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Abstract
This study proposes a logical qubit behavior model (LQBM) that calculates the state
of the logical qubit based on a surface code after a logical qubit operation. LQBM
can simulate the surface code whose distance exceeds 5, which is impossible with
conventional quantum simulators. A complex error syndrome measurement must not
be executed in this model. LQBM works at the mixed level of a logical and physical
qubit. Probability amplitudes and the number of state vectors are designed at the
physical qubit level. The state vectors of physical qubits constituting a logical qubit
are abstracted to the value of the logical qubit level. LQBM converts all logical qubit
operations, which include an initialization, a state injection, universal gates, and lattice
surgery operations (e.g., a merge and a split) to simple calculations. LQBM provides
a better computational complexity of O(log(distance)) than O(distance2). Through
simulation experiments, it was found that LQBM performs logical qubit operations
up to 24 million times faster than existing quantum simulators in the case of distance
= 5.

Keywords Behavior model · Logical qubit · Surface code · Simulation

1 Introduction

Quantumcomputers are attractingmuch attentionbecause of their performancebeyond
the limits of conventional computers [1, 2]. Recently, large IT companies (e.g., IBM
and Google) have been conducting more research with the goal of commercialization,
but one of the main obstacles to the development and operation of quantum computers

B Soo-Cheol Oh
ponylife@etri.re.kr

Gyu-Il Cha
gicha@etri.re.kr

1 Future Computing Research Division, Electronics and Telecommunications Research Institute, 218,
Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-04044-8&domain=pdf
http://orcid.org/0000-0003-1900-8371


287 Page 2 of 28 S.-C. Oh, G.-I. Cha

is errors occurring in qubits. Quantum computer qubits can be implemented in various
ways, including superconductors [3, 4], trapped ions [5], and photons [6]. However,
these qubits have a fundamental limitation in those errors that occur. To solve this
problem, Quantum Error Correction (QEC) [7–9] is used to reduce the error. QEC is
a technology that generates a syndrome of qubit error and corrects it by decoding the
syndrome.

Until now, various error correction technologies, such as a repetition code [10], a
toric code [11, 12], and a surface code [13–16], have been developed, and the surface
code is currently the most active and studied one. The surface code is divided into
a defect-based surface code [14] and a planar surface code [16]. Now, among the
variants of the planar surface code, the rotated surface code [16, 17] using a smaller
number of physical qubits has been studied a lot.

Themost basic operation in the surface code is error syndromemeasurement (ESM),
which is used to correct qubit errors by generating error syndromes. ESM is also used
to perform logical qubit initialization and operations based on lattice surgery [16, 18–
20]. When a logical qubit based on the surface code is simulated using conventional
quantum simulators, the actual states of the physical qubits constituting the logical
qubit are derived, which are the probability amplitudes of the physical qubits, the state
vectors of the physical qubits, and the number of state vectors. However, since ESM
is performed through complex physical qubit operations of O(d2) that depend on the
distance d of the logical qubit, the complexity of an ESMexecution increases exponen-
tially as d increases, making the simulation difficult. Currently, quantum simulators
can simulate up to 49 qubits when using a supercomputer [21], and QPlayer supports
up to 85 physical qubits for a surface code simulation [22]. Therefore, a distance of 3
or 5 is the simulation limit for the rotated surface code.

We analyzed the input and output qubit states of logical qubit operations from the
behavioral perspective of ESM. We developed a model that can calculate the output
state of the logical qubit after the logical operation without performing a complex
process of ESM. We propose it as logical qubit behavior model (LQBM). LQBM
is the model working at the mixed level of the logical and physical qubit. At the
physical qubit level, it can simply calculate the probability amplitudes and the number
of state vectors of physical qubits constituting a logical qubit. At the logical qubit
level, the state vector composed of the physical qubits is abstracted to the value of the
logical level. These calculations are performed without the complex physical qubit
operations. Based on this model, it is possible to calculate the state of logical qubits
with high distance, which cannot be implemented with current quantum simulators.
It also provides up to 24.75 million times faster execution than existing quantum
simulators. The contribution of LQBM proposed in this paper is as follows.

• State representation of the logical qubit: A state of a logical qubit after an initial-
ization or state injection can be quickly calculated without the complicated ESM
process.

• Lattice surgery-based logical operation: Quantum operations on two logical qubits
are performed using the lattice surgery technique. A state of the logical qubits after
performing the lattice surgery operation is calculated mathematically.
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• Mixedmodel and lowcomputational complexity:ESMhas anO(d2) computational
complexity.However, LQBMprovides the complexity ofO(log d) using themixed
model of the physical and logical qubit.

• Performance of an LQBM simulator: A simple simulator based on LQBM was
created, and higher performance was verified. The |0〉L initialization of the logical
qubit with distance 5 shows that LQBM is 24.75 million times faster than the
conventional quantum simulators.

The rest of the paper is organized as follows. Section2 describes the related studies
for this paper. Section3 proposes a concept of LQBMproposed in this paper. Sections4
through 6 describe the state representation of logical qubits, the logical operations for
a single logical qubit, and the lattice surgery-based logical operations of LQBM.
Section7 defines logical operation matrices for LQBM based on the descriptions in
Sects. 4 to 6. Section8 compares the performance of a simple simulator based on
LQBM with that of a conventional quantum simulator. Finally, Sect. 9 presents the
main conclusions of this study.

2 Related works

Surface code: A surface code [23–27] is the most actively studied QEC method. The
surface code arranges data qubits and X/Z stabilizer qubits on a two-dimensional qubit
array. The data qubits represent the state of the logical qubit using an entanglement,
and the X/Z stabilizers are used to detect and correct errors in the data qubits. The
most critical process in the surface code is ESM, which marks the error symptoms
of the data qubits in the X/Z stabilizer. The error syndrome generated by ESM goes
through the decoding process to find the location of the physical qubit where the error
occurs and the type of error (X or Z error).

ESMis not only used to correct errors but is also used to performquantumoperations
on logical qubits. Initializing a logical qubit to a specific state such as |0〉 or |+〉 uses
ESM, and a state injection to set an arbitrary quantum state into a logical qubit also
uses ESM. In addition, the lattice surgery technique is used to perform the logical
qubit operations targeting multiple logical qubits, and the basis of this technique is to
use ESM. The most basic operations of the lattice surgery are a merge and a split. The
merge is the method of merging two logical qubits into one logical qubit. The split
operation is to split one logical qubit into two logical qubits. The merge and the split
operate based on an X or Z boundary. If the merge and the split are combined, logical
qubit operations (e.g., CNOT, MOVE, and SWAP) can be performed, and Z phase shit
operations (e.g., S gate and T gate) can also be performed [16, 18, 28–31].

