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Abstract
We use the mapping between two computation frameworks, Adiabatic Grover Search
(AGS) andAdiabatic QuantumComputing (AQC), to translate the Grover search algo-
rithm into the AQC regime. We then apply Trotterization on the schedule-dependent
Hamiltonian of AGS to obtain the values of variational parameters in the Quantum
Approximate Optimization Algorithm (QAOA) framework. The goal is to carry the
optimal behavior of Grover search algorithm into the QAOA framework without the
iterative machine learning processes.

Keywords Quantum walk · AQC · QAOA · Universal quantum computation ·
Trotterization

1 Introduction

Quantum technologies have advanced dramatically in recent years, both in theory and
experiment. Building a programmable quantum computer involves multiple layers:
algorithms, programming languages, quantum compilers, efficient decomposition of
unitary operators into elementary gates, the control interface and the physical quantum
qubits. The aforementioned requires much research effort for optimization, across and
within the layers. Froma quantumalgorithmperspective, even optimistically assuming
the middle layers are perfect, it remains extremely challenging to use quantum algo-
rithms to solve real-life-size hard problems due to size limit and errors arising from
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issues such as precision, random noise and de-coherence in the quantum devices.
Hybrid, short shallow circuit algorithms, such as Variational Quantum Eigensolver
(VQE) [1] and Quantum Approximate Optimization Algorithm (QAOA) [2], are two
near-term answers. From theoretical and implementation aspects, this work aims at
investigating two computation frameworks: Grover search and QAOA.

From a perspective of universal computational models, Quantum Walks (QWs)
have become a prominent model of quantum computation due to their direct rela-
tionship to the physics of the quantum system [3, 4]. It has been shown that the
QW computational framework is universal for quantum computation [5, 6], and many
algorithms now are presented directly in the quantum walk formulation rather than
through a circuit model or other abstracted method [3, 7]. There are multiple quantum
computation models, including the quantum circuit model [8–10], topological quan-
tum computation [11], adiabatic quantum computation [12], resonant transition based
quantum computation [13] and measurement based quantum computation [14–17].
Notable successes of quantum computation include Shor’s factoring algorithm [18]
and Grover’s search algorithm [19], which manifest indisputable improvements over
the best possible classical algorithms designed for the same purpose. QWs can be for-
mulated in discrete-time (DTQW) [20] and continuous-time (CTQW) [3] versions. It
is known that Grover search is a special type of DTQW. Since both (QAOA and QW)
are universal computational frameworks [5, 6, 21], there should exist some relationship
between those models. One can extend the techniques from one framework to another
by exploring the connections between the computational models. As the connections
are established, one can further investigate if performance-boosting techniques, such
as spectral gap amplification [22] and catalyst Hamiltonians [23], can be applied from
one framework to the other to provide additional algorithmic improvement.

The structure of this work is as follows. The background on AGS, AQC, QAOA is
provided in Sect. 2. The mapping of Grover to AQC is summarized in Sect. 3 and the
Trotterization of the schedule dependent AGS to QAOA is given in Sect. 4. We give
our the error analysis in Sect. 5. Finally our conclusion is given in Sect. 6.

2 Background

2.1 Adiabatic quantum computing

In the AQC model, H0 is the initial Hamiltonian, H f is the final Hamiltonian where
the evolution path for the time-dependent Hamiltonian is

H(s) = (1 − s)H0 + sH f , (1)

where 0 ≤ s ≤ 1 is a schedule function of time t . The schedule is s = s(t) and t goes
from 0 to the total run-time Ta . The variable s increases at a slow rate such that the
initial ground state evolves and the system state remains as the ground state throughout
the adiabatic process. More specifically, the Hamiltonian at time t

H(s(t))|λk,t 〉 = λk,t |λk,t 〉, (2)
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where λk,t is the corresponding eigenvalue for the k eigenstate |λk,t 〉 at time t . For
instance, |λ0,t 〉 is the ground state at time t . The minimal eigenvalue gap is defined as

g = min
0≤t≤Ta

(λ1,t − λ0,t ), (3)

where Ta is the total evolution time of the AQC. It is known that Ta ∝ 1
g2
. Let |ψ(Ta)〉

be the state of the system at time Ta evolving under the Hamiltonian H(s(t)) from the
ground state |λ0,0〉 at time t = 0. The adiabatic theorem [24, 25] states that the final
state |ψ(Ta)〉 is ε1-close to the real ground state |λ0,Ta 〉 as

|〈λ0,Ta 〉ψ(Ta)|2 ≤ 1 − ε21 , (4)

provided that

|〈λ1,t | dHdt |λ0,t 〉|
g2

≤ ε1. (5)

