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Abstract
A renormalized version of the von Neumann quantum entropy (which is finite and
continuous in general, infinite dimensional case) which obeys several of the natural
physical demands (as expected for a “good” measure of entanglement in the case
of general quantum states describing bipartite and infinite-dimensional systems) is
proposed. The renormalized quantum entropy is defined by the explicit use of the
Fredholm determinants theory. To prove the main results on continuity and finiteness
of the introduced renormalization, the fundamental Grothendick approach, which is
based on the infinite dimensional Grassmann algebra theory, is applied. Several fea-
tures of majorization theory are preserved under the introduced renormalization as
it is proved in this paper. This fact allows to extend most of the known (mainly, in
the context of two-partite, finite-dimensional quantum systems) results of the LOCC
comparison theory to the case of genuine infinite-dimensional, two-partite quantum
systems.

Keywords Quantum von Neumann Entropy · Fredholm determinants · Continuous
quantum system · Quantum entanglement · Schur monotonicity · Infinite dimensions

1 Introduction

1.1 General, introductory remarks

One of the basic, genuine quantum resources—that existing quantum information
processing technology intensively exploits—is so-called quantum correlations [1]. For
an exhaustive review of the present-day state of quantum hardware technology see,
i.e. [2]. The interesting point here is that so-called continuous quantum systems (ions,
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atoms, lasers,…) are becoming a very promising candidates for being a basic quantum
ingredients of the future, full-scale quantum computers. This implies, that the better
control on the quantum correlations in such systems may be crucial for developing
these technologies. In particular, an appropriate qualitative and quantitative measures
of quantum correlations have to be prepared. As it is well known, the phenomenon
of quantum entanglement plays a crucial role for performing successfully several
quantum protocols like teleportation, QKD protocols and many more [3, 4].

Several, qualitative and quantitative entanglement measures (obeying set of
reasonable and natural—from the mathematical and information theory point of
view—demands) contained in quantum states are being proposed [5, 6]. Many of
them are based on the use and properties of the quantum von Neumann entropy. How-
ever, there does not exist a general straightforward passage with these mathematical
formalism from the case of finite dimensional systems of qudits to the genuine, infinite-
dimensional systems like ions, atoms, etc. It is the main purpose of the present paper
to propose, how it is possible to fill up this gap. Majority of quantum states describing
bipartite (and many partite systems as well) and infinite dimensional systems is char-
acterized by the fact that the von Neumann entropy (and therefore, the corresponding
entropy based on tangles measures for many partite systems) of the corresponding
conditional quantum states (reduced density matrices) is taking infinite value [7, 8].
With the use of Fredholm determinants technique, it is possible to remove the arising
infinities and thus, it is possible to extend several results known for the finite dimen-
sional systems to the genuine, infinite dimensional continuous systems. It is the great
Author’s hope that the presented here mathematical technique will find, besides those
included here, many other applications in the field of Quantum Information Theory.

1.2 Preliminaries

Let us consider the model of two spinless quantum particles interacting with each
other and placed in three dimensional Euclidean space R

3. Generally, the states of
such quantum systems are described by the density matrices which are non-negative,
of trace class operators acting on the space H = L2(R

3) ⊗ L2(R
3), see [9, 10]. The

latter is, in fact, unitary equivalent to L2(R
6). In particular, any pure state can be

represented (up to the global phase calibration) by the corresponding wave function
ψ(x, y) ∈ H; then the density matrix takes the form of the projector onto the ket
vector |ψ〉.

Using Schmidt decomposition theorem, cf [11, Thm. 26.8], we conclude that for
any pure normalized state ψ ∈ H there exist: a sequence of non-negative numbers
{λn}∞n=1 (called the Schmidt coefficients of ψ) satisfying the condition

∑∞
n=1 λ2n = 1

and two complete orthonormal systems of vectors {ϕn}∞n=1, {ωn}∞n=1 in L2(R
3) such

that the following equality (in the L2 space sense):

ψ(x, y) =
∞∑

n=1

λnϕn(x)ωn(y), (1.1)

has to be satisfied.
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In particular, we call the vector ψ a separable pure state iff there appears only
one nonzero Schmidt coefficient in the decomposition (1.1). If the number of nonzero
Schmidt coefficients is finite than we say that ψ is of finite Schmidt rank pure state. In
this case, one can apply the standard and the most frequently used measure of amount
of entanglement included in the state ψ which is given by the von Neumann formula:

EN(ψ) = −
∞∑

n=1

λ2n log(λ
2
n). (1.2)

Although, the set of finite Schmidt rank pure states of the system under consideration
is dense (in the L2-topology) on the corresponding Bloch sphere (this time infinite-
dimensional and given here modulo global phase calibration for simplification of the
following discussion only) denoted as B = {ψ ∈ L2(R

6) : ‖ψ‖ = 1}, it appears that
also the set of infinite Schmidt rank pure states is dense there. The situation is even
more complicated as it can be shown that the set of pure states for which the value
of von Neumann entropy is finite is dense in B but also the set of states with infinite
entropy of entanglement is dense in this Bloch sphere [7].

Similar results on densities of the infinite/finite Schmidt rank states are also valid in
the proper physical L1-topologies on the corresponding Bloch sphere. Very roughly,
the reason is that in infinite dimensions there are many (too many in fact) sequences
{λn}) such that: for all n, λn ≥ 0 and

∑∞
n=1 λ2n = 1 but

∑∞
n=1 λ2n log(λ

2
n) = −∞.

In other words, the set of pure states for which the entropy is finite has no internal
points and this fact causes serious problems in the fundamental question on conti-
nuity of the von Neumann entropy in genuine infinite dimensional setting [7, 8]. In
finite dimensions the von Neumann entropy is a non-negative, concave, lower semi-
continuous and also norm continuous function defined on the set of all quantum states.
A lot of fundamental results on several quantum versions of entropy, in particular, on
von Neumann entropy have been obtained in the last decades, cf [12–20]. However, in
the infinite dimensional setting, the conventionally defined von Neumann entropy is
taking the value +∞ on a dense subset of the space of quantum states of the system
under consideration cf [7, 8, 11, 13, 21–26].

Nevertheless, defined in the standard way von Neumann entropy has continuous
and bounded restrictions to some special (selected by some physically motivated
arguments) subsets of quantum states. For example, the set of states of the system
of quantum oscillators with bounded mean energy forms a set of states with finite
entropy [7, 8, 27, 28]. Since, the continuity of the entropy is a very desirable property
in the analysis of quantum systems, various, sufficient for continuity, conditions have
been obtained up to now. The earliest one, among them, seems to be Simon’s domi-
nated convergence theorems presented in [15–17] and widely used in applications, see
[12–14]. Another useful continuity condition originally appeared in [7, 8] and can be
formulated as the continuity of the entropy on each subset of states characterized by
bounded mean value of a given positive unbounded operator with discrete spectrum,
provided that its sequence of eigenvalues has a sufficient large rate of decrease. Some
special conditions yielding the continuity of the von Neumann entropy are formulated
in the series of papers by Shirokov [21–26]. A stronger version of the stability property
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of the set of quantum states naturally called there as strong stability was introduced by
Shirokov together with some applications concerning the problem of approximations
of concave (convex) functions on the set of quantum states and a new approach to
the analysis of continuity of such functions has been presented there. Several other
attempts and ideas to deal with the noncommutative, infinite dimensional setting were
published in the current literature also. Some of them are based, on a very sophisti-
cated, tools and methods, such as, for example theory of noncommutative (versions
of) the (noncommutative) log-Sobolev spaces of operators [29].

1.3 Themain idea of the paper

The main idea of the present paper is to introduce an appropriate renormalized version
of the widely known von Neumann formula for the entropy in the non-commutative
setting [12–14]. The notion of von Neumann entropy is one of the basic concept intro-
duced and applied in quantum physics. However formula proposed by von Neumann
works perfectly well only in the context of finite dimensional quantum systems [7, 8].
The extension to the genuine infinite-dimensional setting is not straightforward and
meets several serious obstacles as mentioned in the previous sentences. Our prescrip-
tion for extracting finite part of the infinite valued (which is true typically in the sense
of Baire category theory) standard von Neumann formula is very simple. For this goal,
let Q be a quantum state, i.e. Q is non-negative, of trace class operator defined on some
separable Hilbert space H and such that Tr(Q) = 1. The standard definition of von
Neumann entropy EN is given as:

EN(Q) = −Tr(Q log(Q)) (1.3)

Our renormalization proposal, denoted as FEN, is given by:

FEN(Q) = Tr

(

(Q + 1H) log(Q + 1H)

)

, (1.4)

where 1H stands for the unit operator in H.

Claim 1.1 For any such Q the value FEN(Q) is finite.

Proof Let σ(Q) = (τ1, . . . , τn, . . .) be sequence representing the spectrum of Q and
ordered in non-increasing order (and with multiplicities included). Using the elemen-
tary inequality

log(1 + x) ≤ x for x ≥ 0, (1.5)
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together with functional calculus [11, 30, 31] we have the following estimate

FEN(Q) = ∑∞
n=1(τn + 1) log(1 + τn)

≤ ∑∞
n=1(τ

2
n + τn)

≤ 2 · ∑∞
n=1 τn ≤ 2.

(1.6)

	

This means that the introduced map

FEN : E(H) �→ [0,∞) (1.7)

is finite on the space E(H) of the quantum states on H. The detailed mathemati-
cal study of the basic properties of the introduced here renormalization of the von
Neumann entropy is the main topic of this paper. Additionally, presentation of several
applications of the introduced entropy FEN and addressed to theQuantum Information
Theory [3, 4, 27, 28] are also included. To achieve all these goals, the theory of Fred-
holm determinants as given by Grothendick [32] is intensively used in the following
presentation. Also certain results from the infinite dimensional majorisation theory
[33–38] have been used. A very preliminary and illustrative idea of von Neumann
entropy renormalization was recently published by the Author in [39].

