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Abstract
Timetable scheduling is a combinatorial optimizationproblem that presents formidable
challenges for classical computers. This paper introduces a pioneering methodology
for addressing the high-speed train timetabling problem through quantum comput-
ing. Initially, a comprehensive binary integer programming model, grounded in the
space–time network, is proposed (M1). To manage the intricacy of model M1, a
knapsack problem reformulation is employed to establish a simplified binary inte-
ger programming model (M2). Both M1 and M2 are subsequently converted into
quadratic unconstrained binary optimization (QUBO) models to harness the potential
of quantum computing. Several techniques, including the Gurobi solver, simulated
annealing, and the coherent Ising machine (CIM) quantum simulator, are deployed
to solve the model across four distinct scenarios of varying complexity. The findings
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indicate that CIM quantum simulator outperforms the simulated annealing method in
terms of solution quality for medium-scale problems.

Keywords High-speed railway · Timetable scheduling · Quantum computing ·
Quadratic unconstrained binary optimization · Space–time network

1 Introduction

Timetable scheduling is a combinatorial optimization problem that poses significant
difficulties for classical computers. Due to the large scale and complexity of such NP-
hard problems, classical algorithms typically either require unrealistic running times
or fail to produce optimal solutions. In light of these limitations, quantum computing
offers an attractive alternative for more efficient solutions to combinatorial optimiza-
tion problems.

The concept of quantum computing and its related ideas can be traced back to 1980
when physicist Paul Benioff proposed a quantum Hamiltonian model of the Turing
machine [1], and mathematician Yuri Manin pointed out the potential of quantum
computers to surpass their classical counterparts. In 1986, Feynman introduced the
prototype concept of quantum circuits [2]. The development of Shor’s quantum algo-
rithm for integer factorization (later known as the “Shor’s algorithm”) in 1994 [3],
followed by the Grover search algorithm [4], represented important progress in quan-
tum algorithms and computing research. Based on categorization criteria proposed
by Peng [5] and Cooper [6], existing quantum algorithms can be classified into two
primary categories, as illustrated in Fig. 1: algorithms that run on quantum comput-
ers and algorithms that use the principles of quantum mechanics but run on classical
computers [7–10].

In the category of algorithms that run on quantum computers, there are quantum
annealing algorithms as well as algorithms that operate under the framework of CIM
(coherent Ising machine) [11]. Quantum annealing algorithm [12–15] is implemented
on quantum annealing computers, with one of the most popular and widely used ones

Fig. 1 Category of quantum algorithms
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designed by D-Wave [16–19]. Algorithms running on CIM [20–22]. The CIM based
on photonic quantum systems exhibits technical advantages such as room temperature
operation, coherent optical encoding, and full connectivity [23, 24]. These two algo-
rithms are generally considered to be well-suited and efficient for solving optimization
problems [25]. Additionally, it is worth noting that while quantum computers are not
yet highly mature, quantum simulators can be used to address these problems. The
CIM simulator is a software implementation of the physical CIM system, designed to
simulate and evaluate the performance and effectiveness of CIM in solving various
problems. The CIM simulator utilizes numerical methods to simulate the operation
process of CIM, providing a convenient means to explore and study optimization and
computing tasks in different problem domains. In this research, themethod of utilizing
quantum simulators is employed to solve the problem of train timetable scheduling.

In recent years, there is a line of research applying quantum computing to the train
scheduling problems. Domino et al. [26] introduced a quadratic unconstrained binary
optimization (QUBO) model for the railway dispatching problem and solve the real-
life case from the Polish railway network usingD-Wave quantum annealers. Two years
later, Domino et al. [27] proposed higher-order binary optimization (HOBO) formula-
tion to use quantum annealing solving the railway rescheduling problem. The proof of
concept implementation was demonstrated on the D-Wave quantum processing unit
and D-Wave hybrid solver. Grozea et al. [28] focused on rolling stock optimization
including maintenance tasks and compared constraint programming with quantum
annealing methods.

It is observed that the complicated constraints that are hard to deal with always
exist in train scheduling problems. To address this issue, in paper [29], for vehicle
routing problem with pickup and delivery services with time windows (VRPPDTW),
the state–space–time networkswere constructed, and then amulti-commodity network
flow programing model was established. The presence of multi-dimensional decision
variables posed computational challenges when dealing with large-scale real-world
data sets. Therefore, the problem was reformulated by Lagrangian relaxation (LR)
approach, i.e., relaxing one complex constraint into the objective function and intro-
ducing Lagrangian multiplier λ(p) alongside to construct the dualized Lagrangian
function. In this paper, we reformulate the problem into QUBO model, which means
all constrains are put into the objective function and the penalty coefficient are added.

This paper aims to optimize train space–timepaths for the high-speed train timetable
problem by providing daily schedule sets from historical schedules [30, 31]. Based
on quantum computing technics, we contributed the following advancements to the
research on the high-speed train timetable optimization:

(1) A simplified knapsack problemmodel (Sect. 2.2) is proposed to test the arithmetic
power of quantum computing.