There is the rotated surface code using fewer physical qubits [16]. The rotated
surface code is created by rotating the planar surface code by 45◦ and removing some
qubits. The rotated surface code with the smallest distance 3 consists of 9 data qubits
and eight stabilizer qubits. The eight stabilizer qubits comprise 4 X stabilizers and
4 Z stabilizers. The X and Z stabilizers detect the Z and X errors of the data qubits,
respectively.
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Quantum Simulator: Quantum simulators utilize classical computers to simulate
qubits. Since these simulators require a memory size of 2N (N : the number of qubits)
to express the entanglement of qubits, the memory consumption increases exponen-
tially as the number of qubits increases [21, 32–35]. If there are 36 or 50 qubits,
approximately 1TB or 16PB of memory is required, respectively [32]. Therefore, if
the number of qubits increases, thememory requirement cannot be satisfied evenwhen
a large-scale system is used. This is a limitation of the quantum simulators.

The quantum simulator of ETH Zurich simulated a 45-qubit circuit on the Cori II
supercomputing system with 0.5 petabytes of memory and 8192 nodes [34]. QuEST
showed the capability of simulating a 38 qubits circuit on the ARCUS supercomputer
with 2048 nodes [35]. At Tsinghua University, the quantum supremacy circuit sim-
ulation on Sunway TaihuLight with 16K nodes showed that a 49-qubit circuit with
a depth of 39 could be simulated [21]. QPlayer simulated an 85-qubit circuit for the
surface code on 512 GB memory by removing unnecessary state vectors of qubits
instead of increasing the memory capacity [22].

3 Logical qubit behavior model

LQBM can derive the state changes after performing the logical qubit operations
through simple calculations instead of a complex ESM on physical qubits. LQBM
consists of two elements: a state representation of a logical qubit and a logical qubit
operation.

State representation of a logical qubit: The state representation of a logical qubit
describes the quantum state when an initialization or a state injection is applied to
the logical qubit. The state |ψ〉L of the logical qubit consists of three elements which
are S, pa, and m, and the relationship between them is as in (1). |ψ〉L is composed
of logical values (S) of state vectors constituting the logical qubit and probability
amplitudes (pa) corresponding to each logical value. Also, each S is expressed as an
entanglement of m state vectors of physical qubits. pa and m are elements based on
the physical qubit level, and S is based on the logical qubit level.

|ψ〉L = α|0〉L + β|1〉L = α|S0〉L + β|S1〉L
= pa0(|S0〉L_1 + . . . + |S0〉L_m) + pa1(|S1〉L_1 + . . . + |S1〉L_m)

(1)

• S: S is the logical value of state vectors constituting a logical qubit. S for a logical
qubit consists of S0 (=0) and S1 (=1).

• m: One |S j 〉L is expressed as an entanglement of m state vectors |S j 〉L_i . Also, if
one logical qubit consists of k physical data qubits, it is expressed as |S j 〉L_i =
|d1 . . . dk〉. A logical value of |S j 〉L_i is determined by combining the physical
data qubits.

• pa: pa is the probability amplitude in units of the physical data qubits constituting
the logical qubit. pa j is the value for |S j 〉L_i . If m probability amplitudes for
|S j 〉L_i are gathered, they behave like the logical probability amplitude for |S j 〉L .
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Fig. 1 This figure shows the structure of the rotated surface code. The hollow, black, and gray circles
represent the data qubit, X stabilizer, and Z stabilizer, respectively. dx and dz denote the number of data
qubits on the X and Z boundaries, which are typically positive odd. nx(= (dx − 1)(dz + 1)/2) and
nz(= (dx + 1)(dz − 1)/2) represent the number of X and Z stabilizers, respectively. XL and ZL define
the logical X and Z operators for the logical qubit

The state of one logical qubit is also expressed as a function of the quantum state
α|0〉 + β|1〉 to be initialized and the number of X stabilizers constituting the logical
qubit, as follows. Details will be explained in Sect. 4.

|ψ〉L = FInit (α, β, the number of X stabili zers)

FInit = {I ni tiali zation, State I n jection}

Logical qubit operation: When a logical qubit operation is applied on the state
|ψ〉L_input of logical input qubit, an output logical qubit state |ψ〉L_output is generated.
FOP represents various logical qubit operations. In addition to the existing universal
gate set, FOP supports the merge and the split with X and Z boundaries for the lattice
surgery. Details will be explained in Sects. 5 to 6.

|ψ〉L_output = FOP (|ψ〉L_input , the number of X stabili zers)

FOP = {X , Z , H , XMerge, XSpli t, ZMerge, ZSpli t,CNOT , S, T }

4 State representation of logical qubit

The initialization and the state injection define the state of logical qubits based on
the rotated surface code. The initialization is to set the state of a logical qubit to a
specific quantum state, such as |0〉L or |+〉L . The state injection sets a logical qubit to
an arbitrary quantum state of |ψ〉L = α|0〉L + β|1〉L . Figure1 shows the structure of
the logical qubit based on the rotated surface code [16] targeted in this paper, and the
ESM circuit is in Fig. 2. The logical qubit generally uses dx and dz of the same value,
which are usually expressed as distance d. In this paper, they are marked differently
to distinguish the effects of dx and dz during the ESM process.
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Fig. 2 a, b are ESM circuits that generate an X/Z stabilizer to detect errors in data qubits. The X and
Z stabilizers are used to detect Z and X errors in the data qubits, respectively. One X or Z stabilizer is
associated with four neighboring data qubits. D0 through D5 in the circuit are the data qubits in Fig. 1

4.1 |0〉L initialization

A |0〉L initialization sets all data qubits constituting a logical qubit to |0〉 and performs
an ESM process to generate all X and Z stabilizers. After that, the error syndromes
composed of X and Z stabilizers are decoded, and the errors are corrected. Only
X syndrome errors arise randomly in the |0〉L initialization. A |+〉L initialization is
similar to the |0〉L initialization except that all data qubits are initialized to |+〉 and
that only Z syndrome errors occur randomly.

