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Abstract
We propose a hybrid quantum-classical algorithm to compute approximate solutions
of binary combinatorial problems. We employ a shallow-depth quantum circuit to
implement a unitary and Hermitian operator that block-encodes the weighted maxi-
mum cut or the Ising Hamiltonian. Measuring the expectation of this operator on a
variational quantum state yields the variational energy of the quantum system. The
system is enforced to evolve toward the ground state of the problem Hamiltonian by
optimizing a set of angles using normalized gradient descent. Experimentally, our
algorithm outperforms the state-of-the-art quantum approximate optimization algo-
rithm on random fully connected graphs and challenges D-Wave quantum annealers
by producing good approximate solutions. Source code and data files are publicly
available (https://github.com/nkuetemeli/UQMaxCutAndIsing).

Keywords Quantum algorithms · Variational quantum circuits · Hybrid quantum
circuits · Weighted maximum cut · Ising model

1 Introduction

Quantum computing has emerged as a powerful computation paradigm taking advan-
tage of principles of quantum mechanisms. It involves two computational models
that fundamentally differ in their functioning: The adiabatic quantum model is best
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suited for optimization problems, typically cast in quadratic unconstrained binary opti-
mization form. Commercial devices such as d- wave annealers [1] can already solve
combinatorial problems in various fields such as computer vision [2, 3] and database
engineering [4, 5]. The universal model of quantum computing, also referred to as
the gate-based or circuit model, is more flexible and can potentially implement any
classical operation, as shown by Bennett [6]. For selected problems such as Shor’s
factoring [7] and Grover’s search [8] algorithms, strong theoretical convergence prop-
erties and drastic speed-up of the universal quantum computing model over classical
counterparts could be proven. However, for problem sizes of practical interest, these
algorithms still require more resources and run-time than existing universal devices
can provide. In the era of noisy intermediate-scale devices, it is a challenging task
to find real-world applications of universal quantum computing. Hybrid quantum-
classical algorithms are therefore considered to be a promising way to obtain practical
quantum supremacy.

The Ising model [9] describes a quantum mechanical system with n ∈ N particles
or spins that can be in two possible states, i.e., the spin si , i = 1, . . . , n can be in the
state ±1 represented by si = (−1)qi , qi ∈ {0, 1}. Each spin si can interact with some
external energyof strengthCi i orwith an adjacent spin s j by amutual interaction energy
Ci j . The complete system can be modeled by a general un-directed n vertices graph
G = (S, E, C) with S = {s1, . . . , sn}, E ⊆ S ×S and a cost function C : E → R with
C(si , s j ) := Ci j on E . For a quantum system in the state |q〉 = ⊗n

i=1 |qi 〉, qi ∈ {0, 1},
the Ising model describes the total energy of the system as being the expectation
〈C〉 := 〈q|C|q〉 of the (2n × 2n) Hamiltonian

C =
n∑

i=1

Ci iZi +
∑

1≤i< j≤n

Ci jZiZ j , (1)

where Zk denotes the Pauli-Z operator acting on the kth particle of the system.
The problem is to

minimize|q〉 〈C〉

subject to |q〉 =
n⊗

i=1

|qi 〉, qi ∈ {0, 1} ,
(2)

i.e., to search for the state |q�〉 of the system with the minimal energy according to
the Ising model in Eq. (1). By setting Ci i = 0 for all i , the problem reduces to the
so-called weighted maximum cut (maxcut) problem [10].

The observable C in Eq. (1) is a diagonal matrix and it is straightforward to ver-
ify that the expectation 〈C〉 is lower-bounded by the smallest eigenvalue Cmin of
C. Indeed, measuring C on a quantum system prepared in the superposition state
|ψ〉 = ∑2n−1

q=0 αq |q〉 yields
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〈C〉 = 〈ψ |C|ψ〉 =
2n−1∑

q=0

∣
∣αq

∣
∣2 〈q|C|q〉 (3)

≥
2n−1∑

q=0

∣
∣αq

∣
∣2 〈q�|C|q�〉 = Cmin . (4)

In other words, under all norm-1 vectors, 〈C〉 reaches the minimum exactly for |ψ〉
being an eigenvector ofC to the lowest eigenvalue, a ground state |q�〉 ofC. Computing
〈C〉 for all eigenvectors of C—which amounts to computing the diagonal elements of
C—is practically hard, as it amounts to brute-forcing the problem. Instead, in hybrid
quantum-classical approaches, one aims for an efficient way to search for parameters
� ∈ � that solve the variational problem

minimize
�∈�

L(�), L(�) := 〈ψ(�)|C|ψ(�)〉, (5)

where � is a suitable parameterization of the search space.
The Ising spin model is a powerful tool describing ferromagnetism in statistical

mechanics [9] as well as many practically relevant np-problems [11]. maxcut is no
less important. It finds practical applications in varying fields such as computer vision
[12], data clustering [13], and communications network design [14]. Thus, determining
solutions of the Ising spin model or the maxcut problem, even approximately, is of
great practical interest.