(2) To fit the requirements of quantum simulators of solving the timetable scheduling
problem, a QUBO model (Sect. 2.3) is introduced and transformed.

(3) In order to compare the effectiveness of quantum simulators, two quantum algo-
rithms including simulated annealing and CIM are utilized to solve the proposed
QUBO model in different problem scales.
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The structure of this paper is as follows: Sect. 2 presents our proposed integer pro-
gramming flowmodel and binary integer programming model, which are based on the
candidate-train-set and their correspondingQUBOmodels. In Sect. 3, various solution
methods, including the CIM simulator, are discussed along with the presentation of
four illustrative examples of different scales. Finally, the conclusions are provided in
Sect. 4.

2 Mathematical model

Four models on timetable scheduling are constructed: ➀Model ST (Space–time
Network-Based Integer Programming Model), ➁Model ST-QUBO (QUBO model
of Model ST), ➂Model KP (Knapsack Problem Reformulation [30] of Space–time
Network Based Model), ➃Model KP -QUBO (QUBO model of Model KP).

2.1 Space–time network-based integer programmingmodel

2.1.1 Problem description

Based on graph theory, an optimization model using the space–time network is estab-
lished for high-speed train timetabling [32]. To facilitate problem analysis, we abstract
the train running time and state using the space–time network and discretize time into
a single node. Passenger-oriented train timetables typically have a time accuracy of
1 min, and a day is divided into 1440 time nodes with 1 min as the unit, enabling
the construction of space–time nodes and ensuring the accuracy requirements for
describing the running state of high-speed trains. The space–time network represents
the running states of the trains and the occupation of resources, with the horizontal
axis representing the time dimension and the vertical axis representing the spatial
dimension. The problem at hand is a typical large-scale combinatorial optimization
problem.

2.1.2 Model assumptions

To enhance the alignment between the optimization model and real-world scenarios,
and to increase its practical value, the following assumptions are made.

(1) Independence of upstream and downstream systems:
It is assumed that the upstream and downstream systems are completely indepen-

dent. This means that in the model construction, only one direction of train operation
is considered, while the optimization for the other direction can be conducted in a
similar manner.

(2) Homogeneity of trains:
The assumption ismade that trains are homogeneous. Currently, trains are primarily

categorized into two grades: high-grade trains with fast running speeds and low-grade
trains with relatively slower speeds. Trains within the same grade share the same
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standards for factors such as interval running speed, dwelling time, and additional
time required for train starting and stopping.

(3) Known order of train operation:
To ensure the balance of passenger transportation services provided by the operation

department, this paper roughly arranges the departure sequence of trains based on the
actual train operation chart’s departure times. However, it should be noted that the
actual departure time and sequence might differ from the operational chart.

(4) Availability of adequate resources for train movement:
Furthermore, it is assumed that sufficient resources, such as the number of train

sets and crews, are available to facilitate the optimization of train-stopping schemes
and timetable preparation.

2.1.3 Symbol definition

To ensure clarity and understanding, we will start by defining the sets, parameters,
decision variables, and their corresponding symbols that are pertinent to the collab-
orative optimization model of the train stopping scheme and operation diagram. The
definitions are presented as follows (Tables 1, 2).

2.1.4 Objective functions

Minimize the total train travel time costs In actual railway transportation operations,
the primary goal of railway authorities is to minimize operating costs without compro-
mising the quality of passenger service. To evaluate the quality of the train timetable,
the total train travel time is considered as it reflects both the turnaround time and the
utilization of transportation resources. Hence, minimizing the total train travel time
serves as the initial optimization objective within the model. The cost associated with
the total train travel time can be represented by the sum of the time costs for all trains
within the selected arc.

Z1 =
∑

k∈K

∑

(i, j,t,t ′)∈Ak

cki, j,t,t ′ · xki, j,t,t ′ (1)

Minimize the total train departure delay at the departure station In order to ensure
a balanced service to passengers, it is desired for trains to adhere to their desired
departure time as much as possible. So the second optimization objective of this paper
is to choose the minimum total departure delay of trains at the departure station.