First, to initialize a logical qubit to |0〉L , all data qubits and X/Z stabilizers of
the logical qubit are initialized to |0〉. The initial state |ψ〉L of the logical qubit is
described as the tensor product of the X stabilizers, the Z stabilizers, and the data
qubits as follows. XS, ZS, and D represent the X stabilizers, the Z stabilizers, and the
data qubits, respectively, and the states of all qubits are |0〉.

|ψ〉L = |01 . . . 0nx 〉XS |01 . . . 0nz〉ZS |01 . . . 0dx × dz〉D

The X and Z stabilizers produce the same result even if they are performed simul-
taneously or in sequence because they commute. Assuming that the Z stabilizers are
generated before the X stabilizers, look at Fig. 2b. Since all data qubits, the control
of the CNOT operations, are |0〉, the Z stabilizer generation does not change the state
|ψ〉L . Therefore, in the |0〉L initialization, only the generation of the X stabilizers
plays an important role, and we will look into this in detail.

nx X stabilizers can be generated in order from X stabilizer 1 to nx because all X
stabilizers commute each other. So let’s assume that X stabilizer 1 is generated for
the first time. In Fig. 2a, the first step of generating the X stabilizer is to perform an
H gate on the X stabilizer, and the result is expressed as (2). In (2), the state of the Z
stabilizer, which always has a value of |0〉, is deleted for convenience of explanation,
and the data qubit is displayed immediately after the first X stabilizer.

|ψ〉L = 1√
2
(|01〉XS + |11〉XS)|01 . . . 0dx×dz〉D|02 . . . 0nx 〉XS (2)
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In the second step, CNOT gates are performed with the X stabilizers as a control
and the data qubits as a target. Depending on whether the state of the ZL operator
on a logical qubit has even or odd parity, the state of the logical qubit is either |0〉L
or |1〉L . When the ZL operator is defined as shown in Fig. 1, the current state of the
ZL operator has even parity because the eigenvalue of all data qubits constituting the
ZL operator is +1. Therefore, |01 . . . 0dx×dz〉D can be abstracted as the logical state
|0〉L . There are (dx − 1) X stabilizers above and below the ZL operator, and each
X stabilizer can affect two data qubits involved in the ZL operator. From (2), the
state of the ZL operator remains even parity because the CNOT using |01〉XS as the
control and the data qubit as the target does not change the data qubits constituting
the ZL operator. Since CNOT using |11〉XS as the control performs X operations on
two data qubits in the ZL operator, the state of the ZL operator remains even parity.
Therefore, the state of the logical qubit after executing the CNOT gates remains |0〉L .
The result of performing the CNOT operations in (2) is summarized in (3). Although
the logical qubit state remains |0〉L , the combinations of the data qubits constituting it
are different, and this is expressed as |0〉L_1_0 and |0〉L_1_1 in (3). |0〉L_1_0 or |0〉L_1_1
is the state of the data qubits generated by CNOT operations using the |01〉XS or |11〉XS

value of the X stabilizer as the control when the first X stabilizer is generated.

|ψ〉L = 1√
2
(|01〉XS|0〉L_1_0 + |11〉XS|0〉L_1_1)|02 . . . 0nx 〉XS (3)

The third step of generating the X stabilizer is to perform the second H gate on
the X stabilizer, which is expressed by (4). The phases (P1_ j i ) are separated from the
entanglement of the first X stabilizer and the data qubits.

|ψ〉L = 1√
2
2 (|01〉XS |0〉L_1_0 + |11〉XS |0〉L_1_0
+ |01〉XS |0〉L_1_1 − |11〉XS |0〉L_1_1)|02 . . . 0nx 〉XS

= 1√
2
2 (

2−1∑

j=0

2−1∑

i=0

(−1)P1_ j i |XS1_ j 〉XS|0〉L_1_i )|02 . . . 0nx 〉XS

|XS1_ j 〉XS =
{ |01〉XS i f j = 0

|11〉XS i f j = 1

P1_00 = P1_01 = P1_10 = 0, P1_11 = 1

(4)

From (4), the state when all nx X stabilizers are generated is derived as (5). The
X stabilizer expression, which is separated until (4), is combined into one since all
X stabilizers are generated. Because nx is a fixed constant, it can be omitted for
convenience of notation.
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|ψ〉L = 1√
2
2nx

2nx−1∑

j=0

2nx−1∑

i=0

(−1)Pnx_ j i |XSnx_ j 〉XS|0〉L_nx_i

= 1√
2
2nx

2nx−1∑

j=0

2nx−1∑

i=0

(−1)Pji |XSj 〉XS|0〉L_i
(5)

• |XSj 〉XS : The X stabilizers are represented by 2nx entangled state vectors, and
|XSj 〉XS is the j-th state vector among the entangled states.

• |0〉L_i : The data qubit |0〉L is represented by 2nx entangled state vectors, and |0〉L_i
is the i-th state vector among the entangled states.

• Pji ∈ {0, 1}: the phase value for the tensor product of |XSj 〉XS and |0〉L_i .
The state of the logical qubit after generating all nx X stabilizers is a form in which

phases are added to the tensor product of the X stabilizers with the 2nx entangled state
vectors and the |0〉L data qubits with the 2nx entangled state vectors. The total number
of state vectors of one logical qubit becomes 22nx , and the probability amplitude of

each state vector becomes 1/
√
2
2nx

.
The fourth step is to measure all the generated X stabilizers. The q-th X stabi-

lizer value is randomly selected among the entanglement of 2nx X stabilizers. This is
expressed as (6).

|ψ〉L = 1√
2
nx

2nx−1∑

i=0

(−1)Pqi |XSq〉XS|0〉L_i (6)

Here, the Z errors of the data qubits are corrected according to the |XSq〉XS syn-
drome, and all (−1)Pqi values become+1. The final |0〉L initialization state is described
as (7). The X stabilizers are deleted when the initialization is completed because they
are no longer needed. Also, for convenience of notation, i is changed to start from 1
instead of 0. From (7), it can be seen that the |0〉L logical qubit is expressed as the
entanglement of 2nx state vectors of the data qubits representing |0〉L and the prob-
ability amplitude of each state vector is equal to 1/

√
m. Also, the |0〉L initialization

depends on nx, the number of X stabilizers.

|0〉L = 1√
2
nx

2nx−1∑

i=0

|0〉L_i = 1√
2
nx

2nx∑

i=1

|0〉L_i = 1√
m

m∑

i=1

|0〉L_i (m = 2nx ) (7)

From now on, we can use (7) to obtain the state of the |0〉L logical qubit by a
simple calculation instead of the complex ESM. The logical qubit initialization using
the quantum simulators requires nx × (4CNOT s + 2 Hgates) + nz × 4CNOTs
quantum operations, to calculate the entangled states of the data qubits constituting a
logical qubit. It has the complexity of O(d2) (=O(dx × dz)). The distances dx and dz
are unified by d to simplify the complexity expression.