2.2 Quantum approximate optimization algorithm

QAOA is a promising approach for programming a near-term gate-based hybrid quan-
tum computer to find good approximate solutions of hard combinatorial problems. In
the near future, the number of reliable quantum gates will be limited due to noise,
de-coherence and scalability. Due to this fact, hybrid quantum-classical algorithms
have been proposed to make the best of available quantum resources and integrate
them with classical routines. Technically, QAOA [2] is a variational ansatz that uses
p sets of alternating non-commuting (Z-basis associated with parameter γ and then
X-basis associated with parameter β) operations on an initial |+〉⊗n state. With each
of the p steps, the state evolves with two unitaries,

Ut = exp(−iγt Hc) and Vt = exp(−iβt H0), (6)

where Hc is the cost Hamiltonian of the given optimization (or search) problem in
the computational basis while H0 = ∑

i σ
x
i with σ x

i being the Pauli X matrix for
the i qubit. In the Noisy Intermediate Scale Quantum (NISQ) computing era [26], it
is desirable to use shallow circuits to obtain solutions with high accuracy. Hence, p
invocations of the QAOA operator would be

Uqaoa =
p∏

t=1

VtUt , (7)

and p is expected to be some small number to avoid unnecessary decoherence. QAOA
aims at solving optimization problems with a short circuit and provides acceptable
approximate solutions. Numerous studies have been conducted to find optimal β, γ

for each of the step for a shorter circuit and benchmark the performance of QAOA
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Fig. 1 QAOA with classical optimizer to find the optimal parameters of {γi , βi } as {−→γ ,
−→
β }. [31]

[27–30]. In practice, in order to find the optimal values of βi and γi parameters,
several iterations of optimization are required as illustrated in Fig. 1 [31]. The final
state is measured to obtain expectation value with respect to the objective function
Hc. Then the result is fed to the classical optimizer. Based on the condition one sets
in the machine learning process, the process for obtaining the variational parameter
values for the next iteration stops when no more improvement can be found or the
improvement is negligible.However, the post-processing of optimization to find proper
values of βi+1 and γi+1 from the i iteration using machine learning might be costly.

In the following sections we explore the connection betweenQAOA andAGS. Here
AGS refers to applying the AQC time-dependent Hamiltonian approach to Grover’s
problem searching for a marked element in the unstructured database. An unstructured
search problem of size N = 2n where the adjacency matrix A has ones everywhere
except all zeros on the diagonal. Let |ω〉 be the target state while |s〉 = |+〉⊗n be
the initial uniform superposition state. Our initial investigations on the process of
mapping CTQW and AGS to QAOA via AQC can be can be viewed as Fig. 2. The
Grover inspired approach AGS was first introduced in [32]. There are two paths as
shown in Fig. 2, one is CTQW-AQC-QAOAwhile the other is AGS-AQC-QAOA. This
work is mainly for the AGS-AQC-QAOA path. The AGS based path does not cause
irreconcilabilities but the CTQW based path did [33]. A more detailed explanation
regarding the irreconcilability and potential solutions is at the appendix A for the
CTQW-AQC-QAOA path.

3 Mapping: Grover search to AQC

The time-dependent Hamiltonian approach [32] was applied to the Grover’s search,
searching amarked item in anunstructured database.Grover’s algorithmwas originally
presented as a discrete sequence of unitary logic gates. In [32] it turns to another type
of quantum computation where the state of the quantum register evolves continuously
under the influence of some drivingHamiltonian. By adjusting the evolution rate of the
Hamiltonian so as to keep the evolution adiabatic on each infinitesimal time interval,
the total running time is of order

√
N where N is the number of items in the database.
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Fig. 2 The process of translation from QW based framework to QAOA to obtain the values of variational
parameters in QAOA. One path is CTQW-AQC-QAOA while the other is AGS-AQC-QAOA