Z2 =
∑

k∈K

∑

(i, j,t,t ′)∈Aowait

(
tk′ − t Ek

)
· xki, j,t,t ′ (2)

Minimize thenumber of train stops Each additional stop for high-speed trains results
in increased starting and stopping times, as well as an extended total stopping time.
This not only diminishes the high-speed and convenient advantages of these trains,
impacting passenger travel experience but also leads to wasted operational capacity
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Table 1 Sets, indices, and parameters

Symbol Description

T Set of time

N Set of stations

Nk ∈ N Set of stations on the path of train k

K Set of trains

L Set of the interval, including physical interval and virtual interval set

A Set of space–time extended arcs

i, i ′, j, j ′ Stations, i, i ′, j, j ′ ∈ N

t, t ′, τ, τ ′ Timepoints, t, t ′, τ, τ ′ ∈ T

k, k′ Trains, k, k′ ∈ K

Ak Set of space–time arcs on the path of train k

Ak,+i Set of spacetime arcs on the path of train k starting from A

Ak,−i Set of spacetime arcs on the path of train k that ends at A

Aowait The origin-waiting arc of a train at its departure station

Adrive The driving arc of the train

Adwell The dwell arc of the train

�(i,i ′, j, j ′) Set of arcs that conflict with the driving arc i, i ′, j, j ′

ok , dk The starting and ending stations of train k, ok , dk ∈ Nk

t Ek The desired departure time of train k from its departure station ok

tdk The desired arrival time of train k from its departure station dk

�T Maximum departure delay allowed at the train’s origin station, min

tmin
i Minimum stopping time required at station i, min

tmax
i Maximum stopping time required at station i, min

T k
i, j Travel time of train k between stations (i, j), min

ck
(i,i ′, j, j ′) The cost of arc (i, i ′, j, j ′) for train k

α1 Weighting factor for travel time and number of stops

α2 Weighting factor for delay time

t ′k The actual departure time of train k at ok

Gh ,Gl Upper and lower limits of the number of stops for high-grade trains

Dh , Dl Upper and lower limits of the number of stops for low-grade trains

f i The minimum service times of station i

Ai, j Inter-station service accessibility index, i.e., the minimum number of trains stopping at
stations i and j at the same time

Ri Maximum number of stops allowed at station i in the studied direction

hmin
dep Minimum departure interval of two adjacent trains, min

hmin
arr Minimum arrival interval of two adjacent trains, min

gk When train k is a high-class train, the value is 1, otherwise it is 0
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Table 2 Decision variables

Symbol Description

xki,i ′, j, j ′ Binary variable(= 1 if train k occupies arc (i, i ′, j, j ′); = 0 otherwise)

yki Binary variable(= 1 if train k stops at station i; = 0 otherwise)

ski, j Binary variable(= 1 if train k stops at both station i and j; = 0 otherwise)

on the timetable. Therefore, the train stopping settings should minimize the number of
unnecessary stops while still meeting the passenger flow exchange demand between
stations, thereby ensuring amore rational and balanced distribution of stops. Therefore,
the third optimization objective of the model is to minimize the number of stops for
all trains.

Z3 =
∑

i∈N

∑

k∈K
yki (3)

In order to construct a unified optimization objective, this paper introduces the
correspondingweight coefficientsα1,α1 andα2 to the three optimization objectives. In
particular, the values ofα1 andα2 belong to [0,1] and satisfy the conditionα1+α2 = 1.
The above problem with three optimization objectives is converted into a single-
objective optimization problem, and the weighted sum of the above three costs is used
as the optimization objective to construct. The objective function of Model ST is as
follows.

minZ =
∑

k∈K

∑

(i, j,t,t ′)∈Ak

α1 · cki, j,t,t ′ · xki, j,t,t ′ + α1

∑

i∈N

∑

k∈K
yki

+ α2 ·
∑

k∈K

∑

(i, j,t,t ′)∈Aovait

(
tk′ − t Ek

)
· xki, j,t,t ′ (4)

2.1.5 Constraints

The constraints of Model ST are shown as follows.

Constraint on the number of stops of a single train In order to meet the demand of
passenger boarding and alighting, and at the same time to ensure the requirements of
running speed of different classes of trains, it is necessary to determine the number of
train stops. The requirements on the number of stops for different classes of trains are
different, so the upper and lower limits of the number of stops for different classes of
trains should be scientifically determined and constructed as follows.

gk · Gl + (1 − gk) · Dl ≤
∑

i∈Nk

yki ≤ gk · Gh + (1 − gk) · Dh, ∀k ∈ K (5)

123



418 Page 8 of 28 H.-Z. Xu et al.

Station service frequency constraint In order tomeet the passenger demand between
stations, each station has the requirement of minimum number of stops. The number
of trains stopping at a station needs to meet the service frequency constraint of that
station, which is constructed as follows:

∑

k∈K
yki ≥ f i , ∀i ∈ N (6)

Train stopping time constraints In the space–time network, the selection of station
stop arcs in the space–time path of the train and their space–time length describe the
stopping operation of the train and the corresponding stopping time. If yki = 1, train
k stops at station i (not the train departure and arrival station), the stopping time of
train k at station i should be no less than the minimum stopping time tmin

i to ensure
that the train can successfully complete the necessary technical operations, such as
passenger boarding and alighting, crew shift change, etc., during the stopping. Based
on the correlation analysis of the train stopping scheme and the operation diagram
decision variables before, the following is constructed.