In LQBM, the |0〉L initialization consists of computing m(= 2(d2−1)/2), 1/
√
m (=

pa), and |0〉L_i in (7).m and 1/
√
m are derived by computing the power of two. Since
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the complexity of computing 2n is O(log n), the computation of m has O(log d)

complexity. 1/
√
m also has O(log d) complexity. Instead of computing the entangled

state vectors of the data qubits, which increases complexity, LQBM abstracts the state
vectors as logical values, such as |0〉L_i . The logical values of all |0〉L_i are equal to
each other. Therefore, LQBMdoes not need tomaintain the logical values of all |0〉L_i ,
but only one logical value. And it manages m, the number of state vectors, together.
Thus, the superposition in (7) does not affect the complexity of LQBM, and we can
see that the complexity of LQBM is O(log d). In addition, it is easy to find the |0〉L
initialization state of the logical qubit with a high distance, which is impossible in
conventional simulators.

4.2 State injection

The state injection sets a logical qubit to an arbitrary quantum state of |ψ〉L = α|0〉L +
β|1〉L . The |1〉L state representation of the logical qubit can be derived by performing
a logical X operation on the |0〉L logical qubit, as shown in (8). The quantum state of
the logical qubit after the state injection is described as (9). c and d correspond to pa0
and pa1 in (1).

A logical qubit is described as an entanglement of 2m state vectors. Of the 2m state
vectors, m state vectors are for |0〉L_i , and the other m state vectors are for |1〉L_i . The
probability amplitudes for |0〉L_i are all α/

√
m. If those m probability amplitudes are

gathered, they behave like the logical probability amplitude for |0〉L . This is the same
for |1〉L . Using (9), |+〉L initialization state is also expressed as (10).

|1〉L = X(|0〉L) = 1√
m

m∑

i=1

|1〉L_i (8)

|ψ〉L = α|0〉L + β|1〉L = α√
m

m∑

i=1

|0〉L_i + β√
m

m∑

i=1

|1〉L_i

= c
m∑

i=1

|0〉L_i + d
m∑

i=1

|1〉L_i
(

α√
m

= c,
β√
m

= d, (c2 + d2) × m = α2 + β2 = 1

)

(9)

| + 〉L = 1√
2
|0〉L + 1√

2
|1〉L = 1√

2m

m∑

i=1

|0〉L_i + 1√
2m

m∑

i=1

|1〉L_i (10)
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5 Operators for single logical qubit

The quantum operations for the single logical qubit are X, Z, and H. Based on the
lattice surgery, since S and T use an ancilla qubit, they are not included in this section.

After applying logical X or Z operation, the state of the logical qubit is expressed
as (11). Multiple logical X operators can be defined for the single logical qubit and
have the same result. Any valid logical X operator changes |0〉L to |1〉L and |1〉L to
|0〉L . Multiple logical Z operators are also defined, and a phase of |1〉L changes from
+ to − and − to +. The logical X and Z operators do not change the number of state
vectors of data qubits.

A logical H operator is as shown in (12). The logical H operator is achieved by
performing transversal H gates on all data qubits constituting a logical qubit, and it
changes |0〉L to |+〉L and |1〉L to |−〉L .

X(|ψ〉L) = d
m∑

i=1

|0〉L_i + c
m∑

i=1

|1〉L_i

Z(|ψ〉L) = c
m∑

i=1

|0〉L_i − d
m∑

i=1

|1〉L_i
(11)

H(|ψ〉L) = c
m∑

i=1

| + 〉L_i + d
m∑

i=1

| − 〉L_i

= (c + d)√
2

m∑

i=1

|0〉L_i + (c − d)√
2

m∑

i=1

|1〉L_i
(12)

6 Operators using lattice surgery

6.1 Logical tensor product

Before expressing logical operators using the lattice surgery, let’s first look at how to
describe a tensor product of logical qubits. Suppose that there are N logical qubits
|ψ1〉L , . . . , |ψN 〉L . The logical tensor product is expressed as (13) using 2N log-
ical state vectors. Ci represents a complex number.Each logical state vector from
|0102 . . . 0N 〉L to |1112 . . . 1N 〉L is expressed as shown in (14), and |S j 〉L_i is a combi-
nation of the physical data qubits as described in (1). This indicates that |S1S2 . . . SN 〉L
equals the tensor product of the state vectors of the physical data qubits constituting
|Si 〉L . So, |S1S2 . . . SN 〉L has mtp physical state vectors corresponding to the product
of m1 to mN . Also, the probability amplitude (=1/

√
mtp ) is defined as the product of

1/
√
m1 to 1/

√
mN .

|ψ1 ψ2 . . . ψN 〉L = C1 |0102 . . . 0N 〉L + C2 |0102.. .1N 〉L + . . .

+C2N |1112 . . . 1N 〉L (13)
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|S1 S2 . . . SN 〉L = 1√
m1

m1∑

i=1

|S1〉L_i ⊗ · · · ⊗ 1√
mN

mN∑

i=1

|SN 〉L_i

= 1√
mtp

mtp∑

i=1

|S1 S2 . . . SN 〉L_i

(S j ∈ {0, 1},mtp =
N∏

j=1

m j )

(14)

Therefore, it can be seen that the tensor product of the N logical qubits is the same
as the tensor product of the physical state vectors constituting each logical qubit, as
shown in (15)

|ψ1 ψ2 . . . ψN 〉L = C1√
mtp

mtp∑

i=1

|00 . . . 0〉L_i + C2√
mtp

mtp∑

i=1

|00 . . . 1〉L_i

+ . . . + C2N√
mtp

mtp∑

i=1

|11 . . . 1〉L_i
(15)

6.2 Merge and split

Logical qubit operations for two logical qubits in the rotated surface code are performed
using the lattice surgery technique. The most basic lattice surgery operations are a
merge and a split. The merge is the method of merging two logical qubits facing the
same boundary into one logical qubit, and there are X and Z merges according to a
boundary type. The split is to divide one logical qubit into two logical qubits. There
are also X and Z boundary splits. Figure3 is the diagram explaining the merge and the
split.