Adiabatic quantum computation (aqc) relies on the adiabatic theorem [15, 16] and
solves the Ising problem by performing an adiabatic evolution of the quantum system
from the known and easily-prepared ground state of an initial Hamiltonian to that of the
problem Hamiltonian. d- wave [1] quantum annealers are intermediate-scale devices
implementing aqc. It is an established fact that the run-time of aqc algorithms scales
inversely with the energy gap between the ground state and the first excited state of
the system Hamiltonian [15–17]. This introduces the necessity of carefully designing
the system Hamiltonian or to use spectral gap amplification techniques [18]. Another
workaround is the conception of (hybrid) gate-based algorithms that use moderate
quantum resources with outer-loop classical optimization [19].

Quantum approximate optimization algorithms (qaoa), firstly introduced by Fahri
et al. [19] and widely discussed in the literature [20–23], mimic the aqc model, but
use a low-depth variational circuit capable to run on near-term devices and benefiting
from the maturity of classical optimization. qaoa is considered as one of the major
candidates for dealing with realistic real-world applications at competitive perfor-
mance using the universal model. However, in practice, optimizing qaoa parameters
appears to be extremely difficult due to a non-convex objective [20, 22, 23]. Also,
qaoa is threefold iterative and hence computationally expensive: First, the ansatz
itself involves repetitive layers of gates; second, the classical optimization routine
used around qaoa often needs to be iterative as the objective function is non-convex;
third, evaluating this objective function requires a large number of quantum circuit
measurements.
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This work aims to facilitate combinatorial optimization on universal quantum com-
puters. We first eliminate the repetitive layers of qaoa and propose an alternative,
more effective encoding of the problem on universal quantum hardware. We present
a new, easy to implement and low-depth variational circuit that block-encodes the
maxcut or the Ising Hamiltonian in an Hermitian and unitary operator. Measuring this
circuit reveals direct information about the loss function Eq. (5). We then derive an
optimization routine based on gradient descent for the proposed variational circuit in
order to drive the quantum system toward the ground state of the problem Hamilto-
nian. We experimentally validate the novel algorithm and find that it outperforms the
state-of-the-art gate-based qaoamodel for solvingmaxcut; on the Ising model, it also
challenges the specialized d- wave annealers.

This paper is structured as follows: in Sect. 2we recall howd- wave and qaoa solve
combinatorial problems; in Sect. 3, we present the new variational quantum circuit and
how its parameters are optimized; Sect. 4 provides experimental results and Sect. 5
concludes the work.

2 Related work

2.1 Adiabatic quantum computing

Adiabatic quantum computation (aqc) is an optimization paradigm which relies on
the adiabatic theorem [15, 16] saying that the ground state of a quantum mechanical
system is the solution of an optimization problem [24]. Theoretically, the evolution
of a quantum system of n ∈ N particles at a time t ∈ [0, T ], typically re-scaled
to s = t/T ∈ [0, 1], can be described by a Hamiltonian H(s) on a Hilbert space
H = C

⊗2n , with the state of the system given by a unit vector |ψ(s)〉 ∈ H.
Industrial devices such as the d- wave quantum annealer [1] have already been

proposed to solve binary combinatorial problems based on the aqc optimization prin-
ciple. Their main idea consists in initializing a quantum system with a Hamiltonian
B = ∑n

k=1 Xk whose ground state |+〉⊗n is the perfect superposition state and easy
to prepare. As above, Xk denotes the Pauli-X operator acting on the kth particle of the
system. Then, another Hamiltonian C, the problem Hamiltonian, is prepared as in Eq.
(1). As the time s evolves from 0 to 1, the initial Hamiltonian B is transformed into
the problem Hamiltonian C, describing a time-dependent system Hamiltonian

H(s) = B(s) · B + C(s) · C, (6)

where B and C with lims→1 B(s) = 0 and lims→1 C(s) = 1 are annealing functions.
The evolution of the system generated byH(s) over the time s ∈ [0, 1] is governed by
the Schrödinger equation; its solution defines a time-dependent unitary operator that
transforms the ground state of B into the ground state of C with high probability if s
varies sufficiently slowly [16]. The ground state ofC is the solution of the optimization
problem (2).

While being an efficient scheme for combinatorial optimization that has the poten-
tial to ultimately supercede classical computers, aqc has a caveat. It is known that the

123



A universal quantum algorithm for weighted maximum cut and… Page 5 of 21 279

smaller the energy gap between the ground state and the first excited state of the adi-
abatic Hamiltonian H(s), the longer the required annealing time for guaranteeing the
success of the optimization [15–17]. To overcome this, methods for universal quantum
computers that take advantage of efficient classical optimization techniques have been
proposed in the form of quantum approximate optimization algorithms [19].

2.2 Quantum approximate optimization algorithms

In quantum approximate optimization algorithms (qaoa, [19]), the problem (2) is
relaxed to finding a state |ψ〉 = ∑

q αq |q〉 such that 〈C〉 is minimized. qaoa solves
themaxcut problem by trotterizing the evolution generated by Eq. (6). Its pseudo-code
is recapitulated inAlgorithm1: First, the system is prepared in the perfect superposition
state |+〉⊗n . Then, trotterization consists in repeatedly, say p times, applying to the
state the unitaries U(C, γk) := exp(−iγkC) and U(B, βk) := exp(−iβkB) generated
by the problem Hamiltonian C and the mixing Hamiltonian B. The (small) time steps
γk, βk ∈ R, 1 ≤ k ≤ p, are optimization parameters in qaoa. The resulting state is
called |γ, β〉:

|γ, β〉 := U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1)|+〉⊗n . (7)

Finally, the state |γ, β〉 is measured in the computational basis and is used to evaluate
the cost function 〈C〉 := 〈γ, β|C|γ, β〉 and if necessary its derivatives ∇(γ,β)〈C〉 and
∇2

(γ,β)〈C〉. A classical optimization routine is used to update the parameters (γ, β) :=
(γ1, . . . , γp, β1, . . . , βp).