∑

t ′

∑

t

xki,i,t,t ′ ≥ yki · tmin
i , ∀i ∈ Nk and i /∈ ({ok} ∪ {dk}) (7)

∑

t ′

∑

t

xki,i,t,t ′ ≤ yki · tmax
i , ∀i ∈ Nk and i /∈ ({ok} ∪ {dk}) (8)

Considering only a minimum stopping time constraint in the model cannot guar-
antee that when yki = 0, xki,i,t,t ′ is also 0, i.e., no station stopping arc is selected,
so in this paper, by adding a constraint of maximum train stopping time (Cons.8),
the two constraints together form a standard constraint of train stopping time, which
makes the optimization result of the train operation diagram more scientific, while the
maximum stopping time constraint can also reduce the feasible domain of the model
and improve the solving efficiency of the model.

Flow balancing constraints The flow balance constraint is the basic constraint in
solving the path selection optimization problem using graph theory. In practice, the
flow of trains at each origin, intermediate and destination space–time nodes in the
operation path should always be balanced, i.e., trains in the space–time network can
only choose one space–time arc segment from the origin to the destination, and the
entire space–time path of the train should be guaranteed to be continuous and unin-
terrupted at the intermediate nodes. The space–time path of each train is unique and
the construction constraint is as follows.

∑

(i, j,t,t ′)∈Ak,+
i

xki, j,t,t ′ −
∑

( j,i,t ′,t)∈Ak,−
i

xkj,i,t,t =
⎧
⎨

⎩

1, i = ok, t = t Ek
−1, i = dk, t = tdk
0, otherwise

(9)

Since the arrival time of the train is difficult to determine before optimization, but
all trains must complete the transportation service within the operation time, this paper
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treats the virtual terminal as the end point in the whole space–time network of train
operation. In addition, in order to ensure the provision of transportation services as
balanced as possible, trains have their determined desired departure time, which is
used as the time attribute of the train departure waiting arc in the space–time network
in this paper.

Constraint on the departure time expectation of the starting station In order to
provide balanced transportation services to passengers as much as possible, each train
has a corresponding desired departure time t Ek at the departure station. In practice, if
trains operate strictly according to this time, and the time is not set reasonably enough,
coupled with factors such as mutual interference between trains of different speeds, it
may lead to conflicts between trains or cause waste of operating chart capacity. There-
fore, this paper allows trains to fluctuate somewhat at the departure station compared
to the desired departure moment, and at the same time, in order to ensure the necessary
preparation activities before train departure, trains are only allowed to delay departure,
with the delay time set to T .

In this paper, the desired departure moment of the train at the origin station is
regarded as the arrival moment of the train at that station (from the virtual origin
station), and thus the constraint can be expressed as the stopping time of the train at
the origin station is not greater than the maximum delay of the train departure at the
origin station, which is constructed as follows.

∑

t ′

∑

t

xki,i,t,t ′ ≤ �T , ∀(
i, i, t, t ′

) ∈ Aowait , ∀k ∈ K (10)

Station stopping capacity constraint Since a station has only a limited number
of mainline and arrival and departure line resources, the station’s stopping capacity
constraint limits the maximum number of trains stopping at the station at the same
time, and its value should be less than or equal to the maximum train stopping capacity
of the station.

In the space–time network, the number of trains occupying the resources of a station
at the same time can be expressed by the number of stopping arcs at the station at that
time. In this paper, the stopping time of trains is discretized into intervals of 1 min,
and then the station stopping capacity constraint is constructed as follows.

∑

k∈K

∑

t ′
xki,i,t,t ′ ≤ Ri , ∀(

i, i, t, t ′
) ∈ Adwell , ∀i ∈ N/1, |N | (11)

Train safety interval constraint (departure and arrival) In order to ensure the safety
of trains, the continuous arrival and continuous departure of trains need to meet certain
interval time criteria, so the constraint can be specifically subdivided into constraints
on the departure and arrival intervals of trains at stations. In this paper, we define the
incompatible arc set �(i,i ′, j, j ′) to express the constraints on the departure and arrival
time interval between two trains, for the interval running arc (i, j, t, t ′ ) ∈ Adrive of
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the space–time network, its incompatible arc set �(i,i ′, j, j ′) is defined as

�(i, j,t,t ′) =
{(
i, j, τ, τ ′) : |t − τ | < hmin

dep

⋃ ∣∣t ′ − τ ′∣∣ < hmin
arr

}
. (12)

The parameters hmin
dep and hmin

arr denote the minimum departure and arrival intervals

between two trains, respectively. Equation (11) indicates that if arc
(
i, j, t, t ′

) ∈ Adrive

is used by a train, then for any arc
(
i, j, τ, τ ′) ∈ Adrive , as long as the arrival between

the arc(i, j, t, t ′) or departure interval is less than the minimum, all belong to the
incompatible arc set�(i,i ′, j, j ′), which cannot be used byother trains, and thus construct
the train safety interval constraint as follows.

