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Abstract
Quantum machine learning has the potential to improve traditional machine learning
methods and overcome some of the main limitations imposed by the classical comput-
ing paradigm. However, the practical advantages of using quantum resources to solve
pattern recognition tasks are still to be demonstrated. This work proposes a universal,
efficient framework that can reproduce the output of a plethora of classical supervised
machine learning algorithms exploiting quantum computation’s advantages. The pro-
posed framework is namedMultiple Aggregator Quantum Algorithm (MAQA) due to
its capability to combine multiple and diverse functions to solve typical supervised
learning problems. In its general formulation, MAQA can be potentially adopted as
the quantum counterpart of all those models falling into the scheme of aggregation of
multiple functions, such as ensemble algorithms and neural networks. From a com-
putational point of view, the proposed framework allows generating an exponentially
large number of different transformations of the input at the cost of increasing the
depth of the corresponding quantum circuit linearly. Thus, MAQA produces a model
with substantial descriptive power to broaden the horizon of possible applications of
quantum machine learning with a computational advantage over classical methods.
As a second meaningful addition, we discuss the adoption of the proposed framework
as hybrid quantum–classical and fault-tolerant quantum algorithm.
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1 Introduction

Quantumcomputers aremachines that leverage the properties of quantummechanics to
store and process information. There aremany differentways to build these devices [1–
3], and several algorithms have already been tested on real machines [4, 5]. Although a
quantum advantage has already been shown (e.g. quantum chemistry [6], multi-agent
systems [7, 8]), it is still unclear whether quantum computing can be used efficiently
in machine learning (ML).

The intersection between ML and quantum computing (QC) is known as quantum
machine learning (QML). There are two ways in which ML and QC can be combined:
one approach is to run the learning process predominantly in a quantum computer
so that the expensive subroutines can be executed efficiently. For this purpose, a rich
collection of quantum algorithms for basic linear algebra subroutines have been pro-
posed in literature [9–11]. Some popular examples of this approach are QSVM [12]
and QSplines [13], which obtain an exponential speed-up with respect to their clas-
sical counterparts. However, the protocols within this category usually assume the
availability of a fault-tolerant quantum computer.

Alternatively, variational quantum algorithms can be considered machine learning
models that can be trained using hybrid quantum–classical optimisation. In this case,
a quantum algorithm is used to make a call to a function that allows estimating the
target variable of interest given the input data and a set of rotation parameters [14, 15].
This approach requires a parametrised quantum circuit and a classical optimisation
procedure to find the optimal set of parameters for a sequence of quantum gates.
Although these techniques represent the most promising attempt to leverage near-
term quantum technology, it is still unclear whether they can outperform classical
algorithms.

Despite the remarkable success of ML in numerous real-world applications, the
ever-increasing size of datasets and the high computational requirements of modern
algorithms indicate that the current computational tools will no longer be sufficient
in the future. In this work, we propose a novel and efficient quantum framework to
reproduce a plethora ofmachine learningmodels using quantum computational advan-
tages. The framework is calledMultiple Aggregator Quantum Algorithm (MAQA) due
to its capability to combine multiple and diverse functions to solve typical supervised
learning tasks. Thanks to superposition, entanglement and interference, the MAQA
framework can compute the weighted average of an exponentially large number of
functions while increasing the depth of the correspondent quantum circuit linearly.
This allows for building quantummodels with incredible descriptive power that might
be a credible alternative to classical methods in the future.

2 Preliminaries

The objective of a supervised model is to find a useful approximation to the function
f (x; θ) that underlies the predictive relationship between the input x and output y for
a fixed set of parameters θ . Assuming for simplicity an additive error, the model of
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interest can be expressed as follows:

y = f (x; θ) + ε, (1)

where ε is a random variable whose conditioned probability distribution given x is
centred in zero. Although Eq. (1) provides a general mathematical formulation for
supervised learning, several methods do not estimate a single function but explicitly
calculate multiple and diverse functions. These functions belong to the same family
but differ in either a set of parameters or the training data. In all these cases, the final
output results from the weighted average of the estimated functions:

y = f (x; θ) =
H∑

h=1

βhg(x; θh), (2)

where f (x; θ) is the final output and g(x; ·) describes the function component.
The calculation of g(x; ·) corresponds to a specific transformation of data x based

on θh , whose contribution to the final output is weighted by βh . The estimation of
a collection of functions components allows producing an extremely flexible model,
which is able to approximate the behaviour of complex patterns. Different choices
for β, g(x; ·) and θh determine different supervised models commonly adopted in
real-world applications.