Algorithm 1 Quantum Approximate Optimization Algorithms [19]
Require: G = (S,E,C) and p
Ensure: |ψ〉 = |γ, β〉
Initialize the system in the state |+〉 = √

2−n ∑2n−1
q=0 |q〉

Initialize parameter (γ, β) ← (γ1, . . . , γp, β1, . . . , βp)
ini t

while stopping criteria not met do
Prepare |γ, β〉 := U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1)|+〉⊗n

Measure |γ, β〉 in the computational basis
Compute 〈C〉 := 〈γ, β|C|γ, β〉 and if necessary ∇(γ,β)〈C〉, ∇2

(γ,β)
〈C〉

Update (γ, β) ← (γ1, . . . , γp, β1, . . . , βp)
new using a classical optimizer

end while

For p → ∞, the results of [19] guarantee that there exist parameters (γ, β) for
which measuring |γ, β〉 gives the desired ground state |q�〉 with high probability.
However, the qaoa objective is difficult to optimize [20, 22, 23]. We believe that this
is partially due to the fact that the qaoa ansatz encodes problem information in the
argument of exp as phases of the qubits, which is partially lost at the measurement.
Another issue of qaoa is that its repetitive layers are still too expensive for running
on current and near-term devices. In this work, we propose a quantum circuit that
encodes the problem more effectively and does not require the repetitive layers of
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qaoa. Adhering to the promising concept of designing hybrid quantum algorithms,
we embed the circuit in a classical optimization method to output the desired ground
state |q�〉 with high probability.

3 Proposed universal quantum algorithm

Our method builds on the notion of block-encoding introduced in [25, 26] that allows
to embed non-unitary matrices as the principal block of a unitary operator acting on
the quantum system. Block-encoding is typically achieved by enlarging the Hilbert
space of the quantum system.

Definition 1 (Block-encoding [25, 26]) Let a, n ∈ N and m := a + n. The m × m
unitary U is said to be a block-encoding of the n × n matrix C if there is κ ∈ (0,∞)

such that

κC = [〈0|⊗a ⊗ In
]
U

[|0〉⊗a ⊗ In
]
. (8)

By adding a single qubit to the system, our goal is to implement the (21+n) × (21+n)

unitary operator

U := U(C, K ) :=
[
sin(Ĉ) cos(Ĉ)

cos(Ĉ) − sin(Ĉ)

]

, Ĉ := C/K , (9)

for the Ising Hamiltonian C from Eq. (1) and a suitably chosen constant K ∈ R.
As C is a diagonal matrix, the sin and cos functions directly apply to the diagonal
elements [27, Section 2.1.8]. This allows to encode information about the problem as
probability amplitudes of the qubits. Note that becauseC isHermitian,U is Hermitian
as well and thus can serve as measurement observable. We use the constant K to re-
scale all entries of C to [−π/2, π/2], where sin is strictly increasing and invertible.
Specially, Eq. (9) block-encodes a bijective transformation of C. For reasons that will
become clear in Sect. 3.1, this re-scaling also allows for an efficient implementation
of U. We stress that K should not be set to large since limK→∞ U(C, K ) = X⊗(1+n),
i.e., for large K the operator U behaves like a not-gate. In Sect. 3.2, we provide an
optimization routine for the proposed circuit, we discuss its scalability and complexity
in Sect. 3.3, and lastly we provide a suitable choice for K in Sect. 3.4.

3.1 Implementation

For a system prepared in the basis state |q〉, the cost of the cut q according to the Ising
model in Eq. (1) is given by

〈C〉 =
n∑

i=1

(−1)qi Ci i +
∑

1≤i< j≤n

(−1)qi+q j Ci j . (10)
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Crucially, for a (1 + n)-qubit system prepared in the state |ψ̂, ψ〉 := |ψ̂〉c ⊗ |ψ〉,
where |ψ̂〉c = α|0〉c + β|1〉c is a 1-qubit register that we call the cost qubit and |ψ〉
is the n-qubit working register, if the cost qubit |ψ̂〉c is kept in the state |0〉c, it holds
for U defined in Eq. (9) that

〈U〉 = 〈ψ | sin
[
C
K

]

|ψ〉. (11)

Thus, if K is chosen such that the entries of the scaled diagonal matrix C
K fit inside

the monotone region of the sine, then minimizing 〈U〉 with the cost qubit set to zero
is equivalent to minimizing 〈C〉.

