case, we use two strategies: compute each weighted term of (7)
directly and compute each Pauli string and thenmultiply it by its correspondingweight

123

PauliComposer: compute tensor products of Pauli matrices efficiently Page 9 of 13 449

Algorithm 3: Ising model Hamiltonian computation

input : �α, �β ← lists of weights
1 n ← len(�α)
2 H ← 2n × 2n sparse matrix of zeros
3 for i ∈ range(0, n − 1) do
4 str1 ← string of n zeros // n identities
5 str1(i) ← 3 // Z in the i-th position
6 H ← H + PDC(str1, αi)
7 for j ∈ range(i + 1, n − 1) do
8 str2 ← copy(str1)
9 str2(j) ← 3 // Z in the j-th position

10 H ← H + PDC(str2, βi j)
output: Hamiltonian H as a sparse matrix

2 4 6 8 10 12 14 16 18 20 22 24 26 28 3010−5

10−4

10−3

10−2

10−1

100
101
102
103
104

n

E
xe
cu

ti
on

ti
m
es

(s
)

Naive
Tree
PDC

Fig. 3 (Color online) Execution times for computing (7) using Algorithm 3 (solid line) and computing
previously the Pauli string and multiply it by its corresponding weight (dashed)

(solid and dashed lines in Fig. 3, respectively). This is done by changing lines 6 to
H ← H + αiPDC(str1) and 10 to H ← H + βi jPDC(str2) in Algorithm 3 for the
second one. There is no significant difference between both methods.

5 Conclusions

The fast and reliable computation of tensor products of Pauli matrices is crucial in the
field of quantum mechanics and, in particular, of quantum computing. In this article,
we propose a novel algorithmwith proven theoretical and experimental enhancements
over similar methods of this key yet computationally tedious task. This is achieved by
taking advantage of the properties of Pauli matrices and the tensor product definition,
which implies that one can avoid trivial operations such asmultiplying constants by one
and waste time computing elements with value zero that could be known in advance.

Concerning memory resources, it is convenient to store the obtained results as
sparse matrices since only 2n out of 22n entries will not be zero for a Pauli string of
length n, i.e., the density of the resultant matrix will be 2−n (see Appendix 1).

123

449 Page 10 of 13 S. Vidal Romero, J. Santos-Suárez

Our benchmark tests suggest that the PauliComposer algorithm and its variants can
achieve a remarkable acceleration when compared to the most well-known methods
for the same purpose both for single Pauli strings and real use cases. In particular,
the most considerable outperformance can be seen in Table 2 for the symmetric and
diagonal matrix decomposition over the Pauli basis.

Finally, its simple implementation (Algorithm1-2) can potentially allow to integrate
the PC routines into quantum simulation packages to enhance inner calculations.

Acknowledgements We thank Javier Mas Solé, Yue Ban and Mikel García de Andoin for the helpful
discussions. This research is funded by the project “BRTA QUANTUM: Hacia una especialización armo-
nizada en tecnologías cuánticas en BRTA” (expedient no. KK-2022/00041). The work of JSS has received
support from Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2019–2022) by
European Union ERDF, from the Spanish Research State Agency (grant PID2020-114157GB-100) and
from MICIN with funding from the European Union NextGenerationEU (PRTR-C17.I1) and the Galician
Regional Government with own funding through the “Planes Complementarios de I+D+I con las Comu-
nidades Autónomas” in Quantum Communication.

Data and Code Availability The data used in the current study is available upon reasonable request from the
corresponding authors. The code used can be found at https://github.com/sebastianvromero/PauliComposer.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Some proofs regarding Pauli strings

In this section, we prove two key properties of Pauli strings on which our algorithm
is based.

Proposition 1 APauli string P(x) of length n given by (1) has only 2n nonzero entries.

n−1⊗
i=0

σxn−i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
0 · · ·

· · · 0
0 · · · 0

0

0
0 · · · 0

0 · · ·
· · · 0
0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4 (Color online) Scheme for computing the number of zeros of an arbitrary composition of n Pauli
matrices

123

https://github.com/sebastianvromero/PauliComposer
http://creativecommons.org/licenses/by/4.0/

PauliComposer: compute tensor products of Pauli matrices efficiently Page 11 of 13 449

Proof With the help of Fig. 4, we can compute the number of zeros in the resulting
matrix as

n0(n) = 2
(
2n−1 × 2n−1

)
+ 4

(
2n−2 × 2n−2

)
+ 8

(
2n−3 × 2n−3

)
+ · · · + 2n(1 × 1)

=
2n−1∑

k=n

2k = 2n
(
2n − 1

)
.