For instance, a single-layer neural network (or Single-Layer Perceptron—SLP)
assumes as function component g(x; ·) the activation function σhidden applied to the
linear combinations L(x; θh) of the input vector x . In fact, an SLP with H hidden
neurons is a two-stage model that takes as input training data x and H sets of linear
coefficients and estimates the target variable as follows:

fSLP(x) = σoutput

[
H∑

h=1

βhσhidden (L(x;Θh))

]
, (3)

where σoutput is the identity function when the task is the function approximation.1

Another classical supervised learning approach that falls into the schemaof function
aggregation is ensemble learning. In practice, ensemble methods reduce to computing
several predictions g1(x), g2(x), . . . , gH (x) using H different training sets, which are
then averaged to obtain a single model:

fens(x) = 1

H

H∑

h=1

βhgh(x). (4)

In this case, the component functions g(x; ·) are weak classification/regressionmodels
and the choice of the weights depends on the type of the ensemble in use (boosting,
bagging, randomisation).

1 When considering a neural network with multiple hidden layers, the only difference in Eq. (3) is that the
function component g(x; ·) is, in turn, a neural network.
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Othermodels that fit into the idea ofmultiple aggregations are GeneralisedAdditive
Models [16], Support Vector Machines and Decision trees [17].
Contribution. In this work, we propose a novel efficient quantum framework to repro-
duce the idea of machine learning models as functions aggregators. The proposed
architecture, named Multiple Aggregator Quantum Algorithm (MAQA), can poten-
tially reproduce some of the most important classical supervised learning algorithms
introducing relevant computational advantages. In particular, MAQA propagates an
input state to multiple quantum trajectories in superposition, and each trajectory
describes a specific function g(x; ·) that represents the component function of the
final model. The entanglement between the two quantum registers involved (data
and control) allows for efficient averaging of those transformations, and the final
result can be accessed by measuring only a subset of qubits. The proposed approach
has two main advantages: from a classical perspective, it introduces an exponential
scaling in the number of aggregated functions while linearly increasing the time com-
plexity of the correspondent quantum algorithm. From a quantum perspective, the
framework opens the possibility of implementing a plethora of models not yet pro-
posed in the literature. Eventually, we discuss the adoption of MAQA to generalise
some existing QML algorithms, considering both fault-tolerant settings and hybrid
quantum–classical algorithms.

3 Multiple Aggregator QuantumAlgorithm (MAQA)

In this section, we describe the MAQA framework that is able to reproduce the clas-
sical model expressed in Eq. (2). The algorithm leverages the three main properties
of quantum computing (superposition, entanglement and interference) to encode in
a quantum state the sum of different input transformations accessible by measur-
ing a single quantum register. The proposed algorithm can potentially reproduce all
those models that refer to the idea of functions aggregation and provide attractive
computational advantages with respect to the classical counterparts.

The quantum algorithm adopts two quantum registers: data and control. The data
register encodes the model’s input data, and the control register is used to generate
multiple trajectories in superposition, where each trajectory represents a different
transformation of data.

Starting from a n-qubit data register and a d-qubit control register, the Multiple
Aggregator Quantum Algorithm (MAQA) involves four main steps: state prepa-
ration, multiple trajectories in superposition, transformation via interference and
measurement.
(Step 1) State Preparation
State preparation consists of encoding the input in the data register and the ini-
tialisation of the control register whose amplitudes depend on a set of parameters
β = {β∗

i }i=1,...,2d :

|Φ0〉 = (Sβ ⊗ Sx )|0〉⊗d
control ⊗ |0〉⊗n

data
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= 1√
2d

2d∑

h=1

β∗
h |h〉 ⊗ |x〉. (5)

