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Abstract
We introduce a simple algorithm that efficiently computes tensor products of Pauli
matrices. This is done by tailoring the calculations to this specific case, which allows
to avoid unnecessary calculations. The strength of this strategy is benchmarked against
state-of-the-art techniques, showing a remarkable acceleration. As a side product, we
provide an optimized method for one key calculus in quantum simulations: the Pauli
basis decomposition of Hamiltonians.

Keywords Tensor product · Kronecker product · Pauli matrices · Quantum
mechanics · Quantum computing

1 Introduction

Pauli matrices [1] are one of the most important and well-known set of matrices
within the field of quantum physics. They are particularly important in both physics
and chemistry when used to describe Hamiltonians of many-body spin glasses [2–
7] or for quantum simulations [8–13]. The vast majority of these systems are out of
analytic control so that they are usually simulated through exact diagonalization which
requires their Hamiltonians to be written in its matrix form. While this task may be
regarded as a trivial matter in a mathematical sense, it involves the calculation of
an exponentially growing number of operations. Furthermore, description of quantum
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systems viaMatrix Product States (MPS) [14], DensityMatrixRenormalizationGroup
(DMRG) [15] and Projected Entangled Pair States (PEPS) [16] also involves large-
scale Hamiltonians, as well as Lanczos method [17], whose formulation has been
efficiently encoded on quantum hardware recently [18].

In this work, we present the PauliComposer (PC) algorithm which significantly
expedites this calculation. It exploits the fact that any Pauli word only has one element
different from zero per row and column, so a number of calculations can be avoided.
Additionally, each matrix entry can be computed without performing any multiplica-
tions. Even though the exponential scaling of the Hilbert space cannot be avoided, PC
can boost inner calculations where several tensor products involving Pauli matrices
appear. In particular, those that appear while building Hamiltonians as weighted sums
of Pauli strings or decomposing an operator in the Pauli basis.

The PC algorithm could be implemented in computational frameworks inwhich this
sort of operations is crucial, such as the Python modules Qiskit [19], PennyLane [20],
OpenFermion [21] and Cirq [22]. It can also potentially be used in many other applica-
tions, such as the Pauli basis decomposition of the Fock space [23] and conventional
computation of Ising model Hamiltonians to solve optimization problems [24–27],
among others.

The rest of the article is organized as follows: in Sect. 2 we describe the algorithm
formulation in depth, showing a pseudocode-written routine for its computation. In
Sect. 3, a set of tests is performed to show that a remarkable speed-up can be achieved
when compared to state-of-the-art techniques. In Sect. 4, we show how this PC algo-
rithm can be used to solve relevant problems. Finally, the conclusions drawn from the
presented results are given in Sect. 5. We provide proofs for several statements and
details of the algorithm in the appendices.

2 Algorithm formulation

In this section, we discuss the PC algorithm formulation in detail. Pauli matrices are
hermitian, involutory and unitary matrices that together with the identity form the set
σ{0,1,2,3} = {I , X ,Y , Z}. Given an input string x = xn−1 . . . x0 ∈ {0, 1, 2, 3}n , the
PC algorithm constructs

P(x) := σxn−1 ⊗ σxn−2 ⊗ · · · ⊗ σx0 . (1)

Let us denote its matrix elements as Pj,k(x) with j, k = 0, . . . , 2n − 1. It is
important to remark that for each row j , there will be a single column k( j) such that
Pj,k( j) �= 0 (see Appendix 1). The solution amounts to a map from the initial Pauli
string to the positions and values of the 2n nonzero elements. This calculation will
be done sequentially; hence, the complexity of the algorithm will be bounded from
below by this number.

As a first step, it is worth noting that Pauli string matrices are either real (all
elements are ±1) or purely imaginary (all are ±i). This depends on nY , the number
of Y operators in P(x). We can redefine Ỹ := iY , so that σ̃{0,1,2,3} = {I , X , Ỹ , Z}
and P̃(x) := σ̃xn−1 ⊗ · · · ⊗ σ̃x0 . As a result, every entry in P̃(x) will be ±1. This
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implies that there is no need to compute any multiplication: the problem reduces to
locating the nonzero entries in P̃(x) and tracking sign changes. The original P(x) can
be recovered as P(x) = (−i)nY mod 4 P̃(x).