∑

k∈K

∑

(i,i ′, j, j ′)∈�(i,i ′,t,t ′)

xki ′, j ′,τ,τ ′ ≤ 1, ∀(
i, j, t, t ′

) ∈ Adrive (13)

Interval crossing constraint In order to improve the efficiency of the utilization of
the resources of the operation chart, generally the high-grade trains will cross the
low-grade trains to improve the passing capacity of the interval, but since the interval
does not have the crossing condition, the crossing cannot occur in the interval. When
the trains in the same direction interval run at different speeds, each train may clash
although they satisfy the train safety interval constraint, and then the constraint needs
to be considered.

xk
i, j,τ,τ ′+T k

i, j
+

∑

t∈
[
τ,τ+τ ki, j

]

∑

t ′
[
τ,τ+τ ki, j

]
xk

′
i, j,t,t ′ ≤ 1, ∀i, j, k, k′, τ (14)

Because of the existence of the train safety interval constraint, interval crossing of
trains in the same direction occurs when and only when the running time of two trains
satisfies T k

i, j − T k′
i, j > hmin

dep + hmin
arr .

Maintenance gap constraint China’s high-speed railroads specify the maintenance
for 00:00–6:00, in this time period, train operation is prohibited, in the space–time
network can be expressed as the skylight range of space–time arc occupancy variables
take the value of 0, the construction of the following.

xki, j,t,t ′ = 0,∀k ∈ K ,∀i, j ∈ N ,∀0 ≤ t, t ′ ≤ 360 (15)

Constraints on the value of decision variables

xki, j,t,t ′ ∈ 0, 1, ∀k ∈ K ,
(
i, j, t, t ′

) ∈ A (16)

yki ∈ 0, 1, ∀k ∈ K , i ∈ N (17)

Model ST involves a wide range of influencing factors, and in the process of solving
them, all of them will explode in combination as the scale of the problem expands,
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[33] i.e., it is impossible to solve to an exact solution in polynomial time. This model
is hence still complicated for quantum computing in the solution process, and the
solution results are almost always infeasible. To solve this problem, we propose a
simplified model to test the arithmetic power of quantum computing.

2.2 Knapsack problem reformulation of space–time network-basedmodel

We use the space–time network model and historical timetable data to generate train
running line, thenwe propose a 0–1 integer programmingmodel based on the knapsack
problem to simplify the model, which fixes the decision variables such as train arrival
and departure times and train stops in the original model and uses the historical train
trajectory selection as the core decision variable.

2.2.1 Symbol description

The definition of the sets, parameters, decision variables, and their notation involved
in the binary integer programming model based on knapsack problem is shown in
Tables 3 and 4.

Table 3 Sets, index, and parameters

Symbol Description

T Set of time

V Set of stations

K Set of train running lines, each of which includes both temporal and spatial dimensions

N Set of incompatible arcs for trains

Nk Set of train running lines that conflict with train running line k, Nk ∈ N

tk,v Index of time, t ∈ T , k, k′ ∈ K , v ∈ V

v Index of station, v ∈ V

k, k′ Index of train running lines, k, k′ ∈ K

Vk Set of stations of train running line k, v ∈ Vk

hmin The minimum headway time

Table 4 Decision variables

Symbol Description

xk Binary variable, when the kth running line is selected, xk ∈ 1, else,xk ∈ 0
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2.2.2 Objective function

With the objective of optimizing the maximum number of train running lines to be
drawn, the objective function is as Eq. (18).

max Z =
∑

k∈K
xk (18)

2.2.3 Constraints

This paper mainly considers the train headway constraint. In order to describe this
constraint, firstly the incompatible arc set is defined as shown in ➀, and then the
constraint expression is given as shown in ➁.

➀Set of incompatible arcs.
In order to ensure the safety of trains, the continuous arrivals and departures of

trains need to meet minimum headway constraint. In this paper, for each train running
line k ∈ K , a set of incompatible arcs Nk is defined in Eq. (19).

Nk =
{
k : |tk′v − tkv| < hmin

}
∀v ∈ V , ∀k′ ∈ K , k �= k′ (19)

➁Expression for the train safety interval constraint.
In the final selection of running arcs to form the timetable, it is required that no

more than one running arc is selected from each incompatible arc set, and thus the
train safety headway constraint is constructed as Eq. (20).

xk ·
∑

k′∈Nk

xk′ = 0, ∀Nk ∈ N (20)

2.3 QUBO representation of themodels

2.3.1 QUBO representation of model ST

While the QUBO formulation does not inherently support constraints, it is possible
to incorporate constraints into the optimization process. These constraints can be
effectively handled by translating them into penalty terms that impact the objective
function. By reformulating constraints as quadratic equations and adding them to
the objective function, we can ensure that they influence the optimization process.
For detailed derivation rules regarding the transformation of non-QUBO models into
QUBO models, please refer to Appendix.