Observe that U is a block matrix of diagonal matrices and applying it to the basis
state |0, q〉 gives the same result as applying to the cost qubit |0〉c the controlled
(2 × 2)-operator

U2×2 :=
[
sin〈Ĉ〉 cos〈Ĉ〉
cos〈Ĉ〉 − sin〈Ĉ〉

]

. (12)

As derived in “Appendix A,” this operator performs a reflection in the Bloch sphere

of the cost qubit about the axis �n = (1/2)
[
cos〈Ĉ〉 0 sin〈Ĉ〉 ]�

. Up to an irrelevant
phase factor, U can be written as

U(C, K ) ≡ Ry

[
2 arccos(sin〈Ĉ〉)

]
·Z ⊗ I⊗n

≡ Ry

[
π − 2〈Ĉ〉

]
·Z ⊗ I⊗n

≡ Ry(−2〈Ĉ〉) · Ry(π) ·Z ⊗ I⊗n . (13)

The second equation holds because arccos(sin x) = π/2 − x for x ∈ [−π/2, π/2].
The last equation is obtained by applying the identity Ry(θ1 + θ2) = Ry(θ2) · Ry(θ1)

for rotations in two dimensions, where θ1, θ2 ∈ R. By recursively applying this same
identity to Ry(−2〈Ĉ〉), we find

U(C, K ) ≡
n∏

i=1

Xqi · Ry(−2Ĉi i ) · Xqi ·
∏

1≤i< j≤n

Xqi+q j · Ry(−2Ĉi j ) · Xqi+q j · X ⊗ I⊗n . (14)

As a result, the weighted sum of Pauli-Z operators naturally translates into a product
of unitary transformations, which is very compatible with the gate-based model of
quantum computing. As the basis state |q〉 is chosen arbitrarily, 〈U〉 outputs sine
transformed costs as derived inEq. (11) for arbitrary states. For a systemprepared in the
basis state |ψ̂, ψ〉 = |0, q〉, we can even recover the exact cost by 〈C〉 = K arcsin〈U〉.
The operator U can be efficiently implemented using the circuit given in Fig. 1:
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Quadratic term Unary term

Cost qubit
|ψ̂〉c = X |0〉 | ψ̂ 〉c Ry(−2Ĉij) Ry(−2Ĉii)

Working qubits
| · 〉qi

| · 〉qj

Fig. 1 Implementation of the (21+n) × (21+n) operator U. The cost qubit is initialized in the state |ψ̂〉c =
X|0〉 and is the target of all operations. Note that this does not contradict the idea of keeping it in the
|0〉-state, as the operationX = Ry(π) ·Z implements the last part ofU [Eq. (13)]. (Left) For each coupling
edge of weight Ci j between nodes qi and q j , rotate the cost qubit by Ry(−2Ĉi j ) if their corresponding
working qubits are in the same state, else by Ry(2Ĉi j ) = X · Ry(−2Ĉi j ) ·X. (Right) For each unary edge
of weight Ci i involving node qi , rotate the cost qubit by Ry(−2Ĉi i ) if its corresponding working qubit is

in the |0〉-state, else by Ry(2Ĉi i ) = X · Ry(−2Ĉi j ) · X

• We initialize the cost qubit in the state |ψ̂〉c = Ry(π) · Z|0〉 = X|0〉.
• For each weight Ci j between two nodes qi and q j , we rotate the cost qubit by

Ry(−2Ĉi j ) if the corresponding working qubits are in the same state, and by
Ry(2Ĉi j ) = X · Ry(−2Ĉi j ) · X if they are not.

• For each unary weight Ci i involving node qi , we rotate the cost qubit by Ry(−2Ĉi i )
if the corresponding working qubit is in the |0〉-state, and by Ry(2Ĉi i ) = X ·
Ry(−2Ĉi i ) · X if it is not.

Whenever the unary costs satisfy Ci i = 0 for all i , we refer to Eq. (14) as the Universal
Quantum Maximum Cut (uqmaxcut) model, else as the Universal Quantum Ising
(uqising) model.

3.2 Optimization

3.2.1 Workflow

The overall workflow of our algorithm is presented in Fig. 2 . The complete circuit
consists of 3 registers: a 1-qubit register containing an ancilla qubit, another 1-qubit
register for the cost qubit, and an n-qubit register for the working qubits encoding the
variables of the problem.

First, the working qubits are rotated by a set of angles � = (θ1, . . . , θn) ∈ R
n ,

constructing the ansatz

|ψ(�)〉 := Ry(θ1) ⊗ · · · ⊗ Ry(θn)|ψ〉, (15)

from a system previously prepared in the state |ψ〉. Here, the qubit qi , representing the
i th node of the graph, is rotated by θi around the y-axis. Next, a Hadamard sandwich
involving a controlled version of theU-operator is applied to the ancilla qubit. Finally,
according to the principle of implicit measurement of quantum computing [27, Section
4.4] stating that all qubits that are not measured at the end of a quantum circuit can
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Fig. 2 Complete workflow of our proposed algorithm for the Universal Quantum maxcut and Ising Model
(uqmaxcut and uqising). First 1©, the cost (node and edge weight) information for the given graph is used
to implement the operator U := U(C, K ) that block-encodes the problem Hamiltonians. This operator
is applied to a trial variational quantum state |ψ(�)〉 tensored with the cost qubit. Second 2©, using the
principle of implicit measurement, the expectation value 〈U〉, which equals the cost L(�), is approximated
by measuring several copies of the circuit. This computed expectation and eventually its gradient are
iteratively used in a classical optimization routine that drives the parameterized state |ψ(�)〉 toward the
state |ψ(��)〉 that potentially gives the global minimal cost value. Finally 3©, the optimal state |ψ(��)〉
is measured in the computational basis and the most frequently measured state corresponds to the desired
optimal cut of the input graph

be assumed to be measured, only the ancilla qubit is measured, leaving the cost and
working qubits in the stateU|0, ψ(θ)〉 = |0〉c ⊗ sin(Ĉ)|ψ(θ)〉+|1〉c ⊗cos(Ĉ)|ψ(θ)〉.