Let the time-dependent Hamiltonian as defined in Eq. (1) with the initial Hamilto-
nian H0 and the final Hamiltonian H f being

H0 = I − |ψ0〉〈ψ0|, H f = I − |ω〉〈ω|. (8)

By such a setting, the initial uniform superposition state |ψ0〉 is the ground state for
H0 and the target state |ω〉 is the ground state for H f . The system state evolves in the
{|ω〉, |r〉} basis with the Hamiltonian as [33]

H(s) =
(

(1 − s) N−1
N −(1 − s)

√
N−1
N

−(1 − s)
√
N−1
N 1 − (1 − s) N−1

N

)

. (9)

Following the adiabatic theorem, at any time t during the evolution,

〈−|−〉 E0(t)
′′ − ψ0(t)

′′2 ≥ 1− ∈2
1, (10)

where E0(t) is the true ground state andψ0(t) is the systemstate following the adiabatic
evolution. Instead of using a linear evolution of s(t), in [32] it adapts the evolution
ds/dt to the local adiabaticity condition. It is therefore

|ds
dt

| = ε1g
2(t), (11)
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where g(t) is the energy gap of the system at time t . The running time t is a function
of the interpolation schedule s such that

t = N

2ε1
√
N − 1

{
arctan(

√
N − 1(2s − 1))

+ arctan(
√
N − 1)

}
, (12)

and the schedule satisfies the adiabatic theorem. It is further shown that the running
time is optimal as T = O(

√
N ) when s = 1 [32]. By the trigonometry formula

arctan(x) + arctan(y) = arctan
(

x+y
1−xy

)
mod π and the approximation N � N − 1

when N is large, we know that the angle for the tangent function is bounded as

0 ≤ 2tε1
√
N − 1

N
≤ π (13)

which echoes the fact that 0 ≤ t ≤ T when ε1 is some negligible constant. The
interpolate schedule s with respect to time t is

s =
√
N tan

(
2tε1√
N

)

2
(√

N tan
(
2tε1√
N

)
+ 1

) . (14)

4 Connection: AGS to QAOA via AQC

For simplicity, let us define the time-dependent Hamiltonian H(s) in Eq. (9) as

H(s) = A(s)H0 + C(s)H f . (15)

To reflect Eq. (15) in AGS, one can decompose the evolution operator into some large
R steps using Suzuki-Trotter formula, the state evolution of the system is

U (T ) = exp

[

−i
∫ T

0
H(t)dt

]

. (16)

The Suzuki-Trotter decomposition states eA+B = limR→∞(eA/ReB/R)R and let us
choose τ = T /R. Since the system Hamiltonian evolves based on the schedule s, we
can further write

U (T ) �
R∏

l=1

exp[−i H(sl)τ ]

=
R∏

l=1

exp[−i
(
A(sl)H0 + C(sl)H f

)
τ ]
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=
R∏

l=1

(
e−iτ A(sl )H0/2e−iτC(sl )H f e−iτ A(sl )H0/2

)
, (17)

by using the second order Trotter method where sl is obtained using Eq. (14)

sl =
√
N tan

(
πl
R

)

2
(√

N tan
(

πl
R

) + 1
) , (18)

and t = lT
R and T � O(π

√
N

2ε1
). To map to QAOA Uqaoa operator with p steps where

Uqaoa =
p∏

l=1

VlUl =
p∏

l=1

(e−iβl H0e−iγl H f ), (19)

one can neglect e−iτ A(s1)Ho/2 because its action on |+〉⊗N yields only a global phase
factor. By matching Eq. (17), one sets p = R and obtains

γl∈{1,2,··· ,R} = τC(sl), (20)

βl∈{1,2,··· ,R−1} = τ(A(sl) + A(sl+1))/2, (21)

βR = τ A(sR)/2. (22)

For AGS, the schedule follows Eq. (1) as

A(s) = (1 − s), C(s) = s, (23)

and we will obtain

γl∈{1,2,··· ,R} = τ sl , (24)

βl∈{1,2,··· ,R−1} = (τ/2)
(
2 − (sl + sl+1)

)
, (25)

βR = (τ/2)(1 − sR). (26)