We refer to Sx as a quantum routine to encode data into a quantum state, and Sβ as
a routine that transforms a d-qubit register from an all-zero state to a quantum state
which depends on a set of parameters β. Importantly, the computational cost of this
step is not considered classically since any classical algorithm assumes the input x to
be directly accessible.
(Step 2) Multiple Trajectories in Superposition
The second step regards the generation of 2d different transformations of the input
data in superposition, each entangled with a possible state of the control register. The
single quantum state of the superposition encodes a specific transformation of the data
and it depends on a set of parameters Θk . To this end, a unitary G(θ1, . . . , θ2d ) that
performs the following operation is assumed2

|Φ1〉 = G
(
θ1, . . . , θ2d

) |Φ0〉 = 1√
2d

⎛

⎝
2d∑

h=1

β∗
h |h〉|l(x;Θh)〉

⎞

⎠ . (6)

where the implementation of G(θ1, . . . , θ2d ) can be accomplished in only d steps.
Each step consists in the entanglement of the i th (i = 1, . . . d) control qubit with
two transformations G

(
θi,1

)
and G

(
θi,2

)
of |x〉 based on two sets of parameters,

θi,1 and θi,2. Let us consider a unitary G
(
θi, j

)
that implements the transformation

l
(
x; θi, j

)
. The most straightforward way to obtain the quantum state in Eq. (6) is to

applyG
(
θi, j

)
through controlled operations, using as control state the two basis states

of the current control qubit. In particular, the generic i th step involves the following
two transformations:

First, the controlled unitary C (1)G
(
θi,1

)
is executed to entangle the transformation

G
(
θi,1

) |x〉 with the excited state |1〉 of the i th control qubit:

|Φi,1〉 =
(
C (1)G

(
θi,1

)) |ci 〉 ⊗ |x〉 =
(
C (1)G

(
θi,1

))
(ai |0〉 + bi |1〉) ⊗ |x〉

= (
ai |0〉|x〉 + bi |1〉G

(
θi,1

) |x〉) , (7)

where ai and bi are the amplitudes of the i th control qubit and C (1)G(θi,1) is a
controlled operation that entangles the exited state of the control qubit |ci 〉 to transform
the data register according to the unitary G(θi,1).

Then, a second controlled unitary C (0)G
(
θi,2

)
is executed. This time the control

state is the |0〉 basis state:

|Φi 〉 =
(
C (0)G

(
θi,2

)) |Φi,1〉 = ai |0〉G
(
θi,2

) |x〉 + bi |1〉G
(
θi,1

) |x〉. (8)

2 Notice that the definition of G(θ1, . . . , θ2d ) unitary in terms of quantum gates depend on the specific
algorithm in use (Sects. :4.2 and 4.1).
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These two transformations are repeated for each qubit in the control register and two
different unitariesG

(
θi,1

)
andG

(
θi,2

)
are applied, at each iteration. After d steps, the

control and data registers are fully entangled and 2d different quantum trajectories in
superposition are generated. The output of this procedure can be expressed as follows:

|Φd〉 = 1√
2d

2d∑

h=1

β∗
h |h〉G (Θh) |x〉 = 1√

2d

2d∑

h=1

β∗
h |h〉|l(x;Θh)〉 (9)

where G (Θh) results from the product of d unitary matrices G
(
θi, j

)
and it represents

a single quantum trajectory. Each trajectory differs from the others for, at least, one
unitary G

(
θi, j

)
.3

When discussing a specific implementation of QML algorithms (Sects. 4.2 and 4.1),
we will see that, from a computational point of view, the possibility to generate 2d

different transformations in only d steps potentially leads to scaling exponentially
the number of component functions with respect to classical methods, assuming an
efficient implementation of the C ( j)G(θi, j ).
(Step 3) Transformation via InterferenceOnce we generated multiple transformations
l(x;Θh) of the input in superposition, the third step consists of transforming the data
register through a generic quantum gate F that works via interference:

|Φ f 〉 =
(
1⊗d ⊗ F

)
|Φd〉 =

(
1⊗d ⊗ F

)
⎡

⎣ 1√
2d

2d∑

h=1

β∗
h |h〉|l(x;Θh)〉

⎤

⎦

= 1√
2d

2d∑

h=1

β∗
h |h〉|g∗ (x;Θh)〉 = 1√

H

H∑

h=1

β∗
h |h〉|g∗

h〉, (10)