1.4 Organization of the paper

In the next Sect. 2, the technique of the Fredholm determinants is successfully applied
to show that the proposed here renormalized version of von Neumann entropy formula
in the genuine infinite-dimensional setting is finite and continuous (in the L1-topology
meaning) on the space of quantum states. Elements of the so-called multiplicative ver-
sion of the standard majorization theory [3, 4, 33, 34, 40] are being introduced in
Sect. 3. The main results reported there are: the rigorous proof of monotonicity of the
introduced renormalization of von Neumann entropy under the semi-order relations
(caused by the defined theremultiplicativemajorization) lifted to the space of quantum
states. Additionally, an extension of the basic (in the present context) Alberti-Uhlmann
theorem [33] is proved in Sect. 3. Also monotonicity of the introduced notion of renor-
malized von Neumann entropy under the action of a general quantum operations on
quantum states is proved there. Section4 is devoted to the study of two-partite quantum
systems of infinite dimensions both (the case of one factor being finite dimensional
is analysed in details see [41, 42]). In particular, the corresponding reduced density
matrices are studied there and some useful formula and estimates of the correspond-
ing renormalized entropies are included there. The particular case of pure bipartite
states is analyzed from the point of view of majorization theory with the use of novel,
local unitary and monotonous invariants perspective of Gram operators as introduced
in another papers [43–47]. The finite dimensional results of this type, presented in
[43, 44, 46], are being extended to the infinite dimensional setting there with the use
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of Fredholm determinants theory [46]. At the end of this paper three appendices are
attached to make this paper autonomous and also because some additional results
which might be helpful in further developments of the ideas presented here are being
formulated there. In appendix A, the Author have presented (after Grothendik [32], see
also Simon [48]) crucial facts and estimates from the infinite dimensional Grassman
algebra theory with the applications to control Fredholm determinants. Appendix B
includes several results and formulas on the different types of combined Schmidt and
spectral decompositions of a general bipartite quantum states. Finally in Appendix C,
some useful remarks on the operator valued function log(1 + Q) are collected.

Extensions of the approach to the renormalization of the von Neumann entropy
presented in this paper to a very rich palette of intriguing questions, like for example
renormalization of quantum relative entropy and quantum relative information notions
[27, 28, 49–55], possible applications to the renormalization of the quantum entropy in
the context of general Quantum Field Theory (see i.e. the recent paper on this [56]) and
also possible applications to the so called Continuous Variable Quantum Information
Theory [57–62] are also visible for the Author and some work on them is in progress.

2 Renormalized version of the von Neumann entropy

2.1 Somemathematical notation

Assume that H is a separable infinite dimensional Hilbert space.1 In this paper, we
use the following standard notation:

• L1(H) stands for the Banach space of trace class operators acting on H and
equipped with the norm ‖Q‖1 = Tr [|Q†Q|1/2], where Q ∈ L1(H) and the
symbol † means the Hermitian conjugation,

• L2(H) denotes the Hilbert-Schmidt class of operators acting in H and with the
scalar product 〈Q|Q′〉HS = Tr [Q†Q′], where Q ∈ L2(H),

• B(H) denotes the space of the bounded operatorswith normdefined as the operator
norm ‖ · ‖,

• Let E(H) be the complete metric space of quantum states Q on the space H, i.e.
the L1-completed intersection of the cone of non-negative, trace class operators on
H and L1-closed hyperplane described by the normalization condition Tr[Q] = 1.

The convention which is used in the present paper is that always spectrum of a
Hermitian Q is ordered in an non-increasing order (this is possible to achieve by
performing certain unitary operation on a given operator Q).

In further discussion, we will relay on the following inequalities, cf [30, 31],

‖AB‖1 ≤ ‖A‖1‖B‖1, A, B ∈ L1(H), (2.8)

‖AB‖1 ≤ ‖A‖‖B‖1, A ∈ B(H), B ∈ L1(H); (2.9)

the latter inequality also holds for ‖BA‖1 with obvious changes.
1 The results of this paper hold for finite dimensional Hilbert spaces as well.
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The following spaces of sequences will be used in further analysis

C∞ = {a = (a1, ..., an, ...), an ∈ R}, (2.10)

C∞+ = {a ∈ C∞ : an ≥ 0}, (2.11)

C∞+ (1) = {a ∈ C∞+ :
∞∑

i=1

ai = 1}, (2.12)

C∞(< ∞) = {a ∈ C∞+ :
∞∑

i=1

ai < ∞}. (2.13)

2.2 The renormalized von Neumann entropy

The most useful local invariants and local monotone quantities characterizing in the
qualitative as well as quantitative way quantum correlations, as entanglement of states
in the finite dimensional systems, are defined by means of the special versions of the
entropy measures, cf. [3–6, 63, 64]. The von Neumann quantum entropy measure is,
without a doubt, the most common tool for these purposes.

Suppose that a ∈ C∞ and ai �= 0 for all i . Moreover, we assume that that the
limit limn→∞

∏n
i=1 ai exists and it is nonzero. Then, we say that the product

∏∞
i=1 ai

exists.
The continuity of x �→ log x implies the following statement.

Lemma 2.1 Let a ∈ C∞(< ∞). Then, the product
∏∞

i=1(1+ai ) exists iff
∑∞

i=1 log(1+
ai ) < ∞.

Proof Let as assume that the following sequence exists

πn =
n∏

i=1

(1 + ai ), (2.14)

and it is convergent, i.e.

lim
n→∞ πn = π∞. (2.15)

Due to the continuity of log, it follows:

lim
n→∞ log(πn ) = log(π∞), (2.16)

which is equivalent to:

lim
n→∞

n∑

i=1

log(1 + ai ) = log(π∞). (2.17)
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Assuming that the sequence

	n =
n∑

i=1

log(1 + ai ), (2.18)

is convergent, i. e.

lim
n→∞ 	n = 	∞ < ∞, (2.19)

and does exist, we can write, using the continuity of exp

exp(	∞) = lim
n→∞ exp (	n) = lim

n→∞ πn . (2.20)

	

Lemma 2.2 Let a ∈ C∞+ (1). Then, the product

∏∞
i=1(1 + ai ) exists iff

∑∞
i=1(1 +

ai ) log(1 + ai ) < ∞.

Proof The claim follows directly from

log(1 + ai ) ≤ (1 + ai ) log(1 + ai ) ≤ 2 log(1 + ai ). (2.21)

	

Let A be a compact operator in a separable Hilbert space H and σ(A) stands

for the discrete eigenvalues of A counted with multiplicities and ordered into non-
increasing sequence. On the other hand, let λ(A) denote singular values of A counted
with multiplicities and forming non-increasing sequence. If A ∈ L1(H) then λ(A) =
σ(|A†A|1/2) and ∑∞

n=1 λn < ∞. The Fredholm determinant takes the form

det(I + A) =
∏

x∈λ(A)

(1 + x). (2.22)

We remind the basic properties of the Fredholm determinants, cf. [32, 48] below.

Theorem 1 [32, 48] Let H be a separable Hilbert space. Then

i) For any 
 ∈ L1(H) the map

C � z �→ det(I + z
) (2.23)

extends to the entire function which obeys the bound

| det(I + z
)| ≤ exp(|z|‖
‖1). (2.24)
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ii) For any maps L1(H) � 
 �→ det(I + 
) and L1(H) � 
′ �→ det(I + 
′) the
following asymptotics is true:

| det(I + 
) − det(I + 
′)| ≤ ‖
 − 
′‖1 exp(O(‖
‖1 · ‖
′‖1)); (2.25)

in particular det is the Lipschitz continuous.
iii) The following three equivalences hold:

det(I + z
) = exp (Tr [log(I + z
)]) (2.26)

and

det(I + z
) =
∞∑

n=1

zn Tr [∧n(
)], (2.27)

where ∧n(
) stands for the antisymmetric tensor power of 
, see Appendix A
for more details, and

det(I + z
) = exp

( ∞∑

n=1

(−1)n+1

n
zn Tr [
n]

)

. (2.28)

Remark 1 The last equivalence Eq. (2.28) determines so-called Pelmelj expansion
with |z| < 1. For larger values of |z|, the analytic continuations are necessary to be
performed.

In the Appendix A, we outline the methods of infinite dimensional Grassmann
algebras (the Fermionic Fock spaces in the physical notations) as introduced in the
fundamental Grothendick memoir [32].

In the further discussion, we will use the following quantity.

Definition 1 Assume that Q ∈ E(H) and its spectrumσ(Q) = (λ1, λ2, ...).Wedefine

FEN±(Q) = log
(
det(I + Q)±(I+Q)

)
, (2.29)

where

det(I + Q)±(I+Q) =
∞∏

k=1

(1 + λk)
±(1+λk ). (2.30)

This means that

FEN±(Q) = ±
∞∑

k=1

(1 + λk) log(1 + λk). (2.31)
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In order to relate the above definition with the results formulated in Theorem 1, we
introduce the following entropy-generating operators S±.

Definition 2 For Q ∈ E(H) we define

S±(Q) = (I + Q)±(I+Q) − 1H, (2.32)

where 1H means the unit operator here in the spaceH and spectral functional calculus
has been used.