For the Z boundary merge, the number of data qubits in the Z boundary must be
the same (dz = dz′). The Z boundary merge of two logical qubits |ψ〉L and |ψ ′〉L is
expressed as (16) [16].

|ψ〉L = α|0〉L + β|1〉L (dx, dz), |ψ ′〉L = α′|0〉L + β ′|1〉L (dx ′, dz′)

ZMerge(|ψ〉L , |ψ ′〉L) = 1√
2
((αα′ + (−1)Mββ ′)(|00〉L + (−1)M |11〉L)

+(αβ ′ + (−1)Mβα′)(|01〉L + (−1)M |10〉L))

(16)

The state of amerged logical qubit is an entanglement of two logical qubits. |00〉L +
(−1)M |11〉L and |01〉L + (−1)M |10〉L are interpreted as |0〉L and |1〉L , respectively,
in terms of the merged logical qubit. One logical qubit has one probability amplitude
value for |0〉L and |1〉L , respectively. The merged logical qubit follows this rule when
M = 0. However, two probability amplitudes for |00〉L and |11〉L have opposite
phases in terms of the merged logical state |0〉L , when M = 1. The two probability
amplitudes for |01〉L and |10〉L also have opposite phases in the merged logical state
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Fig. 3 a the Z boundary merge is the method of merging two logical qubits facing the Z boundary into one
logical qubit. New X stabilizers are added to the merged Z boundary, and the product of the measurements
of the new X stabilizers is used as the M value for the Z boundary merge. The Z boundary split is to split
one merged logical qubit into two logical qubits based on the Z boundary. When the Z boundary split is
performed, the new X stabilizers added at the time of merging disappear. b the X boundary merge/split
performs the merge and split based on the X boundary. The merge adds new Z stabilizers, and the split
removes the new Z stabilizers. The product of the measurements of the new Z stabilizers is used as the M
value for the X boundary merge

|1〉L . Therefore, one merged logical qubit with M = 1 has four probability amplitudes
for |00〉L , |01〉L , |10〉L , and |11〉L , which are based on two logical qubits before
merging. Because LQBM uses the state vectors and their probability amplitudes, we
determine to express the state of themerged logical qubit based on |00〉L , |01〉L , |10〉L ,
and |11〉L . Suppose you want to express the Z boundary merge in terms of the merged
logical qubit, adding the value of M together like |0〉ML = |00〉L + (−1)M |11〉L and
|1〉ML = |01〉L + (−1)M |10〉L is necessary. Also, a complex model that considers the
opposite phase is required for logical operations.

If we calculate the sum of the squares of the probability amplitudes of the merged
logical qubit in (16), it is seen that the sum is not always 1. Therefore, normaliza-
tion must be performed so that the sum of the squares of the probability amplitudes
becomes 1. After that, the merge operation can be applied to LQBM. The normaliza-
tion operation is performed by dividing each probability amplitude in (16) by the sum
of the squares of the probability amplitudes as in (17).

ZMerge(|ψ〉L , |ψ ′〉L)

= 1√
2K

(A(|00〉L + (−1)M |11〉L) + B(|01〉L + (−1)M |10〉L))

( A = αα′ + (−1)Mββ ′, B = αβ ′ + (−1)Mβα′,

K = 2

∣∣∣∣
A√
2

∣∣∣∣
2

+ 2

∣∣∣∣
B√
2

∣∣∣∣
2

= |A|2 + |B|2 )

(17)
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The number of X stabilizers in the merged logical qubit is nx + nx ′ + (dz + 1)/2.
The number of X stabilizers added to the facing Z boundary is (dz + 1)/2. Therefore,
the number of state vectors for |0〉L or |1〉L in the merged logical qubit becomes (18).
The merged logical state |0〉L is expressed as a combination of |00〉L and |11〉L , and
|1〉L is described as a combination of |01〉L and |10〉L . Thus, each of |00〉L , |01〉L ,
|10〉L , and |11〉L has the number of state vectors shown in (19).

m × m′ × 2
dz+1
2 (= 2(nx+nx ′+ dz+1

2 )) (18)

(m × m′ × 2
dz+1
2 ) ÷ 2 = m × m′ × r (r = 2

dz−1
2 ) (19)

We describe the output state of the Z boundary merge as (20) by reflecting the
number of state vectors.

1√
2Krmm′ (A(

rmm′∑

i=1

|00〉L_i + (−1)M
rmm′∑

i=1

|11〉L_i )

+ B(

rmm′∑

i=1

|01〉L_i + (−1)M
rmm′∑

i=1

|10〉L_i ))
(20)

If A, B, and K are changed to AL , BL , and KL using c, d, and m of (9), the final Z
boundary merge is described as shown in (21).

1√
2KLrmm′ (AL

rmm′∑

i=1

|00〉L_i + BL

rmm′∑

i=1

|01〉L_i

+ BL(−1)M
rmm′∑

i=1

|10〉L_i + AL(−1)M
rmm′∑

i=1

|11〉L_i )

(AL = cc′ + (−1)Mdd ′ = A/
√
m × m′

BL = cd ′ + (−1)Mdc′ = B/
√
m × m′

KL = |AL |2 + |BL |2 = K/mm′)

(21)

In addition, the Z boundary merge is expressed as (22) using the tensor product of
two logical qubits as an input. This will be used when defining an operation matrix in
Sect. 7.
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ZMerge(C1

mm′∑

i=1

|00〉L_i + C2

mm′∑

i=1

|01〉L_i + C3

mm′∑

i=1

|10〉L_i + C4

mm′∑

i=1

|11〉L_i )

= 1√
2KLrmm′ ((C1 + (−1)MC4)

rmm′∑

i=1

|00〉L_i

+ (C2 + (−1)MC3)

rmm′∑

i=1

|01〉L_i

+ (−1)M (C2 + (−1)MC3)

rmm′∑

i=1

|10〉L_i + (−1)M (C1 + (−1)MC4)

rmm′∑

i=1

|11〉L_i )

(KL = |C1 + (−1)MC4|2 + |C2 + (−1)MC3|2)

(22)

TheZboundary split is to split onemerged logical qubit into two logical qubits based
on the Z boundary. The Z boundary split is expressed as ZSpli t(α|0〉L + β|1〉L) =
α| + +〉L + β| − −〉L based on an X basis. Since the expression of LQBM is based
on a Z basis, the expression of the Z boundary split is converted to the Z basis as
shown in (23). The probability amplitudes for |00〉L , |01〉L , |10〉L , and |11〉L of the
merged result in (21) are expressed briefly using C1, C2, C3, and C4, and they are
used as inputs for the X boundary split. When the Z boundary split is performed, the
X stabilizers added at the time of merging disappear, and the number of state vectors
for |00〉L , |01〉L , |10〉L , and |11〉L is reduced from r × m × m′ to m × m′. The ratio
of the probability amplitudes is maintained as it is.