We will now present an iterative procedure to compute P̃ by finding for each row
j the nonzero column number k( j) and its corresponding value P̃j,k( j). For the first
row, j = 0, the nonzero element P̃0,k(0), can be found at

k(0) = [y(xn−1) . . . y(x0)]10, (2)

where [ · ]10 is the decimal representation of a bit string and y(xi ) tracks the diagonality
of σxi , where y(xi ) is equal to 0 if xi = {0, 3} (thus σxi ∈ {I , Z}) and 1 otherwise
(thus σxi ∈ {X ,Y }). The value of this entry is

P̃0,k(0) = +1 �⇒ P0,k(0) = (−i)nY mod 4. (3)

The following entries can be computed iteratively. At the end of stage l, with
l = 0, · · · , n − 1, all nonzero elements in the first 2l+1 rows of Pj,k( j) will have been
computed using the information given by the substring xl . . . x0. At the next step, l+1,
the following 2l rows are filled using the ones that had already been computed, where
the row–column relation k( j) is given by

k( j + 2l) = k( j) + (−1)y(xl )2l , j = 0, . . . , 2l − 1. (4)

The second term of the RHS of this relation takes into account the way that the blocks
of zeros returned at stage l affect the new relative location of the nonzero blocks within
the new 2l+1 × 2l+1 subcomposition. Its corresponding values are obtained from the
previous ones, up to a possible change of sign given by

Pj+2l ,k( j+2l ) = εl Pj,k( j), (5)

with εl equal to 1 if xl ∈ {0, 1} and −1 otherwise. This εl is nothing but a parameter
that takes into account if σxl introduces a sign flip. In Algorithm 1 a pseudocode that
summarizes the presented algorithm using (2)-(5), is shown.

For the particular case of diagonal Pauli strings (only I and Z matrices), there is
no need to compute the row–column relation k( j), just the sign assignment is enough.
Even if this is also the case for anti-diagonal matrices, we focus on the diagonal
case due to its relevance in combinatorial problems [24–27]. See Algorithm 2 for the
pseudocode of this case (PDC stands for PauliDiagonalComposer).
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Algorithm 1: PC: compose n Pauli matrices
input : xn−1xn−2 . . . x0 ← string with xi ∈ {0, 1, 2, 3}

1 n ← len(x)
2 nY ← number of Y matrices in x
3 j ← range(0, 2n − 1) // rows
4 k,m ← empty 2n-array // columns/entries
5 k(0) ← y(xn−1) . . . y(x0) in base 10
6 m(0) ← (−i)nY mod 4

7 for l ∈ range(0, n − 1) do
8 k(2l : 2l+1 − 1) ← k(0 : 2l − 1) + (−1)y(xl )2l

9 if xl ∈ {0, 1} then // εl = 1
10 m(2l : 2l+1 − 1) ← m(0 : 2l − 1)
11 else // εl = −1
12 m(2l : 2l+1 − 1) ← −m(0 : 2l − 1)

output: P(x) as a sparse matrix stacking ( j, k,m)

Algorithm 2: PDC: compose n diagonal Pauli matrices
input : xn−1xn−2 . . . x0 ← string with xi ∈ {0, 3}

1 n ← len(x)
2 j, k ← range(0, 2n − 1) // rows/columns
3 m ← empty 2n-array // entries
4 m(0) ← 1
5 for l ∈ range(0, n − 1) do
6 if xl = 0 then // εl = 1
7 m(2l : 2l+1 − 1) ← m(0 : 2l − 1)
8 else // εl = −1
9 m(2l : 2l+1 − 1) ← −m(0 : 2l − 1)
output: P(x) as a sparse matrix stacking ( j, k,m)

The PC algorithm is able to circumvent the calculation of a significant amount of
operations. When generic Kronecker product routines (see Appendix 2) are used for
the same task, the amount of multiplications needed for computing a Pauli string is
O[n22n] and O[n2n] for dense and sparse matrices, respectively. In contrast, the PC
algorithm, considering the worst-case scenarios, needs

• {I , Z}⊗n : O[2n] changes of sign.
• Otherwise: O[2n] sums and O[2n] changes of sign.