Remark 2 In the standard, finite dimensional situation [12–14], the corresponding
entropic operator S−(Q), looks like (informally) as

S−(Q) = Q−Q − 1H. (2.33)

Our definition (2.32) is the renormalized (due to the infinite dimension of the
corresponding spaces) version of it is: “(1 + Q)−(1+Q) − 1”.

One of the main results reporting on this note is the following theorem.

Theorem 2 For any Q ∈ E(H), FEN±(Q) are finite and, moreover, FEN± are L1(H)

continuous on E(H).

The proof is based on the following sequence of Lemmas.
Let us define the scalar function

f±(x) = (1 + x)±(1+x) − 1, for x ∈ [0, 1]. (2.34)

Lemma 2.3 i) The function f+(x) is monotonously increasing and convex on [0, 1]
and

inf f+(x) = 0, for x = 0,
sup f+(x) = 3, for x = 1.

(2.35)

ii) The function f−(x) is monotonously decreasing and concave on [0, 1], and

inf f−(x) = −0, 75, for x = 1
sup f−(x) = 0, for x = 0.

(2.36)

Lemma 2.4 For any Q ∈ E(H), S+(Q) ≥ 0 and S+(Q) ∈ L1(H).

Proof For 0 ≤ x ≤ 1 the following estimate is valid

(1 + x)1+x − 1 =
∫ 1

0
ds es(1+x) log(1+x)(1 + x) log(1 + x) ≤ 2e2 log 2 log(1 + x).

(2.37)
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From

Tr [(1 + Q)1+Q − 1] =
∞∑

n=0

((1 + λn)
1+λn − 1) ≤ 8

∞∑

n=0

log(1 + λn) < ∞,

(2.38)

where we used Theorem 1 and Lemma 2.1. 	

Lemma 2.5 For any Q ∈ E(H), −S−(Q) ≥ 0 and S−(Q) ∈ L1(H).

Proof For 0 ≤ x ≤ 1 the following estimate is valid

− (1 + x)−(1+x) + 1 =
∫ 1

0
ds e−(1−s)(1+x) log(1+x)(1 + x) log(1 + x) ≤ 2 log(1 + x).

(2.39)

From

− Tr [(1 + Q)1+Q − 1] = −
∞∑

n=0

−(1 + λn)
−(1+λn) + 1 ≤ 2

∞∑

n=0

log(1 + λn) < ∞.

(2.40)

where we have used Theorem 1 and Lemma 2.1. 	

In order to prove that the renormalized entropy functions FEN± are L1 continuous

it is enough to prove that the operator valued maps S± are L1 continuous. The latter
is proved below.

Lemma 2.6 LetH be a separable Hilbert space and let E(H) be a space of quantum
states on H. Then the maps

Q �→ S±(Q) = (I + Q)±(I+Q) − I, (2.41)

are L1 continuous on E(H).

Proof It is enough to present essential details of the proof for the case S+(Q). Let Q and
Q′ be the states onH. By the application of the Duhamel formula and equations (2.8)
and (2.9) we get

‖S+(Q) − S+(Q′)‖1 ≤ sup0<s<1 ‖ exp s log(I + Q)‖
· ‖ exp(1 − s)(I + Q′) log((I + Q)‖(

‖(I + Q)‖ · ‖ log(I + Q) − log(I + Q′)‖1 · ‖ log(I + Q)‖ · ‖Q − Q′‖1
)

.

(2.42)

To complete the proof it suffices to prove the norm continuity of the operator valued
function log(I + Q). Let Q ∈ E(H). Define τ(Q) = sup σ(Q). Then τ(Q) ≤ 1 and
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‖ log(I+ Q)‖ = log(1+ τ(Q)). Let Q, Q′ ∈ E(H) with ‖Q − Q′‖1 ≤ δ < 1. Using
again formulae (2.8) and (2.9) we have

‖ log(I + Q) − log(I + Q′)‖1 ≤
∞∑

n=1

1

n
‖Qn − (Q′)n‖1

≤
∞∑

n=1

1

n

n∑

k=1

‖Qk−1(Q − Q′)(Q′)n−k‖1

≤
∞∑

n=1

1

n

n∑

k=1

τ(Q)kτ(Q′)n−k−1‖Q − Q′‖1. (2.43)

Let τ := max{τ(Q), τ (Q′)} < 1. Then summarizing the above reasoning, we have

‖ log(I + Q) − log(I + Q′)‖1 ≤ δ

1 − τ
. (2.44)

The analysis of the further properties, together with the analysis of the case τ = 1 of
the map Q �→ log(I + Q), we postpone to Appendix C. 	

Proposition 3 Let H be a separable Hilbert space and let E(H) be the space of
quantum states on H. Then, the L∞ norms (spectral norm) of the entropy maps
S±(Q) = (I + Q)±(1+Q) − I are given by:

1. ‖S+(Q)‖∞ = (1 + τ1)
1+τ1 − 1, where τ1 = sup(σ (Q)),

2. supQ∈E(H) ‖S+(Q)‖∞ = 3,
3. ‖S−(Q)‖∞ = 1 − (1 + τ1)

−(1+τ1), where τ1 = sup(σ (Q)),
4. supQ∈E(H) ‖S−(Q)‖∞ = 0.75.

Proof For the compact operators, it is known that ‖Q‖∞ = ‖Q‖, see [30]. 	

Remark 3 Let us assume that dim(H) = d and is finite. Then, taking a pure state Q,
i.e. the state for which Tr[Q] = Tr[Q2] = 1 it follows that the value of renormalized
entropy FEN+(Q) of Q which has the rank of Schmidt equal to one, is equal to
2 log(2) (FEN−(Q) = −2 log(2)) and is independent of d. Taking maximally mixed
state Q with the spectral numbers σ(Q) = (1/d, . . . 1/d) we have FEN+(Q) =
(1 + 1/d) log(1 + 1/d)d (FEN−(Q) = −(1 + 1/d) log(1 + 1/d)−d) which tends
monotonously, as d tends to infinity to the value 1 (resp. to the value −1).

The use of standard, not renormalized, definition of entropy of entanglement leads to
the statement that it is taking values in interval [0, log(d)], which shows that there is no
possible straightforward passage from the finite dimensional situation to the infinite
dimensional systems. The widely used, another entropic measures of entanglement
[3–6] also must be suitable renormalized in order to be applied in infinite dimensions
in a way that overcome the several discontinuity and divergences problems as well
problems arising in the genuine infinite dimensional cases. The results on this will be
presented in a separate note.
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Let Q(n) be the sequence of L1(H) such that the n-th first eigenvalues of Q(n) is
equal to 1/n and the rest of spectrum is equal to zero. The renormalized entropy of
Q(n) is given by

FEN+(Q(n)) = (n + 1) log

(

1 + 1

n

)

. (2.45)

It is easy to see that limn→∞ FEN+(Q(n)) = 1.

Theorem 4 For any sequence of states Q(n) ∈ L1(H) as above there exists state Q∗
in E(H) and such FEN+(Q∗) = 1.

Proof For any such sequence Q(n), we apply the Banach–Alaglou theorem first, con-
cluding that the set {Q(n)} forms ∗-week precompact set and therefore, in the ∗-weak
topology lim Q(n) by subsequences do exists. However, these limits are all equal to
zero. In order to obtain a non-trivial result, we use the Banach–Saks theorem which
tells us that there exists a subsequence n j such that the following Cesaro sum of Q(n)

CM (Q) = 1

M

M∑

j=1

Q(n j ) (2.46)

which is strongly convergent as M → ∞ to some nonzero operator Q∗ ∈ E(H). 	

It would be interesting to describe in the explicit way the most mixed states i.e. the

states for which the value of FEN+(Q) = 1.

3 Some remarks on themajorization theory

The fundamental results obtained inAlberti andUhlmannmonograph [33] and applied
so fruitfully to the quantum information theory by many researchers (see [3, 4, 33,
34, 65, 66] and references therein), are known widely today under the name (S)LOCC
majorization theory (in the context of quantum information theory). Presently, this
theory is pretty well understood in the context of bipartite, finite dimensional systems,
(especially in the context of pure states), see [3, 4, 34]. In papers [35, 36, 38, 65, 67],
successful attempts are presented in order to extend this theory to the case of bipartite,
infinite dimensional systems. Below, we present some remarks which seems to be
useful in this context.

For a given a ∈ C∞, we apply the operation of ordering in non-increasing order
and denote the result as a≥. Of particular interest will be the image of this operation,
when applied pointwise to the infinite dimensional simplex C∞+ (1) := {a = (an) ∈
R

N , an ≥ 0,
∑∞

i=1 ai = 1}. This will be denoted as C≥. Let us recall some standard
definitions ofmajorization theory. Leta, b ∈ C≥. Then,wewill say thatb ismajorizing
a iff for any n the following is satisfied

n∑

i=1

ai ≤
n∑

i=1

bi . (3.47)
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If above assumption is fulfilled then we denote this as a � b.
Wewill say that bmajorizesmultiplicatively a iff for any n the following is satisfied

n∏

i=1

(ai + 1) ≤
n∏

i=1

(bi + 1). (3.48)

If this is true then we denote this fact as a m-� b.
Let F be any function (continuous, but not necessarily) on the interval [0, 1]. The

action of F on C∞+ (and other spaces of sequences that do appear) will be defined
(F(ai )).

Recall the well-known result, see i.e. [5,6].

Lemma 3.1 Let us assume that f is a continuous, increasing and convex function on
R. If a � b then f (a) � f (b).

It is clear from the very definitions that a m-� b iff log(a + 1) � log(b + 1).

Proposition 5 Let a, b ∈ C≥ and let us assume that a m-� b. Let f be continuous,
increasing function and such that the composition f ◦ exp(x) is convex on a suitable
domain. Then f (a) � f (b).