where H = 2d . In Eq. (10), the assumption is that the sequential application ofG(Θh)

and F on the quantum state |x〉 is equivalent to calculate the function g∗
h to an input

x . At this point, different values of the function g∗
h are entangled with different states

of the control register.
It is important to notice that a single execution of F allows the computation of the

function g∗
h for all the quantum trajectories in superposition. This is extremely useful

when, during the computation, the same operations need to be applied to multiple
inputs (e.g. when the activation function is applied to a huge number of neurons or in
the case of ensemble learning, where the same classifier has to be executed to different
sub-samples of the training set).
(Step 4) Measurement The last step consists of measuring the data register, leaving
untouched the control register:

〈M〉 = 〈Φ f |1⊗d ⊗ M|Φ f 〉 = 1

H

H∑

h=1

βh〈h|h〉 ⊗ 〈g∗
h |M|g∗

h〉

3 A detailed example with d = 3 is described in Appendix 5.
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Fig. 1 Quantum Circuit for the Multiple Aggregator Quantum Algorithm (MAQA)

= 1

H

H∑

h=1

βh〈g∗
h |M|g∗

h〉 = 1

H

H∑

h=1

βh 〈Mh〉

= 1

H

H∑

h=1

βhg (x;Θh) = fagg, (11)

where g (x;Θh) = 〈g∗
h |M|g∗

h〉 for a measurement operator M , βh = |β∗
h |2 with∑

h |βh |2 = 1 and H = 2d .
The expectation value 〈M〉 stores the weighted average of the 2d functions

g (x;Θh), which is accessible by measuring the data register. While extracting the
single contribution g (x;Θh) would require an exponential number of measurements
(since those values are in the superposition of 2d possible basis states), in a classical
supervised learning scenario the measure of interest is the weighted average of all the
functions which can be directly accessed by measuring the data register and leaving
intact the control register.

To summarise, the proposed architecture allows calculating the aggregation of
multiple and diverse functions described in Eq. (2) using a quantum algorithm. In
particular, it is possible to access the final result by measuring only the data register
while obtaining the weighted average of 2d different transformations g(x; ·) of the
input data x , where d is the size of the control register. Specifying properly Sβ , Sx ,
{G (

θi,1
)
,G

(
θi,2

)}i=1,...,d and F allows potentially to reproduce the quantum ver-
sion of all the ML algorithms discussed in Sect. 2. Furthermore, the framework is very
generic and can be adopted for hybrid and fault-tolerant quantum computation. The
quantum circuit for implementing MAQA is depicted in Fig. 1.

4 Discussion

As shown in the previous section, the MAQA allows obtaining a quantum state that
reproduces the idea of ML models as aggregators of functions using the proper-
ties of quantum computing. From a classical ML perspective, relevant computational
advantages are introduced. Given 2d component functions, any classical method that
leverages the idea of functions aggregation scales linearly in 2d since it is necessary to
compute those functions explicitly to obtain the overall average. Furthermore, in the
worst-case scenario, each component function has to process all available data; this
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implies a linear cost in the training set size multiplied by 2d . Using big-O notation,
given a dataset (xi , yi ) for i = 1, . . . N , where xi is a p-dimensional vector, and yi
is the target variable of interest, the overall time complexity of a model based on the
aggregation of 2d functions is:

O(2d Nα pβ) α, β ≥ 1.

In contrast, MAQA generates a superposition of 2d different transformations of the
input in onlyd steps since the single transformations are not computed directly, but they
result from the combination of different unitariesG(θi, j ). Then, once the quantum state
in Eq. (10) is generated, any operation (unitary F) is propagated to all the quantum
trajectories with a single execution. Using big-O notation, the time complexity of
implementing the MAQA is:

O (d × 2CG + CF ) ,

where CG is the cost the controlled operation C ( j)G(θ) and CF is the cost of F .
Note that the number of different functions grows exponentially with respect to the
parameter d, which has a linear impact on the overall time complexity. This means that
it is possible to generate an exponentially large number of different transformations of
the input while obtaining their average efficiently, at the cost of increasing the depth
of the corresponding quantum circuit linearly by a factor of 2CG .