ZSpli t
(
C1

rmm′∑

i=1

|00〉L_i + C2

rmm′∑

i=1

|01〉L_i + C3

rmm′∑

i=1

|10〉L_i + C4

rmm′∑

i=1

|11〉L_i
)

= √
r
(
C1

mm′∑

i=1

|00〉L_i + C2

mm′∑

i=1

|01〉L_i + C3

mm′∑

i=1

|10〉L_i + C4

mm′∑

i=1

|11〉L_i
)

(23)

The X boundary merge and split can also be derived through a process similar to
the Z boundary merge and split. For the X boundary merge, the number of data qubits
in the X boundary must be the same (dx = dx ′). The result of the X boundary merge
is as (24). The X boundary merge is performed using the X basis, so the logical qubit
expressed as the Z basis is converted to the X basis, merged, and then transformed
back to the Z basis for LQBM. The difference between the X and Z boundary merge
is that in the X boundary merge, overlapping X stabilizers at the facing X boundary
of two logical qubits are deleted. It means that r is less than 1. Therefore, after the
completion of the X boundarymerge, the number of state vectors of themerged logical
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qubits is less than the tensor product of two logical qubits before the merge.

M = 0:
√

2

KLrmm′ (cc
′
rmm′∑

i=1

|00〉L_i + dd ′
rmm′∑

i=1

|11〉L_i )(r = 2
−dx−1

2 )

M = 1:
√

2

KLrmm′ (cd
′
rmm′∑

i=1

|01〉L_i + dc′
rmm′∑

i=1

|10〉L_i )

(AL = (c + d)√
2

(c′ + d ′)√
2

+ (−1)M
(c − d)√

2

(c′ − d ′)√
2

BL = (c + d)√
2

(c′ − d ′)√
2

+ (−1)M
(c − d)√

2

(c′ + d ′)√
2

KL = |AL |2 + |BL |2)

(24)

The X boundary merge is also expressed as (25) using the tensor product state of
two logical qubits as an input. This will be used when defining an operation matrix in
Sect. 7.

XMerge(C1

mm′∑
i=1

|00〉L_i + C2

mm′∑
i=1

|01〉L_i + C3

mm′∑
i=1

|10〉L_i + C4

mm′∑
i=1

|11〉L_i )

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i f M = 0 :
√

2
KLrmm′ (C1

rmm′∑
i=1

|00〉L_i + C4

rmm′∑
i=1

|11〉L_i )
(KL = |C1 + C4|2 + |C1 − C4|2)

i f M = 1 :
√

2
KLrmm′ (C2

rmm′∑
i=1

|01〉L_i + C3

rmm′∑
i=1

|10〉L_i )
(KL = |C2 + C3|2 + | − C2 + C3|2)

(25)

The X boundary split divides onemerged logical qubit into two logical qubits based
on the X boundary. The X boundary split is expressed using the Z basis as (26). Like
the Z boundary split, the input probability amplitudes of the X boundary split are also
described as C1, C2, C3, and C4. When the X boundary split is performed, the X
stabilizers that were deleted at the time of merging are added again, and the number
of state vectors representing |00〉L , |01〉L , |10〉L , and |11〉L changes from r ×m ×m′
to m × m′. Since r is less than 1, the X boundary split increases the number of state
vectors.

M = 0 : XSpli t(C1

rmm′∑
i=1

|00〉L_i + C4

rmm′∑
i=1

|11〉L_i )

= √
r(C1

mm′∑
i=1

|00〉Li + C4

mm′∑
i=1

|11〉Li )

M = 1 : XSpli t(C2

rmm′∑
i=1

|01〉L_i + C3

rmm′∑
i=1

|10〉L_i )

= √
r(C2

mm′∑
i=1

|01〉Li + C3

mm′∑
i=1

|10〉Li )

(26)
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Fig. 4 a–c show circuits that perform logical CNOT, S, and T gates based on the lattice surgery. Mxx
means that the Z boundary merge and split are continuously performed, and Mzz is the sequence of the
X boundary merge and split. The M value is obtained by performing Mxx and Mzz. The Mxx, Mzz, and
Mx measurements determine a, b, and c. In addition to the control qubit |C〉 and target qubit |T 〉, CNOT
requires an ancilla qubit |0〉. The S and T gates require magic states |Y 〉 and |A〉, respectively

6.3 CNOT, S, and T operator

In the rotated surface code, CNOT, S, and T operators are decomposed into the merge
and split operators based on the lattice surgery as shown in Fig. 4 [16, 18, 28, 29].
LQBM also implements these operators as a combination of the merge and the split.
For the convenience of understanding, this chapter summarizes only the final execution
results, not the intermediate process, of the CNOT, S, and T operators, as shown in
(27, 28).

After executing CNOT with |ψ〉L as a control and |ψ ′〉L as a target, the result is
shown in (27).

cc′
mm′∑

i=1

|00〉L_i + cd ′
mm′∑

i=1

|01〉L_i + dd ′
mm′∑

i=1

|10〉L_i + dc
mm′∑

i=1

|11〉L_i (27)

The final execution results of the S and T operations are in (28). The S and T
operators for the logical qubit are implemented using the X boundary merge and split.
When anMzzmeasurement is−1, a global phase is added and expressed as eiθ in (28).
The exact value of θ is determined based on the combination of theMzzmeasurement,
an ancilla’s Mx measurement, and an execution result of an additional S gate. θ values
for S gate are 0, π/2, and 3π/2, and θ values for T gate are 0, π/4, 3π/4, 5π/4, and
7π/4.

S(|ψ〉L) = eiθ (c
m∑
i=1

|0〉L_i + di
m∑
i=1

|1〉L_i )

T (|ψ〉L) = eiθ (c
m∑
i=1

|0〉L_i + deiπ/4
m∑
i=1

|1〉L_i )
(28)

7 Operationmatrix

This section defines operation matrices for the logical operations described in Sects. 4
to 6. The operationmatriceswill help improve our understanding of LQBMasmatrices
for physical qubit operations have been useful. In addition, thesematrices are expected
to be helpfulwhen performing logical qubit operations or simulations based onLQBM.
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For the operation matrices, the number m of state vectors constituting logical qubits
is added to the upper right of the state vector, as shown in (29). The number m of state
vectors in N logical qubits is equal to mtp defined in (15).

Single logical qubit : |ψ〉L = c
m∑
i=1

|0〉L_i + d
m∑
i=1

|1〉L_i =
(
c
d

)m

L
N logical qubits :

|ψ1 · · · ψN 〉L = C1

m∑
i=1

|0 · · · 0〉L_i + · · · + C2N
m∑
i=1

|1 · · · 1〉L_i =
⎛

⎜⎝
C1
...

C2N

⎞

⎟⎠

m

L(
2N∑
i=1

|Ci |2 × m = 1

)

(29)

The operation matrix for a logical qubit is similar to the operation matrix for a
physical qubit, andw is added for thematrix, as shown in (30).w specifies themultiplier
of increasing the number of state vectors after completing a logical qubit operation. w
actually has meaning in the initialization, the state injection, the merge, and the split,
and is always 1 in other operations. When a logical qubit operation is executed on
a logical qubit composed of m state vectors, the result of the operation has w × m
state vectors. CR1 to CRn is the probability amplitudes of the output derived from the
logical qubit operation.

