
Quantum Information Processing (2023) 22:151
https://doi.org/10.1007/s11128-023-03898-2

Convolutional neural network based decoders for surface
codes

Simone Bordoni1 · Stefano Giagu1

Received: 25 March 2022 / Accepted: 27 February 2023 / Published online: 19 March 2023
© The Author(s) 2023

Abstract
The decoding of error syndromes of surface codes with classical algorithms may slow
down quantum computation. To overcome this problem it is possible to implement
decoding algorithms based on artificial neural networks. This work reports a study of
decoders based on convolutional neural networks, tested on different code distances
and noise models. The results show that decoders based on convolutional neural net-
works have good performance and can adapt to different noise models. Moreover,
explainable machine learning techniques have been applied to the neural network of
the decoder to better understand the behaviour and errors of the algorithm, in order to
produce a more robust and performing algorithm.

Keywords Quantum computing · Surface codes · Quantum error correction ·
Machine learning · Artificial neural networks · Quantum machine learning

Abbreviations
QECC Quantum error correction code

MWPM Minimum weight perfect matching
HLD High level decoder
CNN Convolutional neural network
FFNN Feed forward neural network

1 Introduction

In recent years a lot of interest has grown around the possibility of constructing efficient
quantum computers. One of the main problems regards the protection of quantum

B Simone Bordoni
simone.bordoni@uniroma1.it

B Stefano Giagu
stefano.giagu@uniroma1.it

1 Dipartimento di Fisica, La Sapienza Università di Roma, Piazzale Aldo Moro, 5, Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-03898-2&domain=pdf
http://orcid.org/0000-0002-9745-9189
http://orcid.org/0000-0001-9192-3537


151 Page 2 of 22 S. Bordoni, S. Giagu

information from external noise. This process, known as decoherence, is due to the
inevitable interaction between the qubits and the environment [1, 2].

A solution may come from quantum error correction codes (QECC), where logical
quantum information is stored in the degrees of freedom of a system composed of
many physical qubits. In this way, the logical information can be restored even in the
presence of single physical qubit errors [3, 4].

Surface codes are a family of QECC [5, 6], their implementation is simpler, with
respect to other codes, because only near interactions between the physical qubits is
needed. In a surface code a greater number of physical qubits gives better protec-
tion from errors, however, this makes the decoding procedure more complicated. The
decoding algorithm is implemented by a classical computer and should be carried out
fast to not slow down the quantum computation.With classical algorithms it is difficult
to obtain a reasonable execution time incrementing the number of physical qubits [7].
A solution to this problemmay come from the application of artificial neural networks.
Simple models of neural networks already give good decoding accuracy with a con-
stant execution time for small surface codes [8]. In order to decode codes with a larger
number of qubits, more complicated neural network models have to be employed.
This work focuses on decoders based on convolutional neural networks for different
code distances, noise models and error probabilities. To improve the performance of
the algorithms different model architectures have been studied to find the best error
probabilities for the training set and to reduce the number of trainable parameters of
the neural network. In the last section of the article, to get a better understanding of
the behaviour of neural network based decoders, explainable machine learning meth-
ods have been employed. An original technique to improve the decoder performance,
based on data augmentation driven by the results of the model explainability, is also
reported.

2 Surface codes

In a surface code physical qubits are arranged on a squared lattice; they are divided
in two categories (Fig. 1). The data qubits store the quantum information. The mea-
surement qubits, also called stabilizers, are used to perform projective measurements,
on the nearest neighbour data qubits. Measurement qubits are divided into Z and X
types, they are used to perform respectively measurements of the Pauli operators σx
or σz [9]. To simplify the notation in the rest of this work σx and σz Pauli operators
will be called X and Z operators. As all the stabilizers commute, after a measurement
cycle the system collapses into an eigenstate of all the stabilizers [10, 11].

A surface code contains the logical information of a qubit. The logical state can
be modified with logical operators. An operator of this kind has to preserve all the
eigenvalues of the stabilizers [12]. On each border of a surface code there are only X
measurement qubits or Z measurement qubits, these borders are called X sides or Z
sides of the surface code respectively. Every chain of single qubit X operators, that
connect the X sides, works as an X logical operator. This is also true, in the case of Z
logical operators, for chains of Z single qubit operators that connect the Z sides. The
minimum number of single qubit operators, necessary to change the logical state, is
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Fig. 1 Schematic representation of a surface code. Data qubits are represented as circles while X and Z
measurement qubits are represented as squares. Each qubit is connected with its nearest neighbours

equal to the number of data qubits on a side of the lattice, this important value is called
the distance of the code (d) [6]. Figure 2 shows some examples of logical operators
in a d = 5 surface code.

2.1 Errors

Unlike the classical bit, where only bit flip errors may appear, for a qubit there is a
continuous set of possible errors. However, after a measurement cycle, the state of the
qubits collapses into a discrete set of possible errors [2–4]. There are three main kind
of errors that appear on a surface code.

Data qubit errors are the classical bit flip (X errors), phase flip (Z errors) and a
combination of both (Y errors). A single error of this type can be easily identified by
observing a change of the eigenvalues in the neighbouring stabilizers (Fig 3).