Proof For fixed n we have:

n∏

i=1

(ai + 1) ≤
n∏

i=1

(bi + 1). (3.49)

Taking log of both sides we obtain

n∑

i=1

log(ai + 1) ≤
n∑

i=1

log(bi + 1). (3.50)

Applying Lemma 3.1 we obtain

n∑

i=1

f (ai ) ≤
n∑

i=1

f (bi ). (3.51)

	

In particular taking f (x) = x we conclude

Corollary 3.2 Let as assume that a, b ∈ C≥ and a m-� b. Then a � b.

The last result says that each linear chain of the semi-order relation m-� in C≥
is contained in some linear chain of the semi-order �. It means that the semi-order
m-� is finer than those induced by �.

Corollary 3.3 Any �-maximal element in C≥ is also m-�-maximal.
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Proof If a m-� b then a � b. Let a∗ be a �-maximal in C≥ and let us assume that
there exists a∗∗ such that a∗ m-� a∗∗ and the contradiction is present. 	


To complete this subsection, we quote the infinite dimensional extension of the
majorization theory applications in the context of quantum information theory.

For this goal let us consider any Q ∈ E(H), whereH is a separable Hilbert space.
With any such Q, we connect a sequence (Psp(N )) of finite dimensional projections
Psp(Q)which we will call the spectral sequence of Q. This is defined in the following
way: let Q = ∑∞

n=1 τn Eφn be the spectral decomposition of Q rewritten in such a
way that eigenvalues τn of Q are written in non-increasing order. Then, we define
Psp(Q)(n) = ⊕n

i=1Eφn . Finally, we define a sequence of Gram numbers gn(Q) con-
nected to Q:

g(Q1) = (gn(Q) = det(I + QPsp(Q)(n))). (3.52)

Definition 3 Let Q1, Q2 ∈ E(H). We will say the Q2 m-majorizes Q1 iff gn(Q1) ≤
gn(Q2) for all n. This will be written as Q1 m-� Q2.

Let Q1, Q2 ∈ E(H). The standard definition of majorization is the following: Q2
majorizes Q1 iff σ(Q1) � σ(Q2).

Proposition 6 LetH be separable Hilbert space and let Q1, Q2 ∈ E(H) be such that
S+(Q1) m-� S+(Q2). Then

1. FEN+(Q1) ≤ FEN+(Q2),
2. FEN−(Q1) ≥ FEN−(Q2),
3. FEN+(Q1) = FEN+(Q2) iff σ(Q1) = σ(Q2),
4. FEN−(Q1) = FEN−(Q2) iff σ(Q1) = σ(Q2) .

Proof The point (1) and (2) follows from the fact that majorisation in the sense of
Definition 3 is equivalent to the m-majorisation of the considered entropy generating
operators from which follows, using Corollary 3.2, that they are also in the standard
majorisation relation.

More details for this: let σ(Q1) = (λn) and σ(Q2) = (μn). Then, σ(S+(Q1)) =
((1 + λk)

1+λk − 1) and similarly for σ(S+(Q2)) = ((1 + μk)
1+μk − 1). It follows

from Corollary 3.2:

((1 + λk)
1+λk ) � ((1 + μk)

1+μk ). (3.53)

Using the fact that log is convex, it follows that

((1 + λk) log(1 + λk)) � ((1 + μk) log(1 + μk)). (3.54)

Application the standard, finite dimensional arguments leads to the inequalities:

FEN+(Q1Psp(n)) ≤ FEN+(Q2Psp)(n)).
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Using the L1 convergence limn→∞ Psp(Q)(n) = Q and the continuity of FEN± the
proof of (1) follows. The proof of (2) is almost identical to that for (1).

To prove (3) and (4) let us introduce the following interpolation: if
∑∞

n=1 λn Eφn ,
resp.

∑∞
n=1 μn Eωn are the spectral decompositions of Q1, resp. Q2 then

Q(t) =
∞∑

n=1

(tλn + (1 − t)μn)Eφn . (3.55)

It is easy to see that assuming Q1 � Q2

σ(Q1) � σ(Q(t)) � σ(Q2), (3.56)

from which we conclude that if FEN(Q1) = FEN(Q2) then FEN(Q(t)) = const. It
is not difficult to prove that

FEN(Q(t)) =
∞∑

n=1

(1 + tλn + (1 − t)μn) log(1 + tλn + (1 − t)μn), (3.57)

as function of t is smooth. Calculating the second derivative of its we find

d2

dt2
FEN(Q(t)) =

∞∑

n=1

(λn − μn)
2

1 + tλn + (1 − t)μn
= 0. (3.58)

This completes the proof. 	

Before we present (after [33, 35, 36] and with minor modifications) infinite dimen-

sional generalization of the fundamental in this context Alberti-Uhlmann theorem, we
briefly recall some definitions.

A completely positive map  on a von Neumann algebra L∞(H) is said to be
normal if  is continuous with respect to the ultraweak (∗-weak) topology. Normal
completely positive contractive maps on B(H) are characterized by the theorem of
Kraus which says that  is a normal completely positive map if and only if there
exists at least one sequence (Ai )i=1,... of bounded operators in L∞(H) such that for
any Q ∈ L∞(H):

(Q) =
∞∑

i=1

Ai QA†
i , (3.59)

where

∞∑

i=1

Ai A
†
i ≤ IH, (3.60)
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and where the limits are defined in the strong operator topology. A normal com-
pletely positive map  which is trace preserving is called a quantum channel. If a
normal completely positive map  satisfies (IH) ≤ IH then called a quantum oper-
ation. A quantum operation  is called unital iff (IH) = IH which is equivalent to
∑∞

i=1 Ai A
†
i = IH for some Krauss decomposition of .

A quantum operation is called bistochastic operation if it is both trace preserving
and unital. Central notion for us is the notion of a mixed unitary operation.

A quantum operation  is called a (finite) mixed unitary operation iff there exists a
(finite) ensemble {Ui }i=1:n of unitary operators onH and a (finite) sequence pi ∈ [0, 1]
such that

∑n
i=1 p1 = 1 and

(Q) =
n∑

i=1

piUi QU †
i . (3.61)

Theorem 7 Let H be a separable Hilbert space and let Q1, Q2 ∈ E(H). Assume
that Q1 m-� Q2. Then, there exists a sequence (n) of mixed unitary operations
and a limiting bi-stochastic operation ∗ such that the sequence of states n(Q2) is
L1-convergent to ∗(Q2) = Q1.

Proof The only essential difference comparing to the original formulation of this result
[33, 35, 36] is that instead of � type majorisation m-� is used. 	


Also the following result is true.

Theorem 8 Let H be a separable Hilbert space and let  be any quantum operation
acting on E(H). Then

det(IH + (Q)) ≤ det(IH + Q). (3.62)

Proof Let T be any non-expansive linear operator acting on H—this means that the
operator norm of T , ‖T ‖ ≤ 1. Using the Grothendick formula (A.7) and the following
reasoning:

Tr [∧n(T QT †)] = ∑
i1< ···<in

〈i1 . . . in| (T QT †)⊗n |i1 . . . in〉

= ∑
i1< ···<in

∏
k=1:n〈ik | T QT † |ik〉

≤ ∑
i1< ···<in

〈i1 . . . in| Q⊗n |i1 . . . in〉 = Tr[∧nQ],

(3.63)

where we have used the assumption that the norm T of is not bigger than 1 and
positivity of Q.

Now, let us assume that we have a pair of bounded operators T1, T2 and such that
T1T

†
1 + T2T

†
2 ≤ IH. For Q ∈ E(H):

Tr[∧n(T1QT †
1 + T2QT †

2 )] =
∑

i1<···<in

∏

k=1:n
〈ik |(T1T †

1 + T2T
†
2 )Q|ik〉
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≤
∑

i1<···<in

〈i1 . . . in|Q⊗n|i1 . . . in〉

= Tr[∧n(Q)]. (3.64)

Now, the general case follows by application of Krauss representation theorem for
quantum operations (3.59) and some elementary inductive and continuity arguments.

	

Several additional results on renormalized version of von Neumann entropy, in

particular on the invariance and monotonicity properties of von Neumann entropy in
the infinite dimensional setting of conditional entropies, are included in [55].

4 The case of tensor product of states

4.1 Renormalized Kronecker products

Let us recall the finite dimensional formula for computing determinant of tensor prod-
uct of matrices.

Lemma 4.1 (Kronecker formula) Let HA and HB be a pair of finite dimensional
Hilbert spaces with dimension NA, and resp. NB. Then, for any QA ∈ L(HA) and
QB ∈ L(HB) the following formula is valid

det(QA ⊗ QB) =
(

det(QA)

)NB

·
(

det(QB)

)NA

. (4.65)

Proof (quick-argument based). Let stands IA, respectively IB stands for the unit oper-
ators in the corresponding spaces H. Then

QA ⊗ QB = (IA ⊗ QB)(QA ⊗ IB) (4.66)

from which it follows easily the Kronecker formula (4.65). 	

If one of the factors in (4.65) is infinite dimensional and the determinant (absolute

value of) of the corresponding matrix Q is strictly bigger than one (or strictly smaller
than one) then the value det of the product (4.65) is infinite, respectively equal to zero.

In order to understand better this problem, we define renormalized Kronecker prod-
uct

(IA + QA) ⊗r (IB + QB) := IH + QA ⊗ QB (4.67)

which formally can be written as:

(IA + QA) ⊗r (IB + QB) := (IA + QA) ⊗ (IB + QB) − QA ⊗ IB − IA ⊗ QB .