⎛

⎜⎝
S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

⎞

⎟⎠

w ⎛

⎜⎝
C1
...

Cn

⎞

⎟⎠

m

L

=
⎛

⎜⎝
CR1

...

CRn

⎞

⎟⎠

w×m

L

(30)

LQBM defines the operation matrix and usage for the initialization and the state
injection as (31). Since the state representation of the initialization is a subset of the
state representation of the state injection, the state injection and the initialization use
the same operation matrix. An input vector of the state injection is expressed as α

and β of the desired qubit state to be injected, and it has only one state vector. The
w value of the operation matrix for the state injection becomes m dependent on the
distance d. Therefore, the input vector with one state vector has m state vectors after
the state injection, and the probability amplitudes become α/

√
m and β/

√
m. The

initializations for |0〉L and |+〉L are performed by specifying α and β for |0〉 and |1〉,
respectively.

1√
m

(
1 0
0 1

)m (
α

β

)1

L
= 1√

m

(
α

β

)m

L

(31)

The operation matrices for the X, Z, and H operators are presented in (32). The X
operator part contains an example of using these operators. The X, Z, and H operations
have the advantage of utilizing the existing operation matrix for the physical qubits as
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they are. w of the operations is set to 1. The matrices for the final outputs of CNOT,
S, and T are also defined similarly.

X :
(
0 1
1 0

)1 (
C1
C2

)m

L
=

(
C2
C1

)m

L
Z =

(
1 0
0 −1

)1

H = 1√
2

(
1 1
1 −1

)1

CNOT =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠

1

S = eiθ
(
1 0
0 i

)1

T = eiθ
(
1 0
0 eiπ/4

)1

(32)

Based on (22), an operationmatrix for the Z boundarymerge and its usage is defined
as (33).w for the matrix is r in (19). From (23), an operation matrix for the Z boundary
split is defined as (34), and w for the matrix is 1/r .

1√
2KLrmm′

⎛

⎜⎜⎝

1 0 0 (−1)M

0 1 (−1)M 0
0 (−1)M 1 0

(−1)M 0 0 1

⎞

⎟⎟⎠

r ⎛

⎜⎜⎝

C1
C2
C3
C4

⎞

⎟⎟⎠

mm′

L

= 1√
2KLrmm′

⎛

⎜⎜⎝

C1 + (−1)MC4

C2 + (−1)MC3

(−1)MC2 + C3

(−1)MC1 + C4

⎞

⎟⎟⎠

rmm′

L

(33)

√
r

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

1
r
⎛

⎜⎜⎝

C1
C2
C3
C4

⎞

⎟⎟⎠

rmm′

L

= √
r

⎛

⎜⎜⎝

C1
C2
C3
C4

⎞

⎟⎟⎠

mm′

L

(34)

A matrix for the X boundary merge is derived as (35) using (25), where w is r in
(24).

M = 0 :
√

2

KLrmm′

⎛

⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟⎟⎠

r

M = 1 :
√

2

KLrmm′

⎛

⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟⎟⎠

r

(35)

The X boundary split based on (26) can utilize the same operation matrix as the Z
boundary split. An input state of the X boundary split uses an output state of the X
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boundary merge. In the output state of the X boundary merge with M = 0, C2 and
C3 are 0. In the output state of the X boundary merge with M = 1, C1 and C4 are 0.
Utilizing this, the X boundary split can use the same matrix as the Z boundary split,
as shown in (36).

M = 0 : √
r

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

1
r
⎛

⎜⎜⎝

C1
0
0
C4

⎞

⎟⎟⎠

rmm′

L

= √
r

⎛

⎜⎜⎝

C1
0
0
C4

⎞

⎟⎟⎠

mm′

L

M = 1 : √
r

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

1
r
⎛

⎜⎜⎝

0
C2
C3
0

⎞

⎟⎟⎠

rmm′

L

= √
r

⎛

⎜⎜⎝

0
C2
C3
0

⎞

⎟⎟⎠

mm′

L

(36)

8 Experimental results

Wewrote a simple simulator for LQBM by utilizing the GMP library supporting high-
precision arithmetic calculation [36]. For comparison,we also implemented the logical
qubit operations on the popular QuEST simulator [35]. Intel Xeon Gold 6132 CPU
(2.6G) and 1TB memory were used for experiments. Both simulators did not use a
GPU acceleration option. The experiments were performed using a single process and
thread although the experimental environment supports the multicore environment.

8.1 |0〉L initialization with various distances

Conventional quantum simulators cannot perform the |0〉L initialization if the distance
exceeds 5. However, this experiment shows that LQBM can initialize a logical qubit to
|0〉L state regardless of the distance size. Figure5 and Table 1 show the change in the
number of state vectors and the probability amplitude according to the distance when
a logical qubit is initialized to |0〉L . This experiment was performed only on LQBM.
In this experiment, dx and dz are set equal, and they are the same as the distance d of
the logical qubit.

Figure 5a and Table 1 show the change in the number of state vectors constituting
the |0〉L state as the distance increases. The vertical axis is the value obtained by taking
log10 on the number of state vectors. The number m of state vectors is 2 to the power
of (d2 − 1)/2 according to (7). So as the distance d increases, the number m of state
vectors increases exponentially. The logical qubit of distance 3 has 0.16 × 102 state
vectors, and the logical qubit of distance 9999 has 0.3042 × 1015048490 state vectors.

When d = 3, 17 physical qubits are required for one logical qubit, and 217 state
vectors are necessary to express the 17 physical qubits. However, after the |0〉L ini-
tialization, only 0.16× 102 of 217 state vectors are valid to describe the |0〉L state. In
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Fig. 5 a, b show the change in the number of state vectors and the probability amplitude according to a
distance when a logical qubit is initialized to |0〉L . The vertical axes of (a) and (b) are the values obtained by
taking log10 on the number of state vectors and the probability amplitude of each state vector, respectively.
As the distance d increases, the number m of state vectors increases exponentially, and the probability
amplitude decreases exponentially

d = 203, 0.2642 × 106203 of 282417 state vectors are used for the |0〉L state represen-
tation.

Figure 5b shows the probability amplitude of each state vector as the distance
increases. The vertical axis is the value obtained by taking log10 on the probability
amplitude of each state vector. The probability amplitude in the |0〉L state is 1/

√
m.

As the distance of the logical qubit increases, the probability amplitude also decreases
exponentially. The logical qubit of distance 3 has a probability amplitude of 0.25 ×
100, and the logical qubit of distance 9999 has a probability amplitude of 0.1812 ×
10−7524244.