(A1)

In other words, P(x)will have only 2n nonzero terms.We can prove (A1) by induction
easily: since n0(n = 1) is true, if we assume that n0(n) holds we can see that

n0(n + 1) = 2 · 2n(2n − 1) + 2 · 22n = 2n+1
(
2n+1 − 1

)
(A2)

also holds true.

Corollary 1.1 A Pauli string P(x) of length n given by (1) has only one nonzero entry
per row and column.

Proof Since the tensor product of unitary matrices is also unitary, then |det P(x)| = 1.
From Th. 1, only 2n entries of the resulting 2n × 2n matrix are nonzero. So the logical
conclusion to be drawn is that the unique way to locate them without having a row and
a column full of zeros, thus returning a zero determinant, is that each row and column
must have only one nonzero entry.

Standardmethods for computing tensor products

In this appendix, we briefly review the well-established algorithms that were used in
the benchmark [28–30]. First, one can consider what we call the Naive algorithm,
which consists on performing the calculations directly. It is clearly highly inefficient
as it scales in the number of operations as O[n2n] for sparse Pauli matrices. Second,
the Mixed algorithm uses the mixed-product property

n−1⊗

i=0

σxn−i−1 =
n−1∏

i=0

σ i
xn−i−1

, (B1)

with

σ i
xi :=

⎧
⎪⎨

⎪⎩

I⊗n−1 ⊗ σx0 if i = 0

I⊗n−i−1 ⊗ σxi ⊗ I⊗i if 0 < i < n − 1

σxn−1 ⊗ I⊗n−1 if i = n − 1

, (B2)

to simplify the calculation into a simple product of block diagonal matrices. Based on
this procedure,Alg993 is presented in [28]. It can be shown that thismethod performs
over O[n2n] operations. Besides that, as Fig. 1 suggests, the fact that it requires to

123

449 Page 12 of 13 S. Vidal Romero, J. Santos-Suárez

transpose and reshape several matrices has a non-negligible effect that fatally increases
its computation time. Finally, the Tree routine starts storing pairs of tensor products
as

{
σxn−2i−1 ⊗ σxn−2i−2

}n/2−1
i=0 if n even

{
σxn−1

} ∪ {
σxn−2i−1 ⊗ σxn−2i−2

}
n/2�
i=0 if n odd

, (B3)

and proceeds with the resultant matrices following the same logic, which allows to
compute (1) by iteratively grouping its terms by pairs. For better results, this method
can be parallelized.

References

1. Pauli, W.: Zur Quantenmechanik des Magnetischen Elektrons. Z. Phys. 43, 601 (1927)
2. Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619 (1928)
3. Bethe, H.: Zur Theorie der Metalle. Z. Phys. 71, 205 (1931)
4. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792 (1975)
5. Panchenko, D.: The Sherrington–Kirkpatrick model: an overview. J. Stat. Phys. 149, 362 (2012)
6. Hubbard, J., Flowers, B.H.: Electron Correlations in Narrow Energy Bands. Proc. R. Soc. Lond. Ser.

A Math. Phys. Sci. 276, 238 (1963)
7. Altland, A., Simons, B.: Second quantization. In: Condensed Matter Field Theory (Cambridge Uni-

versity Press, 2006) pp. 39–93
8. Jordan, P., Wigner, E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631 (1928)
9. Bravyi, S.B., Kitaev, A.Y.: Fermionic quantum computation. Ann. Phys. 298, 210 (2002)

10. Seeley, J.T., Richard, M.J., Love, P.J.: The Bravyi–Kitaev transformation for quantum computation of
electronic structure. J. Chem. Phys. 137, 224109 (2012)