Our goal is to solve the variational problem

minimize
�∈Rn

L(�), L(�) = 〈0, ψ(�)|U|0, ψ(�)〉, (16)

i.e., to find a set of angles �� such that |ψ(��)〉 = |q�〉. The cost L(�) can be effi-
ciently calculated by L(�) = p(0) − p(1), where p(0) and p(1) are the probabilities
of measuring the ancilla qubit in the |0〉 and |1〉 state, see “Appendix B” for the proof.
This allows us to compute the expectation 〈U〉 without having to measure 〈0, ψ(�)|
needed for the scalar product. For the optimization, several approaches [28, 29] have
fortunately been developed for evaluating or approximating gradients and improving
optimization on quantum computers.

3.2.2 Parameter shift rule

The parameter shift rule [28] is a simple but exact method for evaluating the analytical
gradient of a function given in the form of an expectation as in Eq. (16) on quantum
hardware. For computing the partial derivative with respect to the parameter θi , it uses
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two function evaluations with the parameter θi shifted by ±π/2:

∂

∂θi
L(�) = 1

2

[

L(�i+) − L(�i−)

]

, (17)

where �i± := (θ1, . . . , θi−1, θi ± π/2, θi+1, . . . , θn). The parameter shift rule uses
the same circuit as the function evaluation, but allows to compute the exact gradient.
Its drawback is that it requires 2n function evaluations to compute the gradient of L.

3.2.3 Update rule

The circuits (uqmaxcut, uqising) are optimized by normalized gradient descent with
decreasing step size. Normalized gradient descent has recently been proposed by
Suzuki et al. [30] as a powerful optimization strategy for variational quantum algo-
rithms. Specifically, in [30] it is demonstrated experimentally that normalized gradient
steps are more effective in escaping non-global minima than gradient steps. It is also
known [31] that normalized gradient descent evades saddle points. At each iteration
k, our update rule reads

�(k) ← �(k−1) −
[
πn

2

]1/2
exp

[

− 4k2

k2max

]

· ∇�L(θ(k−1))

‖∇�L(θ(k−1))‖2 . (18)

The design of the update rule Eq. (18) is motivated by the following consideration:We
know that we produce bit-strings by either flipping |qi 〉 or not, thus θ�

i = π,  ∈ Z.
At iteration k = 0, the update rule Eq. (18) allows each θi to get updated to θ1i ←
θ0i ±π ·gi/2, where gi ∈ [−1, 1] is the normalized contribution of θ0i in the lossL(�).
Subsequently, we let the step size decay exponentially to zero when approaching the
maximumnumber of iterations kmax . Given the noisy nature of quantummeasurement,
it is helpful that this frees us from the difficult task of determining a stopping condition
for the algorithm.

3.3 Scalability and computational complexity

For a given graph G = (S, E, C), the circuit construction presented in Fig. 1 requires
at most one not-gate, |E | single-qubit rotation gates and 4|E | − 2|S| cnot gates.
Note that since the edges can be treated in arbitrary order, two consecutive cnot gates
that have the same control qubit cancel each other out as their product is the identity,
further reducing the number of required cnot gates.

The controlled-U(C, K ) gate appearing in Fig. 2 and conditioned by the ancilla
qubit |·〉a can be fully decomposed into single qubit rotations and cnot gates without
using any Toffoli gates. To see this, note that it can be expressed as

controlled-U(C, K ) = I ⊗ U(C, K )a (19)

≡ I ⊗
n∏

i=1

Xqi · [Ry(−2Ĉi i )]a · Xqi ·
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Table 1 Resources and complexity comparison of a depth p conventional qaoa and our uqising model on
a graph G = (S,E,C)

qaoa uqising [Ours]

# qubits |S| |S| + 2

# cnot gates p · (2 |E | − 2|S|) 1 + 6|E | − 2|S|
# single qubits rotations p · (|E | + |S|) 2 |E |
# Hadamard gates |S| 2

Qubit connectivity Graph-dependent: |E | − |S| One-to-all: |S| + 1

Recall that the set E entails all the edges of the graph, i.e., the quadratic and unary ones. The set S is the
set of vertices. Our construction requires less quantum and classical resources than qaoa for p ≥ 3

∏

1≤i< j≤n

Xqi+q j · [Ry(−2Ĉi j )]a · Xqi+q j · X ⊗ I⊗n . (20)

In particular, in order to control the complete U(C, K ) gate, it suffices to control only
the rotation gate Ry .

Finally, the controlled rotation itself can be decomposed into two cnot gates and
two single qubit rotations as

[Ry(θ)]a = Xa · Ry(−θ/2) · Xa · Ry(θ/2). (21)

Table 1 recapitulates the main differences between uqising and a conventional
qaoa of depth p. It shows that for p ≥ 3, qaoa requires more quantum resources than
our uqising model. Further, physically mapping the qaoa ansatz onto the quantum
hardware has to take into account a graph-dependent qubit connectivity, while our
method, independently of the input graph, requires that one qubit (the cost qubit) is
connected to all other qubits (ancilla and working qubits).

3.4 Impact of the K-rescaling

When applying the method, it is important to appropriately choose the constant K ∈
R for re-scaling the costs Ĉ = C/K . The goal is to fix K such that diag(Ĉ) ∈
[−π/2, π/2]2n , as this guarantees that sin(diag(Ĉ)) preserves the order of the original
costs in diag(C).