From the experiments of this section, it can be seen that LQBM can perform the
|0〉L initialization regardless of the distance size using the simple formula in (7).

8.2 Execution times of LQBM according to distance

The execution times of logical qubit operations were measured while increasing the
distance from 3 to 33333 in LQBM. The time unit of the experiment is nanosecond.
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Table 2 shows that as the distance increases 11111 times from3 to 33333, the execution
timeof each logical qubit operation increases from1.00 to 3.89 times. The initialization
and the state injection show a time increase of 3.89 and 2.14 times, respectively. This
is because they perform power-of-two calculations with the O(log d) complexity to
computem and pa. The values ofm and pa computed in the initialization and the state
injection are reused in subsequent logical qubit operations. The X, Z, and H operations
have no complex computations, so there is little increase in the execution time. The
merge and split operations perform mainly multiplicative computations based on m
and pa derived from the initialization and the state injection, which show the 1.x time
increase.

The execution time increases up to 3.89 times as the distance increases. However,
it can be seen that the absolute execution time of the logical qubit operations is still
fast within several thousand nanoseconds.

8.3 Operators for single logical qubit

The execution times of the initialization, the state injection, and the logical X, Z, and
H operations, which are performed on a single logical qubit, were measured. Since
the QuEST simulator does not model qubit errors, the |0〉L initialization was run in
one round of ESM, not the d rounds. The ESM and error corrections were also not
executed after the logical X, Z, and H operations. This experiment was performed on
the logical qubit with distances of 3 and 5. The logical qubit with distance 5 requires
49 physical qubits, but QuEST cannot simulate 49 qubits. So, only 25 physical data
qubits and one stabilizer qubit were used for QuEST. Using one stabilizer qubit, one X
or Z stabilizer was generated and measured at a time, and this process was repeated for
a total of 24 X/Z stabilizers. In Table 3, the time unit of the QuEST experiment result
is second, and the time unit of LQBM is nanosecond. In QuEST, the state injection
with d = 5 consists of complex operations such as the state injection with d = 3
and two additional ESMs, which increase the distance to 5. Therefore, this result
was estimated by summing the three execution times, which are the state injection
time (9.49 ns) with the distance 3 and two |0〉L initialization (ESM) times (17.44 and
27.67 ns) with the distance 4 and 5. The execution time, 17.44 ns, of ESM with the
distance 4 was approximated by interpolating the execution times, which are two |0〉L
initialization times (9.49 and 27.67 ns) with the distance 3 and 5.

According to Table 3 with the distance of 3 and 5, first, LQBMoperates at least 0.61
million times faster than QuEST and up to 24.75million times faster. The performance
improvement of 24.75 million times is achieved in the |0〉L initializationn with d = 5.
Second, as the distance increases, the improvement of LQBM over QuEST becomes
greater. In the case of state injection, when the distance increases from 3 to 5, the
improvement of LQBM increases from 4.03 to 20.24 million times.

8.4 Operations based on lattice surgery

The execution times of the merge and the split are shown in Table 4. Since it is
impossible to perform the merge and split operations when d = 5 in QuEST, the
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Table 4 Execution time of merge and split

XMerge XSplit ZMerge ZSplit

QuEST (s) 15.55 14.44 16.346 14.33

LQBM (ns) 4390 2647 5601 2440

Improvement (M = Million) 3.54M 5.46M 2.92M 5.87M

Table 5 Execution time of CNOT, S, and T operation

CNOT S T

S(X) S(O)

QuEST (s) 60.71 30.83 29.50 59.31

LQBM (ns) 15078 8041 8041 16082

Improvement (M = Million) 4.03M 3.83M 3.67M 3.69M

experiments for QuEST were performed only when d = 3. Table 4 also shows that
LQBMoutperforms QuEST distinctly. The Z boundary split is performed 5.87million
times faster by LQBM than by QuEST.

Table 5 shows the execution times for the logical CNOT, S, and T using the merge
and the split, as shown in Fig. 4. The T operation shows two cases depending on
whether an additional S operation is executed or not according to an Mzz value. The
results of LQBM are derived from Table 4, not actual experiments. For example, the
CNOT result of LQBM is the sum of the execution times of XMerge, XSplit, ZMerge
and ZSplit. Table 5 indicates that LQBM offers approximately 3 to 4 million times
higher performance than QuEST.

From the experimental results of Sect. 8, we can summarize three advantages of
LQBM. First, LQBM can perform logical operations with high distances, which are
impossible in conventional quantum simulators. Second, even though the distance
increases 11111 times from 3 to 33333, the execution time of LQBM only increases
by a maximum of 3.89 times. Third, LQBM is 0.61 to 24.75 million times faster than
QuEST at distances of 3 and 5. In particular, the |0〉L initialization of d = 5 shows up
to 24.75 million times faster performance.

9 Conclusions

We proposed LQBM that calculates the output state of a logical qubit after the logical
qubit operation without performing a complex process of ESM. LQBM is the model
working at themixed level of the logical and physical qubit. At the physical qubit level,
it can simply calculate the probability amplitudes and the number of state vectors of
physical qubits constituting a logical qubit. At the logical qubit level, the state vector
composed of the physical qubits is abstracted to the value of the logical level. These
calculations are performed without the complex ESM operations. LQBM consists of
the state representation of the logical qubits and the operations. The state representation
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of the logical qubits converts the initialization and state injection processes into simple
arithmetic calculations. The logical qubit operation of LQBM can calculate the output
states of the universal gates, the merge, and the split for the logical qubits.

In addition, the execution of the logical qubit operation using LQBM is more
simplified by expressing all the logical qubit operations of LQBM in the form of the
operation matrix. The ESM operation of the rotated surface code has the operation
complexity ofO(d2). However, LQBMprovides the operation complexity ofO(log d),
so it has high performance. Through the comparative experiments of LQBM and
QuEST, we found three advantages of LQBM over QuEST. First, LQBM can simulate
the surface code whose distance exceeds 5, which is impossible with conventional
quantum simulators. Second, even though the distance increases 11111 times from 3 to
33333, the execution time of LQBM only increases by a maximum of 3.89 times. And
the absolute execution time of LQBM is still fast within several thousand nanoseconds.
Third, LQBM is 0.61 to 24.75 million times faster than QuEST at distances of 3 and
5. In particular, LQBM provided up to 24.75 million times faster performance in the
|0〉L initialization of d = 5. In future works, we would like to develop a model that
computes an exact combination of the physical qubits for the logical qubit instead of
the value of the logical qubit level and add an error correction model.
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