Measurement errors appear when the projective measurement fails. A single error
of this type changes just the value of the considered stabilizer.

Gate errorsmay appear during themeasurement processwhen imperfectHadamard
and C-NOT gates are used. C-NOT gate errors are the most difficult to be identified
because they affect two qubits.

It is possible to test different noise models (or error models) by including only
some types of the errors previously described and by changing their probability. In
this workmany simulations of surface codes have been performed to test different code
distances, error models and probabilities. For this purpose a specific python library has
been employed1. The performance of a decoding algorithm can be very sensitive with
respect to the considered error model and characteristics of the surface code [13–15].

In the depolarising error model only data qubit errors are considered. Given p the
error probability, each data qubit is subject to an X , Z , or Y error with equal probability

1 E. Villaseñor and B. Criger: https://github.com/evalvarez12/Distributed_Surface_Code.git
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Fig. 2 Examples of logical operators in a d = 5 surface code. Z and X logical operators are composed of
chains of single qubit Z or X operators connecting the Z or X sides respectively

Fig. 3 Signal error produced by single data qubit errors. The highlighted measurement qubits change their
measurement value
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p/3. Perfect measurements and gates are assumed, thus only one measurement cycle
is necessary.

In the circuit noise model also the measurement qubits are subject to errors and
gates are not assumed perfect. In this case it is better to make more measurement
cycles to identify measurement errors.

2.2 Decoding algorithms

In a QECC, the Hilbert space that describes the state of the physical qubits can be
decomposed into a logical and an ancillary subspace [16]. After error correction the
ancillary state, that increases the redundancy of information, is restored. This is not true
for the logical state that may be modified, causing a logical error. The performance of
a decoding algorithm can be tested by studying the rate at which logical errors appear,
as a function of the single qubit error probability.

The minimum weight perfect matching algorithm (MWPM) restores the ancillary
state with the minimum number of corrections [17–19]. This decoder is only nearly
optimal for bit-flip noise [20] (independent X and Z errors), it represents a standard
benchmark for other decoders. When studying the logical error rate with respect to
the single qubit error rate a typical behaviour occurs. For low error probabilities, the
decoding accuracy increases with the dimension of the code. On the other hand, for
high error probabilities, increasing the distance of the code reduces the accuracy of
the decoder [6, 14]. The cross-over of these two regimes occurs at the threshold error
rate.

In order to use artificial neural networks, it is necessary to transform the original
decoding problem in a classification problem. For this purpose, neural network based
decoders are composed of two components:

The simple decoder analyses the error syndrome and proposes a correction that
matches with the syndrome. This algorithm may be implemented by a neural network
but it is simpler to use naive decoder. In this work the simple decoder corrects each
error with a chain of operators that connects it to the nearest border. In this way the
ancillary state of the system is restored.

The high level decoder (HLD) takes as input the error syndrome and tries to find out
if the correction of the simple decoder has created a logical error. This is a classification
problem that may be solved by a neural network.

3 Related works

Manydifferent algorithms, based both on classicalmethods andmachine learning tech-
niques, have been tested for the decoding of surface codes. Apart from the MWPM
previously introduced, examples of decoding algorithms not based on neural networks
are the renormalization group decoder [21, 22], the cellular automaton [23], the max-
imum likelihood decoder [24] and the Markov chain Monte Carlo decoder [25]. For
these algorithms it is difficult to find a good compromise between decoding accuracy
and execution time [7]. As neural network based decoders show a good compromise

123



151 Page 6 of 22 S. Bordoni, S. Giagu

between accuracy and execution time, many studies have been carried out to test dif-
ferent neural network architectures. The first studies in this sector [26] show that, for
small surface codes, neural network based decoders have a decoding performance,
similar to MWPM, for a depolarising noise model. When measurement error and
imperfect gates are included it is possible to improve the MWPM algorithm taking
into account of more complex noise models [27, 28]. However neural network based
decoders remain interesting because they require constant execution time and can
easily adapt to different noise models. Some problems arise for high distance surface
codes as the number of possible error syndromes increases exponentially. This means
that, for the correct training of the HLD, the training set needs to be increased with
the dimension of the code to contain the most statistically relevant errors.

To scale the methodology to higher distance surface codes, some interesting
approaches have been proposed. A recurrent neural network architecture has been
tested by Baireuther et al. [29] for the decoding of correlated errors. Torlai and Melko
[30] have tested a decoder based on a stochastic neural network (Boltzmann machine)
that is applicable to a wide variety of stabilizer codes. Other interesting studies on
deep learning based decoders have been carried out by Krastanov and Jiang [31].
Varsamopoulos et al. [8] have compared decoders based on feed forward neural net-
works and on recurrent neural networks. Recent works have tested decoders based
on distributed neural networks [7], in order to reduce the size of the training set for
high distance surface codes. Another interesting novel idea comes from the applica-
tion of machine learning techniques to an ensemble of classical decoders [32]. Other
decoders based on machine learning have been recently tested by Bhoumik et al. [33].
A state of the art decoder, scalable to high distance surface codes, has been created
by Meinerz et al. [34] combining convolutional neural networks (to preprocess local
information) with a conventional algorithm. Other decoders based on convolutional
neural networks have been tested on high distance surface codes for a depolarising or
bit flip error models [35, 36].