Although it is tempting to choose K � Cmax := maxk Ckk , where Ckk denotes the
kth diagonal element, recall that in Eq. (9) we have limK→∞ U(C, K ) = X⊗(n+1),
i.e., the larger K , the more shots are required to accurately measure the entries of
sin(Ĉ). Fortunately, in many problems an upper bound to the maximal cost Cmax can
be computed from the original weights without knowing C. For example, choosing

K = 2

π
· Cmax := 2

π
·
⎡

⎣
n∑

i=1

|Ci i | +
∑

1≤i< j≤n

∣
∣Ci j

∣
∣

⎤

⎦ (22)
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Fig. 3 Transforming the true costs diag(C) into diag(sin(C/K )), where K = λ · Cmax , c.f. Eq. (22). The
true costs are sorted by their values and the x-axis represents the sorted cuts in the decimal basis. The y-axis
showcases the influence of 0.1 ≤ λ ≤ 1. The z-axis reports the costs, re-scaled to [0, 1]. The transformed
costs, sorted by the sorted arguments of the true costs, showwhether the order is preserved under the influence
of λ. Example: If C = [2, 5, 7, 3] and, for some value of K , Ĉ = [1, 3, 4, 2], then sort(C) = [2, 3, 5, 7],
argsort(C) = [0, 3, 1, 2] and Ĉsorted = [1, 2, 3, 4]. For each value of λ, the displayed costs are the averages
over 10 instances of a 10-nodes fully-connected graph. Left: Graph instances with only positive edge
weights. Right: Graph instances with both positive and negative edge weights. As expected, the more λ and
thus K grows, the better the order of the true cost agrees with the order of the transformed costs. Also, for
fixed λ the difference between the two costs is the largest when the true cost is large in absolute value. The
cyan-marked line is the profile that we selected for the experiments; it indicates the value λ = 2/π , which
is the minimum λ that guarantees an error-free transformation, cf. Eq. (22)

guarantees an error-free transformation of the initial problem (5) into the equivalent
problem (16). As presented for 10-node graph examples in Fig. 3 , the choice of
smaller values for K entails that the approximation of arccos(sin x) by π/2− x , used
in Eq. (13), is inaccurate, with more pronounced error in the largest absolute entries
of diag(Ĉ). Notably, the solution of the transformed problem will only be a solution
of the initial problem as long as argmink Ĉkk = argmink Ckk .

4 Experimental results

In order to validate the practical usefulness of uqmaxcut and uqising, we benchmark
against two state-of-the-art approaches for solving binary combinatorial optimization
with quantum computing: qaoa for the gate-based model and d- wave solvers for the
adiabatic model. Random graphs in the experiments are generated using the Python
language package NetworkX [32]. The unary and quadratic edge weights are all
randomly and uniformly chosen in the range [1, 10] and the graphs are all fully con-
nected. The gate-based circuits in the experiments (uqmaxcut, uqising, qaoa) are
implemented in Python and simulated in a noise-free framework using the QisKit
library and the IBM-QASM simulator [33]. For the adiabatic model, d- wave solvers
that run on the actual quantum hardware are used. d- wave quantum annealers are
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made available through the leap quantum cloud service [34], and the d- wave quan-
tum algorithms can be implemented in Python using the Ocean software [35]. We
perform 1024 measurement shots for all gate-based algorithms. On d- wave [1], the
experiment is run with the default annealing time of 20μs and 50 sample reads on the
advantage topology.

4.1 Benchmarkmetrics

We denote by |q�〉 the ground-truth global minimizer and by |ψ�〉 the ground-state
proposal of eachmethod (uqmaxcut/uqising, qaoa and d- wave). In the experiments,
we adopt the following two metrics to evaluate the performance of the methods:

• The approximation ratio

r(ψ�) := 〈ψ�|C|ψ�〉 − Cmax

Cmin − Cmax
(23)

informs about the quality of the result, i.e., how confident the method is with its
solution proposal and how far the cost of this proposal is from the minimal cost
Cmin := mink Ckk , cf. [36]. All the terms appearing in r are classically evaluated.
It holds 0 ≤ r(ψ�) ≤ 1 and r(ψ�) = 1 iff ψ� = q�.

• The approximation index

i(ψ�) := 1〈q�|C|q�〉=〈qmax |C|qmax 〉 (24)

is a Boolean variable that indicates whether the most likely state |qmax 〉 obtained
with probability |αmax |2 is the desired state |q�〉. It holds i(ψ�) = 1 if 〈q�|C|q�〉 =
〈qmax |C|qmax 〉 and 0 otherwise. Note that this differs from the usual approach of
d- wave, where the sampled state with the minimal energy is regarded as the best
solution proposal.

4.2 Benchmarking UQMaxCut against QAOA and D-Wave

4.2.1 Symmetric solutions and entanglement

Before discussing the results on the maxcut problem, it is important to notice that
for maxcut, solutions always exist in symmetric pairs. Specifically, for a basis state
solution |q�〉 = ⊗n

i=1 |q�
i 〉, q�

i ∈ {0, 1}, the basis state |q̄�〉 := ⊗n
i=1 |1 − q�

i 〉 is also
a solution. This feature can be enforced by introducing the entanglement circuit given
in Fig. 4after the rotation layer in Fig. 2. The circuit has the matrix representation
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· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

|0〉q1 H

|0〉q2

|0〉q3

...

|0〉qn

Fig. 4 Entanglement circuit to enforce symmetric solutions for maxcut. Using this circuit, the optimization
is performed only on the last n − 1 variables and the qubit for the node q1 is kept constant in the state |0〉
or |1〉

E = 1√
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
. . . . .