(4.68)
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Proposition 9 Let HA and HB be a pair of separable Hilbert spaces of an arbitrary
dimensionsH = HA ⊗HB and let QA ∈ E(HA) and QB ∈ E(HB). Then the map

z �→ det(IH + zQA ⊗ QB) (4.69)

defines an entire function in the complex plane and such that the following estimate
is valid:

| det(IH + zQA ⊗ QB)| ≤ exp(|z|). (4.70)

The proof is an immediate consequence of the Theorem 1 (i) and Lemma (4.2)
below.

Lemma 4.2 Let QA ∈ E(HA) and QB ∈ E(HB). Then QA ⊗ QB ∈ E(HA ⊗ HB).

Proof Recall that the spectrum σ(QA ⊗ QB) is given by

σ(QA ⊗ QB) = (λμ, λ ∈ σ(QA), μ ∈ σ(QB)) (4.71)

from which it follows:

Tr[QA ⊗ QB] = Tr[QA] · Tr[QB] = 1. (4.72)

This completes the proof. 	

Another renormalization of the tensor product can be achieved by the use of infinite

dimensional Grassmann algebras as we have outlined in the Appendix A to this note.
For this goal let us define

(IHA + QA) ⊗ f r (IHB + QB) := (IHA + QA) ∧ (IHA + QB), (4.73)

where∧ stands for skew (antisymmetric) tensor product and the right hand side here is
defined as a one particle operator in the skewGrassmann algebras built onHA andHB ,
see Appendix A. Using the unitary isomorphism map J in between the antisymmetric
product of fermionic Fock spaces build on the spaces HA and HB (see Appendix A
and the Theorem 27) and the antisymmetric Fock build on the spaceH⊕ = HA ⊕HB ,
we can define

det

(

(IA + QA) ⊗ f r (IB + QB)

)

:= det

(

IHA⊕HB + QA ⊕ QB

)

. (4.74)

Theorem 10 Let HA and HB be a pair of separable Hilbert spaces of an arbitrary
dimensions andH = HA ⊗HB and let QA ∈ L1(HA) and QB ∈ L1(HB). Then, the
map

z → det(IHA⊕HB + zQA ⊕ QB) (4.75)
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defines an entire function in the complex plane and such that the following estimate
is valid:

| det(IH + zQA ⊕ QB)| ≤ exp(|z|(‖QA‖1 + ‖QB‖1). (4.76)

Proof As we have proved in the Theorem (27), the right hand side of (4.75) is equal
to the product det(IA + QA) det(IB + QB). Having this, the claim of this theorem
follows by a straightforward application of Theorem 1 (i). 	

Remark 4 For an interesting paper on the influence of quantum statistics on the entan-
glement see i.e. [68].

Another interesting implication of Theorem 27 seems to be the following observa-
tion.

Theorem 11 Let H = ⊕N
i=1Hi and Q ∈ L1(H) and such that Q = ⊕λi Qi , where

Qi ∈ E(Hi ) for all i = 1, ..., λi ≥ 0,
∑N

i λi = 1.
Then Q ∈ E(H) and

FEN±(Q) =
N∑

i=1

FEN±(λi Qi ). (4.77)

Proof Let us observe that the renormalized entropy operators S± can be decomposed
as:

S±(Q) = ⊕N
i=1S±(λi Qi ) = ⊕N

i=1

[
(IHi + λi Qi )

±(IHi +λi Qi ) − IHi

]
. (4.78)

Therefore, using Theorem A.4, we obtain

FEN±(Q) = log det(IH + S±(Q))

= log

(
N∏

i=1

det(IHi + S±(λi Qi ))

)

=
N∑

i=1

FEN±(λi Qi ). (4.79)

	

Also the following result seems to be interesting.

Theorem 12 LetH = HA⊗HB be a separable Hilbert space and let be a separable
quantum operation onH, i.e.  = A ⊗B, where A, resp. B are local quantum
operations. Then for any Q ∈ E(H):

det
(
1H + (Q)

) ≤ det(1H + Q). (4.80)
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Proof Let K A
i , i = 1, . . ., resp. K B

j , j = 1, . . . be the families of operators giving the
Kraus representations, for

A(A) =
∑

i=1

K A
i AK A

i
†
, (4.81)

and, resp.

B(A) =
∑

i=1

K B
i AK B

i
†
. (4.82)

Then, for any Q ∈ E(H):

(Q) =
∑

i, j

K A
i ⊗ K B

j (Q)K A
i
† ⊗ K B

j
†
. (4.83)

Taking into account that

∑

i, j

(

K A
i ⊗ K B

j

)(

K A
i ⊗ K B

j

)†

=
( ∑

i

K A
i · K A

i
†
)

⊗
( ∑

i=1

K B
i · K B

i
†
)

≤ 1HA ⊗ 1HB = 1H, (4.84)

the proof follows as the proof of Theorem 8. 	


4.2 Reduced density matrices—the bipartite case

Let H = HA ⊗ HB be the tensor product of two separable Hilbert spaces HA and
HB of arbitrary dimensions. In this section, we assume that both spaces HA, HB are
infinite dimensional (everything works also in finite dimensional situations [41], and
also in situation for which only one of the spacesHi is finite dimensional as well [41]).

Let QA (respectively QB) be the corresponding reduced density matrices obtained
from Q by tracing out the corresponding degrees of freedom. Then QA ≥ 0,
TrHA [QA] = 1, and identically in the case of QB . As is well known the spectrum
σ(QA) = (λn) is purely discrete (we are presenting it always with the corresponding
multiplicities and in nonincreasing order) and in general different from the spectrum
of QB in the case of mixed states. For more on this see below and the Appendix B. In
the case when, as in the introduction, Q = |�〉〈�| for some � ∈ H the spectrum of
QA and QB are equal to each other and equal to the list of squared Schmidt coefficients
of the corresponding Schmidt decomposition of the vector � [3, 4, 69]. The same is
valid for the Hilbert–Schmidt level reduced density matrices when we consider these
type of Schmidt decompositions of a given Q ∈ H, see Appendix B and [44, 46].

Let us recall now some well-known facts on the reduced density matrices. Let
Q ∈ E(H). Let {|i〉} be an arbitrary complete orthonormal system of vectors in HB .
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Then, we have canonical unitary equivalence

HA ⊗ HB ∼= ⊕iHA ⊗ |i〉, (4.85)

where ∼= means that ϕ ∈ H is decomposed as |ϕ〉 ∼= ⊕i (IHA ⊗ |i〉〈i |)|ϕ〉.
Then for any A ∈ B(H), we can write:

A =
( ∞∑

i=1

1HA ⊗ |i〉〈i |
)

(A)

∣
∣
∣
∣
∣

( ∞∑

i=1

1HA ⊗ |i〉〈i |
)∣

∣
∣
∣
∣
=

∞∑

i, j

Ai j , (4.86)

where

Ai j = (1HA ⊗ |i〉〈i |)(A)(1HA ⊗ |i〉〈i |), (4.87)

is the bounded linear map fromHA ⊗ |i〉 toHA ⊗ | j〉.
Using the Krauss decomposition Theorem 3.59, we have the following observation:

the linear and bounded map

TrB : L1(H) �→ L1(HA),

A �→ TrB(A) ∼= ∑∞
i=1 Aii ,

(4.88)

named partial trace map is a quantum operation in the sense of the previously intro-
duced definition in Sect. 3.

Theorem 13 Let HA and HB be a pair of separable Hilbert spaces of an arbitrary
dimensions H = HA ⊗ HB and let Q ∈ E(H) and let QA = TrB(Q) ∈ E(HA) and
QB = TrA(Q) ∈ E(HB) be the corresponding reduced density matrices. Then:

FEN−(QA) ≤ FEN−(Q),

FEN−(QB) ≤ FEN−(Q).
(4.89)

Proof Follows from the formula 4.88 which demonstrates that the operations of taking
partial traces are quantum operations and application of Theorem 8. 	


LetH = HA⊗HB be abipartite separableHilbert space and letQ ∈ E(H). It iswell
known that the spectrum of Q counted with multiplicities, denoted σ(Q) = (λ1, ...)

is purely discrete and the following spectral decomposition holds:

Q =
∞∑

n=1

λi |�n〉〈�n|, (4.90)

where the orthogonal (and normalized) system of eigenfunctions |�n〉 of Q forms a
complete system. Each eigenfunction |�n〉 can be expanded further by the use of the
Schmidt decomposition:

|�n〉 =
∞∑

i=1

τ ni |ψn
i ⊗ φn

i 〉, (4.91)
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where τ ni ≥ 0
∑∞

n=1(τ
n
i )2 = 1 and the systems {ψn

i } and {φn
i } form the complete

orthonormal systems in HA and, respectively, HB . Using (4.91) and (4.90), we can
compute the corresponding reduced density matrices

QB = TrA

[ ∞∑

i=1

λn|�n〉〈�n|
]

=
∞∑

n=1

λnQ
B
n , (4.92)

where the operators

QB
n =

∞∑

i=1

|τn|2|φn
i 〉〈φn

i | (4.93)

are the states onHB . Similarly, for the reduceddensitymatrix connected to the observer
localized withHA:

QA = TrB(Q) = TrB

[ ∞∑

n

λn|�n〉〈�n|
]

=
∞∑

n=1

λnQ
A
n , (4.94)

whereQA
n = ∑∞

i=1 |τ ni |2|ψn
i 〉〈ψn

i | are states onHA. Theobtained systemsof operators
{QA

n } and {QB
n } consist of bounded non-negative self-adjoint, local operators of class

L1(HA), respectively of class L1(HB) and therefore they are locally measurable. In
particular the squares of the Schmidt coefficients τ ni of the Schmidt decompositions of
the eigenfunctions of the parent state Q are observable (measurable locally) quantities.