For the inequality constraints existed in the Model ST, the slack positive integer
variables sp need to be introduced to transform inequalities into equalities. And sp =∑rs

q=0 2
qvq where rs is an integer and vq is binary variable [34]. Each penalty should

bemultiplied by a positive constant λ to have comparablemagnitudewith the objective
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function. A simpler example of such transformation is shown in Appendix. And the
QUBO formulation result is shown as follows.

2.3.2 QUBO representation of model KP

Binary integer programmingmodel based on knapsack problemmentioned in Sect. 2.2
is formulated as aQUBOproblem.And the correspondingQUBOmodel is constructed
as follows.

To transform the integer programming model described in Sect. 2.2 into a QUBO
model, a three-step process is employed. First, we introduce a parameter, denoted as λ,
which serves as the penalty coefficient for handling constraints. Second, wemodify the
constraint equation [Eq. (20)] by multiplying it with the penalty coefficient, thereby
transforming the inequalities into equations. Subsequently, these modified equations
are integrated into the objective function. The resulting objective function is expressed
as Eq. (21).

min

⎡

⎣−
∑

k∈K
xk + λ · xk ·

∑

k′∈Nk

xk′

⎤

⎦ (21)

2.4 Comparisons among the proposedmodels

The relationship of the four proposed models is shown in Fig. 2.
In this paper, Fig. 2 illustrates the integration of models introduced in Sects. 2.2 and

2.3. We present Model ST, the space–time network model for integer programming,

Fig. 2 Relationship of the four proposed models
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alongside its corresponding QUBOmodel, referred to as Model ST-QUBO. Similarly,
model KP, the alternative set solution model for integer programming, is displayed
alongside its corresponding QUBO model, Model KP-QUBO. This visual represen-
tation facilitates a clear understanding of the relationships between these models and
their formulations, offering a valuable tool for those interested in exploring the opti-
mization of space–time networks using integer programming and QUBO models.

A comprehensive comparison among the four proposed models is shown in
Table 5.

3 Algorithms and analysis

We have used Model ST and Model ST-QUBO to solve the train scheduling problem.
However, due to the complexity of this type of model and limited capacity of quantum
simulator, the solving results were not satisfactory. Therefore, we decide to focus on
Model KP andModel KP-QUBO for analysis. Two different algorithms are applied to
solve these two models. For the general Model KP, we use the classical optimization
solver Gurobi, whose result serves as a control group. For Model KP-QUBO, we
apply SA (simulated annealing) and Kaiwu-SDK. The process of using a coherent
Ising machine (CIM) to solve the QUBO model involves inputting the qi j from the
QUBO into the CIM, and then the CIM returns the value of decision variables. And
Kaiwu-SDK is a software development kit developed by QBoson company for solving
QUBO problems using CIM.

3.1 Numerical calculations

3.1.1 Defining penalty value �

To assess the feasibility of the models, we initially employ the Gurobi solver and then
investigate how the penalty term λ affects the QUBO problem, taking the example
of 100 trains as an instance. Within the QUBO model of the problem, there exists a
single penalty term λ, and as λ assumes different values, the solution outcome of the
QUBO problem undergoes changes. Theoretically, a larger value of λ should result
in a better solution. However, it is crucial to note that a higher λ value also leads to
longer solution times. Therefore, considering the attainment of a reasonable solution
time while ensuring that the penalty term value and the original objective function
value are within the same order of magnitude, we choose λ = 100 as the penalty term
for subsequent quantum solver experiments.

3.1.2 Numerical studies on SA

We employ simulated annealing (SA) to tackle this QUBO problem, utilizing 100
quantum bits with 168 different coefficients. The SA solution function includes several
input parameters that require adjustment based on the quality of the solution obtained
during the solving process, aiming to uncover the optimal solution.
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Tinit: initial temperature of simulated annealing.
α: temperature drop rate of simulated annealing.
Tmin: minimum threshold temperature for simulated annealing.
I tersper: number of iterative runs per cycle.

Tinit and I tersper exert a substantial influence on the solution time and results,
while the remaining parameter α is fixed at 0.99 and Tmin is set to 10−3. Our tests
indicate that increasing Tmin yields a slight enhancement in solution quality without
causing a notable change in solution time. Conversely, elevating the value of I tersper
significantly impacts the solution and can lead to improved solutionquality.Weobserve
that when Tmin falls within the range of 500–1000 and I tersper also lies within the
same range, a balance can be struck between solution quality and computational time.

3.2 Numerical studies on CIM

Kaiwu-SDK function has the following parameters, which also need to be adjusted
according to the quality of the solution obtained during the solution process in order
to find the optimal solution.

Pump: pump rate.
Noise: noise power.
Laps: number of laps per run.
Dt : time step per lap.
Normali zation: minimum negative eigenvalue normalization factor of the matrix.
i terations: number of independent runs.