11. Tranter, A., Sofia, S., Seeley, J., Kaicher, M., McClean, J., Babbush, R., Coveney, P.V., Mintert, F.,
Wilhelm, F., Love, P.J.: TheBravyi–Kitaev transformation: properties and applications. Int. J. Quantum
Chem. 115, 1431 (2015)

12. Tranter, A., Love, P.J., Mintert, F., Coveney, P.V.: A cmparison of the Bravyi–Kitaev and Jordan–
Wigner transformations for the quantum simulation of quantum chemistry. J. Chem. Theory Comput.
14, 5617 (2018)

13. Steudtner,M.,Wehner, S.: Fermion-to-qubitmappingswith varying resource requirements for quantum
simulation. New J. Phys. 20, 063010 (2018)

14. Östlund, S., Rommer, S.: Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett. 75,
3537 (1995)

15. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69,
2863 (1992)

16. Verstraete, F., Cirac, J.I.: arxiv:cond-mat/0407066 (2004)
17. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and

integral operators. J. Res. Natl. Bur. Stand. B 45, 255 (1950)
18. Kirby, W., Motta, M., Mezzacapo, A.: Exact and efficient Lanczos method on a quantum computer.

Quantum 7, 1018 (2023)
19. Qiskit, Qiskit: An Open-source Framework for Quantum Computing (2021)
20. PennyLane, PennyLane:AutomaticDifferentiation ofHybridQuantum-ClassicalComputations (2018)
21. OpenFermion, OpenFermion: The Electronic Structure Package for Quantum Computers (2017)
22. Cirq, Cirq (2022)
23. Liu,R.,VidalRomero, S.,Oregi, I.,Osaba,E.,Villar-Rodriguez,E.,Ban,Y.:Digital quantumsimulation

and circuit learning for the generation of coherent states. Entropy 24, 1529 (2022)
24. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)
25. Osaba, E., Villar-Rodriguez, E., Oregi, I.: A systematic literature review of quantum computing for

routing problems. IEEE Access 10, 55805 (2022)

123

http://arxiv.org/abs/cond-mat/0407066

PauliComposer: compute tensor products of Pauli matrices efficiently Page 13 of 13 449

26. Vidal Romero, S., Osaba, E., Villar-Rodriguez, E., Oregi, I., Ban, Y.: Hybrid approach for solving
real-world bin packing problem instances using quantum annealers. Sci. Rep. 13, 11777 (2023)

27. Garcia de Andoin, M., Osaba, E., Oregi, I., Villar-Rodriguez, E., Sanz, M.: Hybrid quantum-classical
heuristic for the bin packing problem. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’22, pp. 2214–2222 (2022)

28. Fackler, P.L.: Trans, Algorithm 993: Efficient Computation with Kronecker Products, A.C.M.: Math.
Softw. 45, 1 (2019)

29. Horn, R.A., Johnson, C.R.: Matrix equations and the kronecker product, in Topics in Matrix Analysis
(Cambridge University Press, 1991) p. 239–297

30. Burrus, C.S.: Implementing Kronecker Products Efficiently, in Automatic Generation of Prime Length
FFT Programs (OpenStax CNX, 2009) pp. 41–49

31. MATLAB version 9.12.0.1884302 (R2022a), The Mathworks, Inc., Natick, Massachusetts (2022)
32. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Trans, Basic Linear Algebra Subprograms for

Fortran Usage, A.C.M.: Math. Softw. 5, 308 (1979)
33. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,A.,

Hammarling, S.,McKenney, A., Sorensen, D.: LAPACKusers’ guide, 3rd ed., Software, environments,
tools (Society for Industrial and Applied Mathematics, 1999)

34. Python, Python: A Dynamic. Open Source Programming Language, Python Software Foundation
(2022)

35. Harris, Charles R., JarrodMillman, K., et al., Array Programmingwith NumPy, Nature 585, 357 (2020)
36. SciPy, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17,

261 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	PauliComposer: compute tensor products of Pauli matrices efficiently
	Abstract
	1 Introduction
	2 Algorithm formulation
	3 Benchmarking
	4 Real use cases of the PauliComposer algorithm
	5 Conclusions
	Acknowledgements
	Appendix: Some proofs regarding Pauli strings
	Standard methods for computing tensor products
	References