Proposition 14 Let H = HA ⊗ HB be a bipartite separable Hilbert space and let
Q ∈ E(H). Let (QA, QB) be the corresponding reduced density matrices and let

QA(n) =
∞∑

i=1

|τ ni |2|ψn
i 〉〈ψn

i |. (4.95)

And corr.

QB(n) =
∞∑

i=1

|τ ni |2|φn
i 〉〈φn

i |. (4.96)

Then, for any n:

1. G(QA(n)) = det(IHA + QA(n)) = ∏∞
j=1(1 + (τ nj )

2) ≤ e,

2. The value G(QA(n)) is invariant under the action of unitary group, for any unitary
map U ∈ HA:

G(UQA(n)U †) = G(QA(n)) (4.97)
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3. The value G(QA(n)) is not increasing under the action of any local quantum
operation  acting on E(HA):

G((QA(n))) ≤ G(QA(n)) (4.98)

Identical facts are valid for the reduced density matrices QB(n).

Proof Obvious. 	


Remark 5 The list �(Q) = (rnj ) associated with Q is locally SU (HA) ⊗ SU (HB)

matrix valued invariant of Q (after taking care on the localisation in this 2d table of
the corresponding Schmidts numbers). Therefore, any scalar functions build on � will
define a locally-unitary invariant of Q. Some of them are additionally alsomonotonous
under the actionof the local quantumoperations and therefore are promising candidates
for being a “good” [3–6] quantitative measures of quantum correlations included in
Q. More on this is reported elsewhere [43, 45].

Another approach to certain version of reduced density matrices structure is based
on the use of the Schmidt decomposition method in the Hilbert-Schmidt space of
operators build on the spaceHA ⊗HB . Some details are presented in appendix B and
in paper [44].

Systematic and much wider applications of the obtained forms of the reduced
density matrices will be presented in an another publications (under preparations
now).

4.3 The case of pure states

LetH = HA ⊗HB be a bipartite, separable Hilbert space and let Q ∈ E(H) be such
that tr(Q2) = 1. Then, there exists an unique, normalized vector |�〉 ∈ H such that
Q = |�〉〈�|.

Let {eAi , i = 1, . . . }, resp. {eBj , j = 1, . . . } be some complete orthonormal systems
inHA, resp. inHB .

Then, we can write:

|�〉 =
∞∑

i, j=1

�i j |eAi 〉 ⊗ |eBj 〉 (4.99)

where �i j = 〈eBj ⊗ eAi |�〉.
We start with the Schmidt decomposition (essentially SVD decomposition, see i.e.

Thm. 26.8 in [11]) in the infinite dimensional setting.

Theorem 15 For any unit vector |�〉 ∈ H there exist

• a sequence of non-negative numbers τn (called the Schmidt coefficients of �) and
such that

∑∞
n=1 τ 2n = 1,
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• two, complete orthonormal systems of vectors {φn} in HA and {ωn} in HB such
that the following equality (in the L2-space sense) holds:

|�〉 =
∞∑

n=1

τn|φn〉|ωn〉. (4.100)

The decomposition 4.100 is called the Schmidt decomposition of |�〉. The expan-
sion formula 4.100 can be rewritten as:

|�〉 =
∞∑

i=1

|eAi 〉|FB
i 〉 (4.101)

where

|FB
i 〉 =

∞∑

j=1

�i j |eBj 〉 (4.102)

and also

|�〉 =
∞∑

j=1

|F A
j 〉 |eBj 〉, (4.103)

where

|F A
j 〉 =

∞∑

i=1

�i j |eAj 〉. (4.104)

Let us define pair of linear maps J A : HA → HB , resp. J B : HB → HA by the
following

J A : |eAi 〉 → |FB
i 〉 (4.105)

and then extended by linearity and continuity to the wholeHA. In an identical way the
map J B is defined. Both of the introduced operators J are bounded as can be seen by
simple arguments. Now, we define a pair of operators which plays an important role
in the following


A(�) : J A†
J A : HA → HA (4.106)

and similarly


B(�) : J B†
J B : HB → HB (4.107)
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Some elementary properties of the introduced operators 
A and 
B are collected
in the following proposition.

Proposition 16 The operators 
A and 
B have the following properties:

(RDM1) They both are non-negative and bounded ‖
A‖1 = ‖
B‖1 = 1.
(RDM2) The nonzero parts of the spectra of 
A and 
B coincides and are equal to

squares τ 2n of nonzero Schmidt numbers in (4.100).
(RDM3) In particular the following formulas are valid:


A|φn〉 = τ 2n |φn〉,


B |ωn〉 = τ 2n |ωn〉,

which means that the kets |φn〉 are eigenvectors of the reduced density matrix
QA, and similarly for QB.

The interesting observation is that the expliciteGrammatrix nature (it is well known
fact [66] that any (semi)-positive matrix has a Gram matrix structure) of the operators

 can be flashed on.

Proposition 17 Let

|�〉 =
∞∑

i, j=1

�i j |eAi 〉 ⊗ |eBj 〉 ∈ H, (4.108)

be given. Then, the matrix elements of the corresponding operators 
, given in the
product base |eAi 〉 ⊗ |eBj 〉 are given by the formulas below


A
i j (�) = 〈eAj |
AeAi 〉HA = 〈FB

j |FB
i 〉HB (4.109)

and similarly


B
i j (�) = 〈eBj |
BeBi 〉HB = 〈F A

j |F A
i 〉HA (4.110)

where the corresponding vectors F are given by (4.102) and (4.104).

In the finite dimensional case the following, nice geometrical picture is known
[43]. Let {vi , i = 1, ..d} be a system of linearly independent vectors in the space Cd ,
where d = d. Let us build on these vectors a d dimensional parallelepiped. Then, the
Euclidean volume of this parallelepiped is equal to the determinant of the Grammatrix
built on these vectors. The matrix elements of this Grammatrix are given by the scalar
products 〈vi |v j 〉 for i, j = 1 : d. Under the condition that the sum of the lengths of
the spanning vectors vi is equal to 1 the parallelepiped which has the maximal volume
is that which is spanned by the system of orthogonal vectors of equal length. In this
particular case, the corresponding Gram matrix elements are equal to (1/d)δi j . In a
general case, the volume of the parallelepiped spanned by the vectors forming some
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square matrix columns (or rows) can be estimated from above be several inequalities.
The Hadamard inequality saying that this volume is no bigger than the product of the
lengths of the spanning vectors vi is the best known among them. For more on this
see [43].

On the basis of results and facts presented in previous sections, we can define the
following quantity (in fact entire function of z) that will be called gramian function of
the state |�〉.

G(�)(z) = det(IA + z
A(�)) = det(IB + z
B(�)) =
∞∏

n=1

(1 + zτ 2n ).

(4.111)

In particular case when z = 1 the value of the gramian function G of state |�〉 will be
called the gramian volume of |�〉 and denoted as G(�). The logarithm of the gramian
volume will be called the logarithmic (gramian) volume of |�〉 and denoted as g(�).
Using (4.111), it follows that

g(�) =
∞∑

n=1

log(1 + τ 2n ). (4.112)

Proposition 18 Let

|�〉 =
∞∑

i, j=1

�i j |eAi 〉 ⊗ |eBj 〉 ∈ H. (4.113)

Then, the gramian volume G(�) has the following properties:

1. For any |�〉 : 2 ≤ G(�) ≤ e.
2. G(�) = 2 iff � is a separable state, i.e. Schmidt rank of � is equal to 1.
3. Let U(H) be a multiplicative group of unitary operators acting in the Hilbert space

H. Then, the gramian volume of |�〉 is invariant under the action on of the local
unitary groups U(HA) ⊗ U(HB).

4. LetA(B) be any local quantum operation on the local spaceHA (resp.HB). Then

(a) G((A ⊗ IB)(�)) ≤ G(�),
(b) G((IA ⊗ B)(�)) ≤ G(�),
(c) G((A ⊗ B)(�)) ≤ G(�).

We can see that the Gramian volume of pure states is locally invariant (under the
local unitary operations action) quantity. And what is also important, we have proved
that the gramian volume defined in (4.111) do not increase under the action of any
separable quantum operation. This is why we think that the Gramian volume might be
a very good candidate for the entanglement measure included in pure quantum states.

Sometimes it is more useful to use logarithmic Gramian volume g instead of the
Gramian volume G. Some basic properties of the logarithmic volume g are contained
in the following Theorem.
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Theorem 19 Let

|�〉 =
∞∑

i, j=1

�i j |eAi 〉 ⊗ |eBj 〉 ∈ H. (4.114)

Then, the logarithmic Gramian volume g(�) has the following properties;

1. For any |�〉

g(�) =
∞∑

n=1

log(1 + τ 2n ), (4.115)

where τn are the Schmidt numbers of |�〉.
2. For any |�〉:

log(2) ≤ g(�) ≤ 1. (4.116)

3. g(�) = log(2) iff � is a separable state, i.e. Schmidt rank of � is equal to 1.
4. Let U(H) be a multiplicative group of unitary operators acting in the Hilbert space

H. Then, the logarithmic gramian volume of |�〉 is invariant under the action on
of the local unitary groups

U(HA) ⊗ IB, IA ⊗ U(HB), U(HA) ⊗ U(HB) (4.117)

5. LetA(B) be any local quantum operation on the local spaceHA (resp.HB). Then

(a) g((A ⊗ IB)(�)) ≤ g(�),
(b) g((IA ⊗ B)(�)) ≤ g(�),
(c) g((A ⊗ B)(�)) ≤ g(�).