In all cases, our algorithm can significantly outperform those that are not specifically
designed for Pauli matrices.

On top of that, this method is also advantageous for computing weighted Pauli
strings. Following (3), W := ωP , with arbitrary ω, can be computed by defining
W0,k(0) = ω(−i)nY mod 4 which avoids having to do any extra multiplication. This
change is reflected in Algorithm 1 by changing line 6 to m(0) ← ω(−i)nY mod 4

and line 4 to m(0) ← ω in Algorithm 2. This is specially important as it can be
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Table 1 Computer specifications

Processor Intel Core i7-11850H (16 × 2.50GHz)

RAM 32.0GB (DDR4)

OS Ubuntu 22.04.1 LTS (×64)

MATLAB [31] 9.12.0.1884302 (R2022a)

Python [34] 3.9.12

NumPy [35] 1.23.2 SciPy [36] 1.9.0

Qiskit [19] 0.38.0 PennyLane [20] 0.23.1
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Fig. 1 (Color online) Execution times for computing general (solid line) and diagonal (dashed) n-Pauli
strings using different methods

used to compute Hamiltonians written as a weighted sum of Pauli strings, where
H = ∑

x ωx P(x).

3 Benchmarking

In this section, we analyze the improvement that the PC strategy introduces against
other known algorithms labeled as Naive (regular Kronecker product), Algorithm
993 (Alg993) [28], Mixed and Tree [29, 30]. Further details can be found
in Appendix 2. We benchmark these algorithms using MATLAB [31] as it is profi-
cient at operating with matrices (it incorporates optimized routines of the well-known
BLAS and LAPACK libraries [32, 33]). The PC avoids matrix operations, and thus, it
would not be ideal to implement it using MATLAB. Instead, we use Python [34] since
many quantum computing libraries are written in this language [19–22]. See Table 1
for a full description of the computational resources used.

Concerningmemory needs, with this algorithm only 2n nonzero elements out of 22n

are stored. This is exactly the same as using sparse matrices, thus, no major improve-
ment is to be expected. As for the computational time, we compare how different
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algorithms behave as the length n of the Pauli string increases. In Fig. 1 execution
times for general and diagonal Pauli strings are shown. For the PCmethods, we use the
PC routine (Algorithm 1) for the general case and the PDC routine (Algorithm 2) for
the diagonal one. In accordance to our theoretical analysis, the PC algorithm proves
to be the best performing routine.

On a more technical note, when using the PC routine, matrices with complex val-
ues (nY odd) take twice as much time as real-valued ones (nY even). Consequently,
we compute their execution times separately and then average them. Moreover, it is
convenient to choose when to use PC or PDC as the latter can be up to 10 times faster.

4 Real use cases of the PauliComposer algorithm

The PC algorithm can be used to perform useful calculations in physics. In this section,
the Pauli basis decomposition of a Hamiltonian and the construction of a Hamiltonian
as a sum of weighted Pauli strings are discussed in detail. Another worth mentioning
scenario is the digital implementation of the complex exponential of a Pauli string,
i.e., e−iθ P(x) = cos(θ)I − i sin(θ)P(x).

Pauli basis decomposition of a Hamiltonian.—The decomposition of a Hamilto-
nian written as a 2n × 2n matrix into the Pauli basis is a common problem in quantum
computing. Given a general Hamiltonian H , this decomposition can be written as
H = ∑

x ωx P(x) with x = xn−1 . . . x0 and P(x) as in (1). The coefficients ωx are
obtained from the orthogonal projection as

ωx = 1

2n
tr[P(x)H ] = 1

2n

2n−1∑

j=0

Pj,k( j)(x)Hk( j), j . (6)

Following the discussion in Sect. 2, the double sum collapses to a single one in (6)
since there is only one nonzero element per row and column. Each of these weights can
be computed independently, which allows for a parallel implementation. Additionally,
in some special cases, it can be known in advance if some ωx will vanish:

• If H is symmetric, strings with an odd number of Y matrices can be avoided
(2n−1(2n + 1) terms).