However, these advantages come with some compromises. First, the assumption
about the nature of the operator G(θi, j ). In fact, MAQA assumes that the product of
G(θi, j ) for i = 1, . . . , d produces a quantum gate G (Θk):

G (Θk) =
∏

i=1,...,d
j=1,2

G
(
θi, j

)
. (12)

In practice, this means that multiple applications of the unitaries that depend on some
set of parameters θi, j result in a single transformation of the same nature that depends
on a derived set of parameters Θk . Although any quantum circuit can be expressed as
the product of different unitary matrices, the design of these gates in the context of
supervised learning needs to be accomplished such that the finalmeasurement provides
the target variable of interest.

Finally, when comparing classical and quantum algorithms, it is important to con-
sider that quantum computation introduces a new complexity class, theBounded-error
Quantum Polynomial time, representing the class of problems solvable in polynomial
time by an innately probabilistic quantum Turing machine [18]. Nevertheless, quan-
tum algorithms need to be evaluated in terms of gate complexity. Thus, it is necessary
that the exponential scaling introducedwith respect to d is preservedwhen considering
a specific QML model.
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4.1 MAQA as quantum–classical hybrid algorithm

Recently, the ideaof aggregating twodifferent unitary operators to reproduce theoutput
of a two-neuron single-layer neural network via quantum circuit has been proposed
(qSLP) [19]. Since multiple aggregations are the basis of both qSLP and MAQA, the
latter can be seen as a natural extension of the former with an exponentially large
number of neurons in the hidden layer. In fact, the entanglement between the control
and data registers implies the number of linear combinations to be equal to the number
of basis states of the control register. This, in turn, implies that the number of hidden
neurons H scales exponentially with the number of states of the control register as a
consequence of each hidden neuron being represented by a quantum trajectory. This
exponential scaling might enable the construction of a qSLP with an arbitrarily large
number of hidden neurons as the amount of available qubits increases. In other words,
by adopting MAQA to generalise the qSLP, we can build a model with an incredible
descriptive power capable of being a universal approximator.

From a computational point of view, given H hidden neurons and L training epochs,
the training of a classical SLP scales (at least) linearly in H and L since the output of
each hidden neuron has to be calculated explicitly to obtain the final output. Further-
more, if H is too large (a necessary condition for an SLP to be a universal approximator
[19, 20]), the problem becomes NP-hard [21]. The adoption of MAQA to generalise
the qSLP allows scaling linearly with respect to log2(H) = d, thanks to the entangle-
ment between the two quantum registers, which allows generating an exponentially
large number of quantum trajectories in superposition.

However, the main challenge to tackle in the near future for qSLP-MAQA is still
the design of a proper activation function—in the sense of the Universal Approx-
imation Theorem—which is one of the significant issues for building a complete
quantum neural network. Yet, a recent proposal of QSplines [13] opened the possibil-
ity of approximating non-linear activation functions via a quantum algorithm. Even
so, QSplines use the HHL as a subroutine, a fault-tolerant quantum algorithm that
cannot be adopted in hybrid computation on NISQ devices.

Nevertheless, recently it has been shown that quantum feature maps alongside
functions aggregation is able to achieve universal approximation [22]. Thus, a possible
future work consists of studying the qSLP-MAQA on top of the quantum feature map
to enable it as a universal functions approximator without implementing a nonlinear
quantum activation function.