Similar results are true for the renormalized von Neumann entropies. For this goal,
let us recall the definitions of entropies generating operators:

S−(�) = (IHA
+ 
A(�))

−(IHA+
A(�)) − IHA
=

∞∑

n=1

(

(1 + τ2n )−(1+τ 2n ) − 1

)

|φn〉〈φn |.

(4.118)

From which we obtain an estimate

Lemma 4.3 For any pure state |�〉 ∈ H the renormalized entropy generator defined
as S−(�) in (4.118) obeys the bound:

‖S−(�)‖1 ≤ 2‖
A‖1 = 2. (4.119)
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Proof We have used the following, rough estimate:

|1 − (1 + τ 2n )−(1+τ 2n )| ≤ (1 + τ 2n ) log(1 + τ 2n ) ≤ (1 + τ 2n )τ 2n (4.120)

From which the bound (4.119) follows immediately. 	

Theorem 20 Let H = HA ⊗ HB, where HA and HB are separable Hilbert spaces.
Then, for any pure state |�〉 ∈ E(H) the renormalized entropy defined as

FEN(�) = log(det(IA + S−(�)) =
∞∑

n=1

(1 + τ 2n ) log(1 + τ 2n ), (4.121)

is finite, L1-continuous on E(Q) and bounded by:

0 ≤ FEN(�) ≤ 2. (4.122)

Theorem 21 Let U(H) be a multiplicative group of unitary operators acting in the
Hilbert spaceH. Then, the renormalized entropy of |�〉 is invariant under the action
on of the local unitary groups U(HA)⊗ IB, IA ⊗U(HB) and also U(HA)⊗U(HB).

Theorem 22 Let H = HA ⊗ HB, where HA and HB are separable Hilbert spaces.
Then, for any pure state |�〉 ∈ E(H) the renormalized entropy defined as

FEN(�) = log(det(IA + S−(�)), (4.123)

is non-increasing under the action of any local quantum operation �A(B) on the local
space HA (resp.HB).

Finally, we mention the monotonicity of the renormalised Entropy with respect to
the bymajorization relation introduced semi-order. Detailswill be presented elsewhere
[46].
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Appendix A: Fermionic Fock space aspects

Let H be a separable Hilbert space and let the system of vectors {en}n=1,... form
a complete orthonormal system (i.e. the orthonormal base) in H. Then, the system
{ei1 ⊗ · · · ⊗ ein } forms an orthonormal base in H⊗n . The free Fock space over H is
defined as:

�(H) = ⊕∞
n=0H⊗n (A.1)

where H⊗0 = C.
The anti-symmetrization operator ∧n on the n-fold summand of Eq. (A.1):

∧n ( f1 ⊗ · · · ⊗ fn) = 1

n!
∑

π∈Sn
(−1)s(π) fπ(1) ⊗ · · · ⊗ fπ(n) ≡ f1 ∧ · · · ∧ fn,

(A.2)

where Sn stands for symmetric group of order n and s(π) stands for the parity of π .
Operator ∧n is then extended by linearity and continuity and normalized properly

to be the orthogonal projector acting in the free Fock space and with the range which
is called the fermionic Fock space over H and denoted as

∧ (�(H)) = ⊕∞
n=0 ∧n (H⊗n). (A.3)

In particular the system {ei1 ∧ · · · ∧ ein } forms an orthonormal base in ∧(H⊗n).

Lemma A.1 For any tensors F = f1 ⊗ · · · ⊗ fn and G = g1 ⊗ · · · ⊗ gn, we have

〈 f1 ∧ · · · ∧ fn|g1 ∧ · · · ∧ gn〉 = 1

(n!)2
∑

π,π ′∈Sn
(−1)s(π)+s(π ′)

n∏

i=1

〈 fπ(i)|gπ ′(i)〉

= 1

n! det(R(FF |GG)), (A.4)
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where R(FF |GG) is the relative Gramian matrix build on FF = { f1, . . . , fn} and
GG = {g1, . . . , gn}, see [43] for the corresponding definitions.

The fermionic Fock space over H is defined as

�as(H) ∼= ⊕∞
n=1 ∧n (H), (A.5)

i.e. � = ⊕∞
n=1|ψn〉 ∈ �as(H), |ψn〉 ∈ ∧n(H) iff

∑∞
n=0 n!‖ψn‖2 < ∞.

Remark 6 If dim(H) = d < ∞ then ∧n(H) = ∅ for n > d and dim(∧n(H)) = (d
n

)

for n ≤ d. The corresponding antisymmetric Fock spaces in this situation are used for
describing fermionic, discrete degrees of freedom.

Let T ∈ B(H). Then, we lift the action of T onto the Fock space(s) as

�(T ) : f1 ⊗ · · · ⊗ fn → T f1 ⊗ · · · ⊗ T fn, (A.6)

and similarly for f1 ∧ · · · ∧ fn case.
Let us collect here some well-known facts:

Proposition 23 Let T ∈ B(H), then

1. �(T ) ∈ B(�∗(H)) (where * stands for empty sign or as),
2. for T , S ∈ B(H)),
3. �(T S) = �(T )�(S).

Proposition 24 Let T ∈ L1(H), then

1. σ(T⊗n) = (λi1 · · · λin , λi ∈ σ(T )),

2. σ(T∧n
) =

(

λi1 · · · λin , i1 < · · · < in, λi ∈ σ(T )

)

,

3. Tr[T⊗n] = (Tr[T ])n,
4. Tr[T∧n] = ∑

i1<···<in λi1 · · · λin = 1
n! (Tr[T ])n (for T ≥ 0).

Corollary A.2 Let T ∈ L1(H), then

1. ‖T⊗n‖1 ≤ ‖T ‖n1 ,
2. ‖T∧n‖1 ≤ 1

n! ‖T ‖n1 ,
3. �(T ) ∈ L1(�(H)) if ‖T ‖1 < 1,
4. �as(T ) ∈ L1(�as(H)) iff ‖T ‖1 < ∞.

Now, we are in the position to prove the Grothendick result about the possibility to
determine the Fredholm determinant of infinite-dimensional matrices by the second-
quantisation mathematics methods.

Theorem 25 (Grothendick) Let T ∈ L1(H), then

det(IH + T ) =
∞∑

n=0

Tr[∧n(T )] . (A.7)
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From the Grothendick Theorem 25 it is possible to prove in a relatively easy way
[48] the quoted in Sect. 2 results on Fredholm determinants and to conclude several
other implications of his ingenious approach [32]. The key point is the following
observation.

Lemma A.3 Let Q ∈ E(H) and σ(Q) = (λ1, . . . ) be the spectrum of Q. Then

1. Tr[Q⊗n] = ∑
i1,...,in λi1 · · · λin = 1,

2. Tr[∧n(Q)] ≤ 1
n!Tr[Q⊗n] = 1

n! .

Proposition 26 Let H⊕ = HA ⊕ HB be a two-particles separable Hilbert space.
Then, with the convention that = means temporary the unitary equivalence of the
corresponding spaces the following is true:

1. �(H) = �(HA) ⊗ �(HB),
2. �as(H) = �as(HA) ∧ �as(HB),
3. �sym(H) = �sym(HA) ⊗sym �sym(HB).

Proof (sketch of): We concentrate only on the fermionic case (2). The reason is that
it is the case which is relevant for the purposes of the present note. The point (1) is
true from the general fact that all separable, infinite dimensional spaces are unitary
isomorphic to each other. The case of bosonic space is similar to that of fermionic
space.

We construct a special unitary map J from the space �as(HA) ∧ �as(HB) to the
space �as(H). For this goal let us observe that:

�as(HA) ∧ �as(HB) =
(

⊕∞
N=0 ∧N (HA)

)

∧
(

⊕∞
N=0 ∧N (HB)

)

= ⊕∞
N=0

(

⊕n+m=N

(

∧n (HA)

)

∧
(

∧m (HB)

))

.

(A.8)

So, a typical N -particles vector �N looks in this space like: �N = f1 ∧ · · · ∧ fn ∧
g1 ∧ · · · ∧ gm , where n + m = N and fi ∈ HA and g j ∈ HB . For such a vector, we
define

J (�N ) = ( f10) ∧ · · · ∧ ( fn0) ∧ (0g1) ∧ · · · ∧ (0gm) (A.9)

which is a vector from ∧N (HA ⊕ HB). It easy to check that J preserves the norm.
Extending J by linearity and continuity argument, we construct the unitary map

J : �as(HA) ∧ �as(HB) → �(H⊕). (A.10)
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Let TA ∈ B(HA) and respectively TB ∈ B(HB). Then, �(TA) ∈ B(�as(HA)) and
resp. �(TB) ∈ B(�as(HB)). In particular, if TA and TB are of trace class then also
TA ⊕ TB is trace class and moreover:

Tr[TA ⊕ TB] = Tr[TA] + Tr[TB]. (A.11)

Note that

TA ⊕ TB =
[
TA 0
0 TB

]

, (A.12)

as an operator acting in HA ⊕ HB .

Theorem 27 Let H = HA ⊕ HB be a bipartite separable Hilbert space and let
TA ∈ L1(HA) and TB ∈ L1(HB). The following formula is valid:

det(1 + TA) det(1 + TB) = det(1 + TA ⊕ TB). (A.13)

Proof By the use of Grothendick Theorem 25 and Proposition 26 pt.2, i.e. the use of
the unitary map J to transport the operator �(TA ⊕ TB) onto the skew tensor product
�as(HA) ∧ �as(HB). 	