5 Errors

The approximation error from the translation between models is two-fold: one comes
from the AQC simulation error ε1 as indicated in Eq. (4) and the other source of
error, ε2k , is from the Hamiltonian simulation via Trotterization. Let the approximated
unitary be Ũ and the expected total error be bounded from above by ε, we have

∥
∥
∥U − Ũ

∥
∥
∥ = ε2k + ε1 = ε. (27)

Now we need to investigate the value of Trotterization steps R to obey the desired ε

error in the simulation. For even higher-order, let us denote it as 2k-th order for k > 0,
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Table 1 The Hamiltonian
simulation error ε2k and
corresponding discrete-time
steps R

Variable ε2k R

AGS O((2t)2k+1/R2k ) O

(
2k

√
(2t)(2k+1)

(ε−ε1)

)

the formula can be constructed recursively and U2k(t) is of the form [34]

[U2k−2(skt)]2U2k−2((1 − 4sk)t)[U2k−2(skt)]2
= e−i Ht + O((Mt)2k+1/R2k), (28)

where H = ∑M
j=1 Hj and sk = 1/(4 − 41/(2k−1)). In general, via the above form,

arbitrary high-order formulas can be constructed. But in practice the fourth order
(2k = 4) is preferred for most practical problems as the cost from constructing more
complex higher-order operators would offset the benefits of Trotterization. To confine
the simulation error stated in Eq. (27), we must satisfy the condition that ε2k ≤ ε −ε1.
This immediately shows that R should be chosen accordingly, as listed in Table 1.

Recalling that AGS has the optimal run-time O(
√
N ), we have to set t = O(

√
N ).

When using Trotterization for Hamiltonian simulation, if ε2k is some small constant,
we can conclude that at k = 1, the required discrete-time step is sub-optimal as R �
O(N 3/4). As k increases, R approaches O(

√
N ). In our case for variational variable

values based on the second order (k = 1) approximation, the corresponding QAOA
should obtain an ε-close solution with the sub-optimal running time R = O(N 3/4).

6 Conclusion and future work

In this work, we explore ways to let QAOA simulate the behavior of optimal search by
AGS. The motivation is to find the values of variational parameters from a theoretical
approach, instead of heuristic approaches. We discover the values of the variational
parameters by lettingQAOA simulate AGS via AQC. TheAGS obeys the conventional
AQC and the mapping is straightforward. Finally, from an error control perspective,
to achieve the same degree of accuracy ε, both mappings indicate they have the same
number of Trotterization steps in the big O notation.

For future investigation, we consider the connection between CTQW and QAOA
to be another interesting direction. There are several variations of AQC to improve
the performance. The variations are based on modifying the initial Hamiltonian and
the final Hamiltonian [23, 35] or adding a catalyst Hamiltonian He [23]. The catalyst
vanishes at the initial and the final times but is present at intermediate times. For
instance, a conventional catalyst assisted AQC is expressed as

H(s) = (1 − s)H0 + s(1 − s)He + sH f . (29)
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The form of He is important but even a randomly chosen catalyst can help in improv-
ing run time [23, 36]. The use of catalyst Hamiltonian also suggests an additional
variational parameter α is needed when Totterizing to QAOA as shown in Fig. 2.
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Appendix A CTQW-AQC-QAOA Path

A.1 Concern

To construct the time-dependent Hamiltonian H(t), one can use the results from [33]
where theAQC search follows theCTQWsearch on a complete graph. By choosing the
coupling factor γ = 1/N and letting |r〉 be the uniform superposition of non-solution
states such that

|r〉 = 1√
N − 1

∑

i �=ω

|i〉, (A1)

the resulting Hamiltonian [37] for CTQW in the {|ω〉, |r〉} basis is

H = −1

N

(
N + 1

√
N − 1√

N − 1 N − 1

)

. (A2)

The system state |ψ(t)〉 evolution path following the unitary e−i Ht is considered as
the ground state for the adiabatic path. The time-dependent Hamiltonian H(t) with
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|ψ(t)〉 as ground state is [33]

H(s) = 4

√
s(1 − s)

4ε21N
[(1 − s)H0 + √

s(1 − s)He

+ sH f ], (A3)

where the schedule s(t) = sin2( t√
N

). The initial, catalyst, and final Hamiltonians in
the {|ω〉, |r〉} basis are

H0 =
(

N−2
N −2

√
N−1
N

−2
√
N−1
N − N−2

N

)