4.2 MAQA as fault-tolerant quantum algorithm

Recently, a quantum algorithm that implements the idea of ensemblemethods has been
proposed [23] and further developed [24]. Looking at the specific quantum circuit in
use, it is possible to observe that quantum ensembles can be considered as a particu-
lar instance of MAQA, where the controlled rotation in Eqs. (8), (7) are implemented
using only the basis state |1〉 as control statewhich is transformed throughPauli-X gate
at each iteration. Furthermore, while MAQA allows flexible quantum trajectories in
terms of parametrised quantum gates Sβ and {G (

θi,1
)
,G

(
θi,2

)}i=1,...,d , in the case of
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quantum ensemble [24] the weights are pre-fixed (uniform superposition of the control
register) and the transformations of the input data are represented by CSWAP opera-
tions. Thus, MAQA potentially extends the proposed quantum ensemble specifically
defined for bagging strategy to other ensembles such as boosting and randomisation,
where the parameters of the single base model and the correspondent weights are not
pre-fixed. Still, the main drawback of the quantum ensemble remains the underlying
assumption to encode the complete training and test set into two different quantum
registers and use a large number of trajectories in superposition to compute different
subsamples of the training set. This would require an incredibly high number of qubits
in a fault-tolerant quantum computer.

In this respect, the main challenge to tackle to make the ensemble effective (using
MAQA) in the near future is the design of a quantum classifier based on interference
that guarantees a more efficient data encoding strategy (e.g. amplitude encoding) and
can process larger datasets.

5 Conclusions

The practical advantages of using quantum resources to solve machine learning tasks
are still to be demonstrated. However, the ground provided by quantum mechanics is
highly appealing since a low number of qubits allows accessing an exponentially large
Hilbert space.

In this work, we tried to take a further step towards the study of how machine
learning can benefit from quantum computation. The proposed quantum framework,
theMultiple AggregatorQuantumAlgorithm (MAQA), is capable of reproducing some
of themost important classical machine learning algorithms using quantum computing
resources. MAQA can potentially improve, in terms of time complexity, all those
models that require explicitly computing multiple and diverse functions to produce a
final strongmodel. In particular, the cost aggregating H different functions in classical
machine learning requires a computational cost linear in H . Instead, the proposed
quantum architecture allows scaling exponentially in H , requiring only log2(H) steps
under the assumption that the cost in terms of circuit complexity is unitary for each
step. The advantage comes directly from using superposition and entanglement as
resources for generating different transformations of the input. Furthermore, quantum
interference allows propagating the use of a specific unitary (gate F) to all the quantum
trajectories in superposition. Hence, the application of F impacts additively the overall
time complexity, and the same operationwould require amultiplicative cost in classical
computation.

In addition, we discussed how the proposed approach could be adopted as a
fault-tolerant (quantum ensemble) and hybrid quantum–classical (quantum Single-
Layer Perceptron) algorithm, though different technical aspects need to be further
investigated for both cases.

We are still in an early stage of QML, and its contribution to solving real world
problems in the context of machine learning is yet to be understood. However, many
research findings, including thiswork, suggest that the potential of quantumcomputing
is huge, and machine learning will likely benefit from it in the future.
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Appendix

We consider the MAQA architecture when d = 3. To make the notation simpler, we
indicate the parametrised quantum gate G(θi, j ) as Gi, j .

Without loss of generality, we can express the quantum gate Sβ as the tensor product
of d = 3 unitary gates Bi . Then, the state preparation step can be expressed as follows:

|Φ0〉 = (Sβ ⊗ Sx )|0, 0, 0〉control ⊗ |0, . . . , 0〉data
=

(
d⊗

i=1
Bi ⊗ Sx

)
|0〉⊗3 ⊗ |0〉⊗n

= 3⊗
i=1

(ai |0〉 + bi |1〉) ⊗ |x〉 = 3⊗
i=1

|ci 〉 ⊗ |x〉, (13)

where |ci 〉 is the i th control qubit and ai and bi are the parameters that determine its
amplitudes:

|ci 〉 = ai |0〉 + bi |1〉. (14)

Once the two registers are initialised, each qubit in the control register is entangled
with two different random transformations of the data register. Thus, the first step
after state preparation is the following:
Step 1 (i = 1)

First, the controlled-unitary C (1)G1,1 is executed to entangle the transformation
G1,1|x〉 with the excited state of |c3〉:

|Φ0,1〉 =
[
1⊗2 ⊗ C (1)G1,1

]
|Φ0〉
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=
[
1⊗2 ⊗ C (1)G1,1

]
(a3|0〉 + b3|1〉) ⊗ |x〉

= |c1〉 ⊗ |c2〉 ⊗ (
a3|0〉|x〉 + b3|1〉G1,1|x〉

)
. (15)