Corollary A.4 LetH be a separable Hilbert space and such thatH = ⊕∞
i=1Hi and let

T ∈ L1(H) be of the form: T = ⊕∞
i=1Ti (which implies that

∑∞
i=0 ‖Ti‖1 < ∞)) and

Ti (Hi ) ⊆ Hi , for all i . Then

det(IH + T ) =
∞∏

i=1

det(IHi + Ti ) (A.14)

Proof Let PN be the orthogonal projector in H onto the subspace HN = ⊕N
i=1.

Applying in the inductive way (which is possible due to associativity of the procedures
used to prove Theorem 27), it follows that the following is true for any finite N :

det(IH + T PN ) =
N∏

i=1

det(IHi + Ti ). (A.15)

The existence of the limN (l.h.s ofA) follows from the L1 continuity of theFredholm
determinant formula (2.24) from Sect. 2. 	


Example 1 Let H = �as(h), where h is some separable Hilbert space. Let Tn for
n = 1, . . . be a sequence of trace class operators defined on and reduced by ∧n(h).
Then, the operator T T = ⊕∞

n=1Tn is continuous (on the fermionic Fock space) and of
the trace class iff

∑∞
n=1 ||Tn||1 < ∞. From Theorem 27, we learn that:
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det(I�as(h)
+ T T ) =

∞∏

i=1

det(IHi + Ti ). (A.16)

In a particular case of a given one-particle operator of trace class T ∈ L1(h) and
defining Tn = ∧n(T ), we obtain

det(1 + �as(T )) =
∞∏

i=1

det(I∧i (h) + ∧i (T )). (A.17)

The following result might be also of some interest.

Theorem 28 LetH be a separable Hilbert space and let A ∈ L1(H) and B ∈ L1(H).
Then, the following formula is valid:

det(1 + A) det(1 + B) = det

(

(1 + A)(1 + B)

)

. (A.18)

Proof If both A and B are of finite range the proof of (28) follows from the corre-
sponding finite dimensional matrix calculus. Using the fact that finite range operators
are dense in L1(H) and L1-continuity of det(1 + · · · ) the proof follows. 	


Appendix B: Schmidt decompositions

Let H = HA ⊗ HB be a bipartite separable Hilbert space. Then, the space L2(H)

is canonically isomorphic with the space L2(HA) ⊗ L2(HB) as is well known. In
particular, if the system of operators {E A

i . . . }, and resp. {EB
j . . . } is complete and

orthonormal in L2(HA), resp. in L2(HB), then the system {Ei A ⊗ EB
j } is complete

orthonormal system in L2(H).

Theorem 29 Let H = HA ⊗ HB be a bipartite separable Hilbert space and let
Q ∈ E(H). Then, there exist—a system of non-negative numbers (τn),

∑∞
n=1 τ 2n =

||Q||22 called the canonical (L2-space) Schmidt numbers of Q and such that—two
complete, orthonormal systems of L2-class of operators {�A

n } ⊂ L2(HA), resp.
{�B

n } ⊂ L2(HB) such that:

Q =
∑

n

τn�
A
n ⊗ �B

n (B.1)

Let He(H) be the real Hilbert space of L2-class and additionally Hermitian oper-
ators acting in the space H. In particular, E(H) is subset of He(H). As the SVD
theorem and the spectral theorem are still valid in the space He(H) [70, 71], we can
decompose any state Q in this space in the spirit of Schmidt decomposition.
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Theorem 30 Let H = HA ⊗ HB be a bipartite separable Hilbert space and let Q ∈
E(H). Then, there exist—a systemof non-negative numbers (τ �

n ), called theHermitian,
Schmidt numbers of Q and such that

∑
n(τ

�
n )2 = ‖Q‖2He and two complete (in the

corresponding He spaces), orthonormal systems of L2-class Hermitian operators
{��A

n } ⊂ He(L2(H)), resp. {��B
n } ⊂ He(L2(H)) such that:

Q =
∞∑

n=1

τ �
n��A

n ⊗ ��B
n . (B.2)

Remark 7 Whether the Schmidt numbers of both expansions are identical or not is not
clear for us. Also the operators � appearing in Theorems 29 and 30 are different in
general. In particular, all the operators appearing in (B.2) are Hermitian.

Corollary B.1 If all the operators appearing in Eq. (B.2) are non-negative then Q is
separable.

Proof If dimensions of the spaces HA and H are both finite then the proof follows
from the very definition of separability. For N < ∞, we define (modulo normalization)
using expansion (B.2) the following separable states:

QN =
∑

n=1:N
τ �
n��A

n ⊗ ��B
n . (B.3)

The sequence QN tends in the L2 topology to the limiting state Q. Therefore, we
conclude that Q belongs to the L2 closure of the set of separable states. But Q belongs
to E(H) from the very assumptions made on it. 	


As it is well known the Schmidt decompositions (B.1) and (B.2) can be used in
finite dimensions to test the presence of entanglement in Q. For this, let us recall the
well known realignment criterion: if Q is separable then the sum of the corresponding
canonical Schmidt numbers τ is not bigger than 1 [72, 73].

For other, generalized version of this criterion see [74–79]. The infinite dimensional
applications are also possible and are reported in a separate note [46].

With the help of these expansions, the following formulas for the corresponding
reduced density operators (RDM) on the local L2-spaces are derived

Corollary B.2 Let H = HA ⊗ HB be a bipartite separable Hilbert space and let
Q ∈ E(H). Then L2-RDM of |Q〉〈Q| ∈ L2(L2(H)) are given by

QQA = TrL2(HB )(|Q〉〈Q|) =
∞∑

n=1

τ 2n |�A
n 〉〈�A

n |, (B.4)

and

QQB = TrL2(HA)(|Q〉〈Q|) =
∞∑

n=1

τ 2n |�B
n 〉〈�B

n |. (B.5)
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The Hermitian version of this expansion is given:

Corollary B.3 Let H = HA ⊗ HB be a bipartite separable Hilbert space and let
Q ∈ E(H). Then HeL2-RDM of |Q〉〈Q| ∈ He(He(H)) are given by

QQA = TrL2(HB )(|Q〉〈Q|) =
∞∑

n=1

τ �2
n |��A

n 〉〈��A
n |, (B.6)

and

QQB = TrL2(HA)(|Q〉〈Q|) =
∞∑

n=1

τ �2
n |��B

n 〉〈��B
n |. (B.7)

The operator |Q〉〈Q| acts in the Hilbert-Schmidt space of operators acting in H
as an orthogonal projector. The spaces of operators acting on the space of states
E(H) are called often the space of superoperators. From the physical point of view,
the most important class of superoperators are those which are completely positive
and trace preserving [3, 4, 64]. Such superoperators are called quantum channels.
From our considerations, it follows that any superoperator from He2(He2(H)) can
be decomposed similarly to the decompositions (B.5)-(B.8).

Appendix C: Operator valued (renormalized) map (Q → log(IH + Q))

Several useful properties of the map Q → log(IH + Q) will be collected in this
supplement. To start with let us consider non-negative Q ∈ L(H). Using the spectral
theorem, we can define operator log(IH + Q).

Proposition 31 The map log(1H + .) with values in L+
1 (H) is well defined on L+

1 (H)

and moreover, for Q ∈ L+
1 (H):

1. ‖ log(1H + Q)‖1 ≤ ‖Q‖1,
2. the map Q → log(1H + Q) is operator monotone map,
3. The map log(1H + .) as defined on the cone L+

1 (H) is strictly operator concave
function which means the following for any Q1, Q2 ∈ L+

1 (H), any τ ∈ (0, 1):

log(1H + τQ1 + (1 − τ)Q2) ≥ τ log(1H + Q1) + (1 − τ) log(1H + Q2).

(C.1)

For any Q ∈ E(H):

Tr[log(1H + Q)] ≤ 1. (C.2)

Lemma C.1 For any Q1, Q2 ∈ L+
1 (H), the strong Frechet directional derivative of

the map log(1H + . . .) in the point Q1 and in the direction to Q2 is given by the
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formula:

∇Q2(log(1H + . . .)(Q1) =
∫ ∞

0
dx(1h + Q1 + x)−1Q2(1H + Q1) + x)−1.

(C.3)

Theorem 32 [C] For any Q1, Q2 ∈ L+
1 (H), the following estimate is valid

‖ log(1H + Q1) − log(1H + Q2)‖1 ≤ o(1)‖Q1 − Q2‖1. (C.4)

Proof All the formulatedhere results are valid in thefinite dimensional setting.The cor-
responding infinite dimensional results follows by performing the finite dimensional
approximations and then performing the passage (controllable by the L1-continuity)
to limiting cases. 	


C.1 Continuation of the proof of Theorem 2

The case τ = 1.
If τ = 1 then it follows that Q or Q′ or both one are pure states. Assume that

Q, Q′ are both pure states. Then, there exist two unit vectors |ψ〉 and |θ〉 such that
Q = |ψ〉〈ψ | and Q′ = |θ〉〉θ |. From the idempotency of Q and Q′ it follows:

log(1 + Q) = log(2) · |ψ〉〈ψ |, (C.5)

and

log(1 + Q′) = log(2) · |θ〉〉θ |, (C.6)

from which

‖ log(1 + Q) − log(1 + Q′)‖1 ≤ o(1)‖ψ − θ‖. (C.7)

If Q′ is not pure but Q ∈ ∂E(H) then δ = ‖Q′‖ < 1. Taking Q′ such that ‖Q′ −
|ψ〉〈ψ |‖ = ρ ≤ δ the proof follows by repeating almost literally the arguments as in
(2.43).
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