After testing, a set of parameter adjustment schemehas been summarized as follows:
The pump parameter is positively correlated with the solution quality in the interval

of [0.5, 2] and does not affect the running time too much.
The noise parameter is adjusted in the interval of [0.001,0.5], increasing appro-

priately can increase the randomness of the solution and make it easier to obtain the
optimal solution.

The iterations parameter is positively correlated with the quality of the solution
within a certain range, but it will significantly affect the running time and should be
choosed according to the application scenario.

3.3 Numerical cases

To test the effectiveness of different solution algorithms, four different sizes of alter-
native sets are given for testing. The tests are conducted on a computer with a Core
i7-12700H with 32 GB of RAM, and the runtime on that computer is used as a bench-
mark for algorithm efficiency comparisons. When CIM finds the better solution, we
compare the solution found by SA.

3.3.1 15-Train case

The case of 15 trains is used to test the correctness of the algorithm and the effect of
running it under small-scale conditions. We formulate an alternative set of 15 trains,
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Table 6 Results of 15-train case
Algorithms SA CIM-Kaiwu

Result 13 trains 13 trains

Parameters Tinit = 200 Pump Rate = 1.2

α = 0.90 Noise Power = 0.224

I tersper = 200

Time consumed 4.1 s 4.1 s

2 of which have significantly conflicting relationships with other trains. The optimal
solution in the case is 13 trains. In the test, all algorithms can find the correct result,
where CIM uses parameter random strategy and SA is fixed parameter, the parameters
are shown in the table. In the resulting figures, the horizontal axis of each subplot
represents the timeline of the train schedule, while the vertical axis represents all
the stations along the route. The movement of all trains is depicted by a green line,
representing their respective trajectories. Additionally, we have included the optimal
results achieved by the corresponding solver in the title of each subplot. The subsequent
explanations of the charts remain the same as mentioned above (Table 6; Fig. 3).

Fig. 3 Train schedule of 15-train case
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3.3.2 30-Train case

The case of 30 trains is used to test the correctness of the algorithm and the effect
of running it under medium-scale conditions. The optimal solution in the case is 25
trains.

We noticed that the solution of the SA and CIM quantum algorithm is not optimal
(Table 7; Fig. 4).

Table 7 Results of 30-train case
Algorithms SA CIM-Kaiwu

Result 21 trains 23 trains

Parameters Tinit = 200 Pump Rate = 1.6

α = 0.90 Noise Power = 0.30

I tersper = 200

Time consumed 6.8 s 6.8 s

Fig. 4 Train schedule of 30-train case
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Table 8 Results of 50-train case
Algorithms SA CIM-Kaiwu

Result 31 trains 35 trains

Parameters Tinit = 200 Pump Rate = 1.5

α = 0.90 Noise Power = 0.11

I tersper = 200

Time consumed 10.1 s 10.1 s

Fig. 5 Train schedule of 50-train case

3.3.3 50-Train case

The case of 50 trains is used to test the correctness of the algorithm and the effect
of running it under medium-scale conditions. The optimal solution in the case is 41
trains (Table 8; Fig. 5).

3.3.4 100-Train case

The case of 100 trains is used to test the correctness of the algorithm and the effect of
running it under large-scale conditions. The optimal solution in the case is 70 trains
(Table 9; Fig. 6).

It is noteworthy that the quality of solutions obtained through CIM and SA quantum
algorithms tends to diminish as the problem size increases. In the case of large-scale
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Table 9 Results of 100-train case
Algorithms SA CIM-Kaiwu

Result 45 trains 44 trains

Parameters Tinit = 200 Pump Rate = 1.5

α = 0.90 Noise Power = 0.11

I tersper = 200

Time Consumed 23.3 s 23.3 s

Fig. 6 Train schedule of 100-train case

problems,CIMseems toproduce infeasible solutions. In general, bothmethods demon-
strate the capability to achieve optimal solutions with similar computation times in
small-scale test cases. However, for medium-scale cases such as the 30 Train Case
and 50 Train Case, the CIM method exhibits advantages in terms of solution quality
over the SA method. The overall solution performance is depicted in the graph below
(Fig. 7).

4 Conclusions

Quantum simulators have the potential to provide significant speed-ups for combina-
torial optimization problems. To utilize these simulators, the first step is to convert
the problem from its conventional notation into the QUBO form, which is the format
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Fig. 7 Comparison of running
results

required by quantum simulators. This paper presents the QUBO representation for the
railway timetabling problem, which involves determining the optimal train schedule
based on a given set of conflicting trains.