Then, a second controlled unitary C (0)G1,2 is executed:

|Φ1〉 =
[
1⊗2 ⊗ C (1)G1,2

]
|Φ1,1〉

= 2⊗
i=1

|ci 〉 ⊗ (
a3|0〉G1,2|x〉 + b3|0〉G1,1|x〉

)
. (16)

At this point, two different transformations,G1,1 andG1,2, of the initial state |x〉 are
generated in superposition and are entangled with the two basis states of the control
qubit |c3〉.
Step 2 (i = 2) The same operations are applied using |c2〉 as control qubit and different
matrices, G2,1 and G2,2.

First, the controlled unitary C (1)G2,1 is applied to entangle a transformation of |x〉
with the excited state of |c2〉:

|Φ2,1〉 =
(
1 ⊗ C (1) ⊗ 1 ⊗ G2,1

)
|Φ1〉

= |c1〉 ⊗ 1√
4

[
a2|0〉

(
a3|0〉G1,2|x〉 + b3|0〉G1,1|x〉

)] +
+ b2|1〉

(
a3|0〉G2,1G1,2|x〉 + b3|1〉G2,1G1,1|x〉

)
, (17)

where the position of the gate C (1) indicates the control qubit used for G2,1. Then, a
second controlled-unitary C (0)G2,2 is executed:

|Φ2〉 =
(
1 ⊗ C (1) ⊗ 1 ⊗ G2,2

)
|Φ2,1〉

= |c1〉 ⊗ 1√
4

[
a2|0〉

(
a3|0〉G2,2G1,2|x〉 + b3|1〉G2,2G1,1|x〉

)

+ b2|0〉
(
a3|0〉G2,1G1,1|x〉 + b3|1〉G2,1G1,2|x〉

)]
. (18)

Notice that the entanglement performed in Step 2.1 influences the entanglement in
Step 2.2, and each trajectory describes a different transformation of |x〉. Equation (18)
can be rewritten expressing the four basis states of the control register using natural
numbers:

|Φ2〉 = |c1〉 ⊗ 1√
4

[
a2a3|00〉G2,2G1,2|x〉 + a2b3|01〉G2,2G1,1|x〉

+ b2a3|10〉G2,1G1,2|x〉 + b2b3|11〉G2,1G1,1|x〉
]

= |c1〉 ⊗ 1√
4

4∑

h=1

β∗
h |h〉G(Θh)|x〉, (19)
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whereG(Θh) is the product of d = 2 unitariesGi, j , the coefficients β∗
h result from the

product of two coefficients ai and bi . Thus, using 2 control qubits 4 different quantum
trajectories are generated that correspond to 4 different transformations of data |x〉.
Step 3 (i = 3)

Extending the same procedure when d = 3, the result is the following:

|Φ3〉 = 1√
8

[
β∗
1 |000〉G3,2G2,2G1,2|x〉 + β∗

2 |001〉G3,2G2,2G1,1|x〉
+ β∗

3 |010〉G3,2G2,1G1,2|x〉 + β∗
4 |011〉G3,2G2,1G1,1|x〉

+ β∗
5 |100〉G3,1G2,2G1,2|x〉 + β∗

6 |101〉G3,1G2,2G1,1|x〉
+ β∗

7 |110〉G3,1G2,1G1,2|x〉 + β∗
8 |111〉G3,1G2,1G1,1|x〉

]

= 1√
8

8∑

h=1

β∗
h |h〉G(Θh)|x〉, (20)

where each G(Θh) is the product of 3 unitaries Gi, j for i = 1, 2, 3 and j = 1, 2.
Repeating this procedure d times with different control qubits, the result is the

following quantum state:

|Φd〉 = 1√
2d

2d∑

h=1

β∗
h |h〉G(Θh)|x〉 = 1√

2d

2d∑

h=1

β∗
h |h〉|l(x;Θh)〉, (21)

where each G(Θh) is the product of d = 3 unitaries Gi, j for i = 1, · · · , d and
j = 1, 2.
Finally, gate F is applied, as shown in Eq. (10) and the measurement of the data

register is performed.
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