.

1 1
1 −1

. .
. . . .

1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

Also, this entanglement allows to optimize over n − 1 angles instead of n. Without
entanglement our method just outputs one of the two possible solutions. In the exper-
iments, uqmaxcut is used without entanglement; if the algorithm outputs either one
of the two solutions, we set the approximation index to 1.

4.2.2 Benchmark results

For the outer optimization algorithm of the uqmaxcut circuit, we use normalized
gradient descent as described in Section 3.2. Other optimization algorithms such as
vanilla gradient descent or adaptive moment estimation (adam [37]) could be used
as well. However, it proved difficult in the experiments to find suitable step sizes for
those methods, so we leave them for future research.

The qaoa layers depth in the experiments is set to p = �n/2� to allow for a
fair comparison, as then both qaoa and uqmaxcut optimize over approximately n
real variables. We also attempted to optimize qaoa using the same optimizer as for
uqmaxcut, but the results were not competitive. Hence, we also show the results of
qaoawhen using a gradient-free optimizer; we used the cobyla solver [38] available
in the scipy library [39].

The results are presented in Fig. 5for fully connected graphs of n = 3, 5 and 10
nodes with strictly positive edge weights. For each n, the results are averaged over 20
graph instances and all algorithms are tested on the same instances. The angles for
uqmaxcut and qaoa are all initialized to 0.
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Fig. 5 Experimental comparison of the proposed Universal Quantum maxcut (uqmaxcut) algorithm with
qaoa and d- wave. Results are shown for fully connected graphs of n = 3, 5 and 10 nodes with strictly
positive edgeweights. They are averaged over 20 randomgraph instances for each n. Top:The approximation
ratio. The lines represent the averaged ratios over the 20 instances and the shaded areas indicate the standard
deviations. Bottom: The approximation index, i.e., the percentage of instances where a global solution is
found. All gate-based methods hardly return a global solution for larger n. Yet, in contrast to qaoa and
Competitively with d- wave, the proposed uqmaxcut consistently returns very good approximate solutions,
i.e., points whose function values are very close to the global minimal function value

The approximation ratio for the three methods (qaoa, d- wave, uqmaxcut) is not
adversely affected by the number of variables n, but the approximation index drops
sharply as the size of the problem increases. The gradient-free Cobyla-optimized
version of qaoa performs much better than qaoa with gradient descent. The latter
is on average as good as d- wave regarding the approximation ratio. We conjecture
that the gradient-based optimization of qaoa often gets trapped by saddle points
of the qaoa loss function landscape. In contrast, uqmaxcut clearly outperforms the
two qaoa variants and can compete with d- wave in producing good approximate
solutions. Furthermore, the approximation index demonstrates that it returns a global
minimizer significantly more often than qaoa and less often than d- wave whose
architecture is specifically designed to solve such problems.

4.3 Benchmarking UQIsing against D-Wave

For the Ising model, we benchmark the proposed uqising algorithm against the d-
wave annealer, the adiabatic quantum computer specialized in solving this type of
problems. The variational circuit for uqising is optimized in the same way as for
uqmaxcut, see Sect. 3.2, with the exception that the initial angles are set to π/2
instead of 0. The results are depicted in Fig. 6.

Notable differences in performance between uqising and d- wave are consistent
with theMaxCut experiments. Specifically, its high approximation ratio, similar to that
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Fig. 6 Experimental comparison of the proposed Universal Quantum IsingModel (uqising) algorithm with
d- wave. Results are shown for fully connected graphs of n = 3, 5 and 10 nodes with strictly positive
edge weights. They are averaged over 20 random graph instances for each n. Top: The approximation ratio.
The lines represent the averaged ratios over the 20 instances and the shaded areas indicate the standard
deviations. Bottom: The approximation index, i.e., the percentage of instances where a global solution is
found. Our method can compete with d- wave solvers in predicting approximate solutions and finding the
global minimum for moderate n

of d- wave, indicates that uqising always produces either globally optimal solutions or
extremely good approximations thereof. On the other hand, the approximation index
shows that d- wave identifies a globally optimal solution more often than uqising.

5 Conclusion

We have presented a new low-depth quantum circuit to tackle two important combi-
natorial problems on universal quantum machines. The resulting Universal Quantum
maxcut (uqmaxcut) approach outperforms the state-of-the-art quantum approximate
optimization algorithms (qaoa) by the lower depth, by the computed approximation
ratios and by a higher probability of outputting optimal solutions. It also challenges the
d- wave-quantum annealers that are specifically designed to solve such combinatorial
problems; on the maxcut as well as on the Ising spin model, uqmaxcut, respectively,
uqising can compete with d- wave in producing globally optimal solutions.