• If H is diagonal, only strings composed by I and Z will contribute (2n terms).

The operations made by PauliDecomposer (PD) are

• If H is diagonal (O[2n] strings): O[22n] operations.
• Otherwise (O[22n] strings): O[23n] operations.

This PD algorithm checks if the input matrix satisfies one of the aforementioned cases
and computes the coefficients using the PC routine and (6), discarding all vanishing
Pauli strings. This workflow considerably enhances our results, especially for diagonal
matrices.

In Table 2 and Fig. 2, we tested the most extended methods for decomposing matri-
ces into weighted sums of Pauli strings against PD, using Python [34] to compare their
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Fig. 2 (Color online) Execution times for decomposing 2n ×2n (a) non-hermitian HNH, (b) hermitian HH,
(c) symmetric HS and (d) diagonal HD matrices with different methods. For PC and PDC, solid (dotted)
line depicts sequential (parallelized) decomposition. See Table 2. As expected, notice that the larger n, the
higher impact of parallelization

performance. In particular, we used the SparsePauliOp class from Qiskit [19] and
the decompose_hamiltonian function from PennyLane [20] (only works with
hermitian Hamiltonians). To the best of authors’ knowledge, both routines are based
on Naive approach without inspecting the input matrix nature before proceeding.

Four types of random 2n×2n matrices were generated, namely non-hermitian HNH,
hermitian HH, symmetric HS and diagonal HD matrices. The PD vastly outperforms
Qiskit and PennyLane routines, specially for the symmetric and diagonal cases.

Building of aHamiltonian as a sum of weighted Pauli strings.—ManyHamiltoni-
ans are written in terms of weighted Pauli strings. Our method can compute weighted
Pauli strings directly without extra computations. In Fig. 3, we show a performance
comparison of the presented methods for computing Hamiltonians written as sums of
weighted Pauli strings. The Hamiltonian used is similar to the one proposed in [27],

H =
n−1∑

i=0

αiσ
i
3 +

n−1∑

i< j

βi jσ
i
3σ

j
3 , (7)

being the corresponding weights �α and �β arbitrary and σ i
3 as defined in (B2). This

Hamiltonian is computed using Algorithm 3, which uses the PDC routine (see Algo-
rithm 2) with two inputs: the string x ∈ {0, 3}n to compute and the weights to
consider. In the PDC case, we use two strategies: compute each weighted term of (7)
directly and compute each Pauli string and thenmultiply it by its correspondingweight
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Algorithm 3: Ising model Hamiltonian computation

input : �α, �β ← lists of weights
1 n ← len(�α)
2 H ← 2n × 2n sparse matrix of zeros
3 for i ∈ range(0, n − 1) do
4 str1 ← string of n zeros // n identities
5 str1(i) ← 3 // Z in the i-th position
6 H ← H + PDC(str1, αi)
7 for j ∈ range(i + 1, n − 1) do
8 str2 ← copy(str1)
9 str2( j) ← 3 // Z in the j-th position

10 H ← H + PDC(str2, βi j)
output: Hamiltonian H as a sparse matrix
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Fig. 3 (Color online) Execution times for computing (7) using Algorithm 3 (solid line) and computing
previously the Pauli string and multiply it by its corresponding weight (dashed)

(solid and dashed lines in Fig. 3, respectively). This is done by changing lines 6 to
H ← H + αiPDC(str1) and 10 to H ← H + βi jPDC(str2) in Algorithm 3 for the
second one. There is no significant difference between both methods.

5 Conclusions

The fast and reliable computation of tensor products of Pauli matrices is crucial in the
field of quantum mechanics and, in particular, of quantum computing. In this article,
we propose a novel algorithmwith proven theoretical and experimental enhancements
over similar methods of this key yet computationally tedious task. This is achieved by
taking advantage of the properties of Pauli matrices and the tensor product definition,
which implies that one can avoid trivial operations such asmultiplying constants by one
and waste time computing elements with value zero that could be known in advance.