However, there are three primary reasons why the current solving speed and out-
comes of quantum simulators are not yet ideal. Firstly, the number of qubits remains
a bottleneck for current quantum devices [35], and thus it is preferable to use the
smallest possible number of qubits for problem modeling. In addition, the values of
the model parameters (such as pump rate, noise power, and times of simulated anneal-
ing) also affect the results. Furthermore, finding appropriate penalty values for QUBO
problems is a challenging task. While we have used experiments and manual cali-
bration to determine the penalty values for our railway timetabling problem, recent
research has proposed several algorithms for penalty determination. For instance, the
cross-entropy optimization [36] and another algorithm [37] tested successfully on
the particular Fujitsu digital annealer. These methods may offer a more efficient and
automated approach for determining penalty values in QUBO problems.

Looking ahead, as quantum devices continue to improve, we anticipate more effi-
cient solutions for larger problem instances. This progress holds the potential to
significantly enhance the practicality and applicability of quantum devices for solv-
ing complex optimization challenges. Moreover, the problem transformation into the
QUBO framework is not exclusive to railway timetabling; its adaptability extends to
a myriad of combinatorial optimization problems in transportation field, such as rout-
ing, scheduling, assignment and rostering, namely vehicle routing problem, automated
guided vehicle (AGV) scheduling, electric bus scheduling, railway crew assignment
and rostering, and beyond. In fact, this method could also be used in other fields related
to combinatorial optimization, such as telecommunications (e.g., wireless sensor net-
work deployment), finance and economics (e.g., portfolio optimization), healthcare
(e.g., nurse scheduling), and so on. The foundational principles and techniques pre-
sented in this paper lay the groundwork for addressing a diverse range of real-world
optimization problems using quantum computing methodologies.
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Appendix

Table of different quantum computers

See Appendix Table 10.

Derivation of QUBOmodels from a general non-QUBOmodel

The methods of reformulating general models into QUBO models can be found in
[23]. Here, we only summarize the key points in two cases/approaches.

Creating QUBOmodels using known penalties

Many of the constrainedmodels can be reformulated as a QUBOmodel by introducing
quadratic penalties into the objective function. For a minimization problem, these
penalties are formulated so that they equal zero for feasible solutions and equal some
positive penalty amount for infeasible solutions. And for certain types of constraints,
during the process of transforming a given constrained problem into a QUBO model,
the corresponding quadratic penalties could be known in advance. Examples of such
penalties for some commonly encountered constraints are shown in the Table 11. Note
that in the table, all variables are binary and the parameter P is a positive, scalar penalty
value. This value needs be set large enough to assure that the penalty term could play
a role in penalizing the infeasible solutions and thus make itself indeed equivalent to
the classical constraint. But in practice an acceptable value for P is usually easy to
discover.
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Table 11 A few known
constraint/penalty pairs [41]

Table 11 (continued)
Index Classical constraint Equivalent penalty

1 x + y ≤ 1 P(xy)

2 x + y ≥ 1 P(1 − x − y + xy)

3 x + y = 1 P(1 − x − y + 2xy)

4 x ≤ y P(x − xy)

5 x1 + x2 + x3 ≤ 1 P(x1x2 + x1x3 + x2x3)

6 x = y P(x + y − 2xy)

Creating QUBOmodels using a general purpose approach

It turns out that for the general cases when QUBO formulation does not arise natu-
rally or useable penalties are not known in advance, some useable penalties could be
specified by adopting the procedures given below and an example will be provided to
illustrate it.

But let’s consider the general 0/1 problem first. The problem appears in this form:

min y = xTCx

Ax = b, x binary

Specifically, for a positive scalar P, we add a quadratic penalty P(Ax − b)t (Ax −
b) to the objective function to get

y = xTCx + P(Ax − b)t (Ax − b) = xTCx + xT Dx + c = xT Qx + c

where the matrixD and the additive constant c result directly from the matrix multipli-
cation indicated. Dropping the additive constant, the equivalent unconstrained version
of the constrained problem becomes

QUBO : min xt Qx, x binary.

Now the example where the constraints are not equalities but inequality is provided
and the procedure is shown to deal with such situation.

min y = f (x)

Subject to 4x1 + 5x2 − x3 ≤ 6 and x is a binary variable.
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Procedure:

A. Introduce a slack variable s to convert the inequality into the equality

4x1 + 5x2 − x3 + s = 6

b. Find out the upper bound and lower bound of the slack variable

smax = 6 − min(4x1 + 5x2 − x3) = 6 − (0 + 0 − 1) = 7

smin = 6 − max(4x1 + 5x2 − x3) = 6 − (0 + 5 + 0) = 1

c. Use a series of binary variables vq to express the slack variable s
s = 20 ∗v1 +21 ∗v2 +22 ∗v3 = v1 +2v2 +4v3 where v1, v2, and v3 are additional

binary variables.
d. Get the new equality constrain and form the quadratic penalties
P(4x1 + 5x2 − x3 + v1 + 2v2 + 4v3 − 6)2 where P is a positive, large enough,

scalar penalty value.
e. Put the quadratic penalties into the original objective function

min y = f (x) + P(4x1 + 5x2 − x3 + v1 + 2v2 + 4v3 − 6)2.
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