,

He =
⎛

⎝
0 −2i

√
N−1
N

2i
√

N−1
N 0

⎞

⎠ , H f =
(−1 0

0 1

)

. (A4)

The Hamiltonians can be further written as [33]

H0 = |ψ⊥
0 〉〈ψ⊥

0 | − |ψ0〉〈ψ0|, H f = |r〉〈r | − |ω〉〈ω|,

He = 2i

√
N − 1

N
(|r〉〈ω| − |ω〉〈r |), (A5)

where |ψ0〉 is the initial uniform superposition state. In comparison to the typical
expression in Eq. (1), the intermediate extra Hamiltonian He in Eq. (A3) facilitates
the driving between |ω〉 and |r〉. However, there exists irreconcilability in the CTQW-
inspired AQC path.

In Eqn.(A3), the following parameters were computed during the mapping [33]:

• the scaling factor ∝ 4
√

1
N of H(s),

• the corresponding catalyst Hamiltonian He provides power greater than a typical
Yes/No oracle,

• the coefficient function of catalyst Hamiltonian He as
√
s(1 − s).

The main concerns arising from Eq. (A3) are twofold. One concern is the factor

4

√
s(1−s)
4ε21N

of H(s). The adiabatic theorem [38] states that if we prepare system at time

t = 0 in its ground state and let it evolve under the Hamiltonian H(t), the system
achieve a fidelity of 1 − ε1 to the target state, provided that

|〈 dHdt 〉0,1|
g2min

≤ ε1, where gmin = min
0≤t≤T

E1(t) − E0(t). (A6)

Here 〈 dHdt 〉0,1 are thematrix elements of dH/dt between the two corresponding eigen-
states. E0(t) and E1(t) are the ground energy and the first excited energy of the system
at time t . Given the H(s) in Eq. (A3), one might conclude that a factor of O( 4

√
1/N )
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significantly reduces the required time to achieve 1 − ε1 precision. This might be
misleading as the gmin of H(s) also carries that factor.
The second concern is that the catalyst He provides power greater than a typical Yes/
No oracle as it maps non-solution states to a solution state and a solution state to non-
solution states. Provided initially the we start with a superposition state with amplitude

of
√

N−1
N , it takes time of O(1) for this catalyst to drive to the solution state from the

initial state.

A.2 Strategy

To address the irreconcilability issue, we propose to (1) drop factor 4

√
s(1−s)
4ε21N

and

(2) modify the catalyst Hamiltonian He to be a regular oracle. The form of He is
important but even a randomly chosen catalyst can help in improving run time [23,
36]. Aiming for being optimal in the translated algorithm without considering other

constraints, CTQW-inspired adiabatic path has He = 2
√

N−1
N i X Z in the {|ω〉, |r〉}

basis that provides more power than a standard oracle. To avoid disputes, we will drop
the imaginary number i and the X operator. The Z alone behaves as a conventional Yes
/No oracle. A slight difference is that since we are in the {|ω〉, |r〉} basis (not {|r〉, |ω〉}
basis), the Z operator behaves like the conventional oracle with an additional minus

sign. Let M be the magnitude scalar equal to 2
√

N−1
N computed from CTQW. The

new modified Hm(s) schedule is therefore defined as

Hm(s) =(1 − s)H0 + fz(s)MZ + sH f , (A7)

where fz(s) is our chosen s-dependent coefficient for catalyst Z . In addition to fz(s) =√
s(1 − s) in [33], functions that reach their maximum when s = 1/2 would be good

candidates for fz(s). For instance, another good candidate is fz(s) = sin(sπ)
2 . Because

of 0 ≤ √
s(1 − s) ≤ 1/2, 0 ≤ sin(sπ) ≤ 1 as 0 ≤ s ≤ 1, one has to use 1

2 on
the sine function is to offset the magnitude M to bound the norm of He. Based on
the modified schedule, oracle-like catalyst Hamiltonian, one can run the experiment
by simulation for CTQW-AQC part using Eq. (A7) and compare the result with the
optimal AGS-AQC part using Eq. (9). Our initial investigation indicates the modified
CTQW-AQC, bypassing the irreconcilability, remains optimal as the AGS-AQC did.
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