Concerning memory resources, it is convenient to store the obtained results as
sparse matrices since only 2n out of 22n entries will not be zero for a Pauli string of
length n, i.e., the density of the resultant matrix will be 2−n (see Appendix 1).
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Our benchmark tests suggest that the PauliComposer algorithm and its variants can
achieve a remarkable acceleration when compared to the most well-known methods
for the same purpose both for single Pauli strings and real use cases. In particular,
the most considerable outperformance can be seen in Table 2 for the symmetric and
diagonal matrix decomposition over the Pauli basis.

Finally, its simple implementation (Algorithm1-2) can potentially allow to integrate
the PC routines into quantum simulation packages to enhance inner calculations.
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Appendix: Some proofs regarding Pauli strings

In this section, we prove two key properties of Pauli strings on which our algorithm
is based.

Proposition 1 APauli string P(x) of length n given by (1) has only 2n nonzero entries.

n−1⊗
i=0

σxn−i−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
0 · · ·

· · · 0
0 · · · 0

0

0
0 · · · 0

0 · · ·
· · · 0
0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4 (Color online) Scheme for computing the number of zeros of an arbitrary composition of n Pauli
matrices
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Proof With the help of Fig. 4, we can compute the number of zeros in the resulting
matrix as

n0(n) = 2
(
2n−1 × 2n−1

)
+ 4

(
2n−2 × 2n−2

)
+ 8

(
2n−3 × 2n−3

)
+ · · · + 2n(1 × 1)

=
2n−1∑

k=n

2k = 2n
(
2n − 1

)
.

(A1)

In other words, P(x)will have only 2n nonzero terms.We can prove (A1) by induction
easily: since n0(n = 1) is true, if we assume that n0(n) holds we can see that

n0(n + 1) = 2 · 2n(2n − 1) + 2 · 22n = 2n+1
(
2n+1 − 1

)
(A2)

also holds true.

Corollary 1.1 A Pauli string P(x) of length n given by (1) has only one nonzero entry
per row and column.

Proof Since the tensor product of unitary matrices is also unitary, then |det P(x)| = 1.
From Th. 1, only 2n entries of the resulting 2n × 2n matrix are nonzero. So the logical
conclusion to be drawn is that the unique way to locate them without having a row and
a column full of zeros, thus returning a zero determinant, is that each row and column
must have only one nonzero entry.

Standardmethods for computing tensor products

In this appendix, we briefly review the well-established algorithms that were used in
the benchmark [28–30]. First, one can consider what we call the Naive algorithm,
which consists on performing the calculations directly. It is clearly highly inefficient
as it scales in the number of operations as O[n2n] for sparse Pauli matrices. Second,
the Mixed algorithm uses the mixed-product property

n−1⊗

i=0

σxn−i−1 =
n−1∏

i=0

σ i
xn−i−1

, (B1)

with

σ i
xi :=

⎧
⎪⎨

⎪⎩

I⊗n−1 ⊗ σx0 if i = 0

I⊗n−i−1 ⊗ σxi ⊗ I⊗i if 0 < i < n − 1

σxn−1 ⊗ I⊗n−1 if i = n − 1

, (B2)

to simplify the calculation into a simple product of block diagonal matrices. Based on
this procedure,Alg993 is presented in [28]. It can be shown that thismethod performs
over O[n2n] operations. Besides that, as Fig. 1 suggests, the fact that it requires to
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transpose and reshape several matrices has a non-negligible effect that fatally increases
its computation time. Finally, the Tree routine starts storing pairs of tensor products
as

{
σxn−2i−1 ⊗ σxn−2i−2

}n/2−1
i=0 if n even

{
σxn−1

} ∪ {
σxn−2i−1 ⊗ σxn−2i−2

}
n/2�
i=0 if n odd

, (B3)

and proceeds with the resultant matrices following the same logic, which allows to
compute (1) by iteratively grouping its terms by pairs. For better results, this method
can be parallelized.
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