We believe that the proposed approach enables the design of new methods for
solving practically-sized problems on universal quantum machines. Inspired by the
novel operator U, future work should focus on designing fully universal algorithms
without the classical outer optimization loop, replacing the latter with fully universal
methods like for example Grover’s search [8].
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Appendix A: Geometric interpretation of U2×2

We want to show that the operator

U2×2 =
[
sin〈Ĉ〉 cos〈Ĉ〉
cos〈Ĉ〉 − sin〈Ĉ〉

]

(A1)

is up to a phase factor a reflection in the Bloch sphere about the axis �n =
(1/2)

[
cos〈Ĉ〉 0 sin〈Ĉ〉 ]�

. More precisely, we show that

U2×2 ≡ Ry

[
2 arccos(sin〈Ĉ〉)

]
· Z. (A2)

Proof For sin〈Ĉ〉 = ±1, we have U2×2 = ±Z, so Eq. (A2) holds. In the remainder
of the proof, we can therefore assume sin〈Ĉ〉 �= ±1. The matrixU2×2 has the spectral
decomposition U2×2 = X��X, where � = diag([−1 1]) is the diagonal matrix of
eigenvalues of U2×2 and X = [ |ψ_〉 | |ψ+〉 ]

is the matrix containing its eigenvectors

|ψ+〉 = 1
√

2 − 2 sin〈Ĉ〉

[− cos〈Ĉ〉
sin〈Ĉ〉 − 1

]

(A3)

and |ψ_〉 = 1
√

2 + 2 sin〈Ĉ〉

[− cos〈Ĉ〉
sin〈Ĉ〉 + 1

]

. (A4)
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Let � = diag([π 2π ]), so � = exp (i�). The generalization of the exponential map
to normal matrices [27, Section 2.1.8] implies that U2×2 = exp(iX��X). Now we
express X��X in the basis formed by the Pauli matrices:

X��X = 1

2

[
3π + π sin〈Ĉ〉 π cos〈Ĉ〉
π cos〈Ĉ〉 3π − π sin〈Ĉ〉

]

(A5)

= 3π

2
· I + π

2
cos〈Ĉ〉 · X + 0 · Y + π

2
sin〈Ĉ〉 · Z. (A6)

We can thus rewrite U2×2 as U2×2 = exp(iα) exp(i �v · ��), where α = 3π/2 and

�v = (1/2)
[
π cos〈Ĉ〉 0 π sin〈Ĉ〉 ]�

. The notation �v · �� := vx · X + vy · Y + vz · Z
denotes a linear combination of Pauli matrices. With a slight change of variables

θ = −2‖�v‖2 = −π and �n = �v/‖�v‖2 = [
cos〈Ĉ〉 0 sin〈Ĉ〉 ]�

, this is equivalent to

U2×2 = exp(iα) exp(−i(θ/2)�n · ��).
The global phase exp(iα) can be ignored in the implementation as it has no effect on

the measurement. The exponential term exp(−i(θ/2)�n · ��) corresponds to a rotation
of angle θ of the Bloch sphere about the axis �n. As �n lies in the xz-plane and we have
θ = −2‖�v‖2 = −π , it follows that U2×2 is a reflection about �n. Equivalently, Eq.
(A2) holds.

Appendix B: Implicit measurement

Let U be a Hermitian and unitary operator, so U can be used both as quantum gate
and measurement observable. According to the implicit measurement principle of
quantum computation [27, Section 4.4], all qubits that are not measured at the end of
a quantum circuit can be assumed to be measured. Specially, the measurement of the
first qubit of the circuit in Fig. 7performs a measurement of the observable U for a
system prepared in the state |ψin〉.

Proof AsU is both Hermitian and unitary, its eigenvalues are both real and unitary,

and therefore either+1 or−1. Then, the operators P± = 1

2
(I±U) are orthogonal pro-

jectors into the eigenspaces ofU to the eigenvalues±1. Evidently,U can be expressed
as U = P+ − P−. Before measurement, the system is in the state

1

2

[
(|0〉 + |1〉) ⊗ I|ψin〉 + (|0〉 − |1〉) ⊗ U|ψin〉

]
(B7)

= |0〉 ⊗ P+|ψin〉 + |1〉 ⊗ P−|ψin〉. (B8)

Fig. 7 Circuit illustrating the
implicit measurement principle

|ψout〉

|0〉 H H

|ψin〉 U
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Ameasurement of the first qubit in the standard basis, with the measurement operators
P0 = |0〉〈0| ⊗ I and P1 = |1〉〈1| ⊗ I, yields the probabilities

p(0) = 〈ψin|P+|ψin〉 and p(1) = 〈ψin|P−|ψin〉, (B9)

and leaves the system in the post-measurement state

|0〉 ⊗ P+|ψin〉√〈ψin|P+|ψin〉 (B10)

if the output 0 is observed, respectively,
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|1〉 ⊗ P−|ψin〉√〈ψin|P−|ψin〉 (B11)

if the output 1 is observed.
Thus, the second register of the circuit is in post-measurement state of the observable

U on a trial state |ψin〉. Its expectation is

〈U〉 = 1 · p(0) + (−1) · p(1) = 〈ψin|(P+ − P−)|ψin〉 = 〈ψin|U|ψin〉, (B12)

which shows that we can evaluate the expectation 〈U〉 by measuring a single qubit.
This is a crucial feature of our algorithm, as it makes it possible to accurately approxi-
mate 〈U〉without having to sample 〈ψin| needed for the scalar product. Also, it allows
to use a moderate number of measurements that is independent of the number of
qubits in |ψin〉.
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