While this work concentrates on smaller dimension surface codes, with respect
to the previously mentioned studies, some new elements have been introduced. A
more realistic noise model, that includes measurement errors, has been decoded with
a convolutional neural network. The performance of the HLD have been studied with
respect to the choice of the training set error probability. The dilated convolution
technique has been tested to scale to higher distance codes and to reduce the number
of trainable parameters of the neural network. Moreover, in order to understand better
the cases where the neural network fails, explainable machine learning techniques
have been applied to the HLD.

4 Convolutional neural network based decoders

In this section the characteristics of high level decoders based on feed forward neu-
ral networks (FFNN) and convolutional neural networks (CNN) will be tested. Two
different noise models will be considered, the simple depolarising noise and a more
complicated noisemodel wheremeasurement errors andmoremeasurement cycles are
present. Before the comparison some preliminary studies are necessary for the tuning
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Table 1 This table reports the
optimal number of trainable
weights (P) of the feed forward
neural network obtained for
different code distances (d) for a
depolarising noise

d P

7 5.67× 105

9 6.4× 106

11 3.9× 106

Table 2 This table reports best
hyperparameters of the CNN for
different code distances and a
depolarising error model

d CL DL N P

7 3 1 512 2.7× 106

9 4 1 1024 8.0× 106

11 6 2 1024 9.2× 106

d is the code distance, CL is the number of convolutional layers, DL
is the number of dense layers, N is the number of neurons in the dense
layers and P is the total number of trainable weights

of the hyperparameters. Furthermore, to improve the accuracy of the HLD, convolu-
tional neural networks based on dilated convolution layers, able to better capture local
features at different spatial scales, will be tested in this section.

4.1 Depolarising noise

For the depolarising errormodel datasets of 5×106 elements have been generatedwith
a single qubit error probability p = 0.1 and for code distances d = 7, 9, 11. All the
neural networks employed, both FFNN and CNN, share the following characteristics.
ReLUactivation functions have been used in all hidden layerswhile Softmax activation
functions have been used for the output layer. The loss function employed is categorical
cross entropy. The ADAM optimiser has been used, with a mini-batch size of 32
elements. The neural networks have been trained for 20 epochs using 10% of the
original dataset as evaluation set.

Feed forward neural networks with different numbers of layers and neurons have
been tested on each dataset. The best results, for all the code distances, have been
obtained using three hidden layers with a number of trainable weights reported in
Table 1.

For the convolutional neural networks, the input format consists of squaredmatrices
with a number of rows and columns equal to 2d − 1, where d is the distance of the
code. Each matrix element represents a qubit of the surface code. The value of the
data qubits is set to zero, while the value of the measurement qubits is {1,−1}. The
first parameters of the CNN to be defined are the number of filters and the number of
convolutional and dense layers. For the number of filters the best results have been
obtained using 64 kernels of dimension 3×3. The number of convolutional and dense
layers that showed the best performance are reported in Table 2. Other fine tests have
been carried out to improve the performance, for example a stride with value 2 has
been tested for the first convolutional layer but this reduced the overall performance.
A small increase in the accuracy has been obtained with a padding on the first layer.
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Fig. 4 Comparison between accuracy obtained with HLD based on FFNN and CNN and the accuracy
obtained with MWPM for different code distances (d) and single qubit error probabilities (Physical Qubit
error)

The accuracy obtained with the previously described models of neural networks is
reported in Fig. 4 and has been compared to the accuracy obtained with MWPM for
different code distances and single qubit error probabilities. The test on different error
probabilities have been made on datasets of 2 × 105 elements. For d = 7 codes the
performance of the high level decoder, both based on FFNN or CNN, is greater than
MWPM. For greater distance codes the HLD has a worse performance than MWPM.
This is due to the fact that the dimension of the training set is still too small to include
the most statistically relevant error syndromes, necessary for a correct training of the
network. However, for these code distances, it is possible to observe the advantage in
the use of a CNN with respect to a FFNN.

4.2 Depolarising plus measurement errors

In order to reproduce a more realistic error model it is necessary to include measure-
ment errors and more correction cycles. In this section we will employ the following
noise model: before a measurement cycle a depolarising noise is applied with single
qubit error probability p = 0.01. After applying the depolarising noise, an imperfect
measurement cycle is performed. The measurement error probability has been set to
q = 0.01. Three rounds of depolarising error plus imperfect measurements are carried
out on each surface code. This errormodel is different with respect to the channel noise
model where gate errors are included. However, this noise model is easier to simu-
late, and can be employed for an initial study of the behaviour of high level decoders
based on CNN, when measurement errors and many correction cycles are present. The
MWPM algorithm still works for a circuit level noise model with many measurement
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Fig. 5 Performance ofMWPMfor the depolarising plusmeasurement errorsmodel using a different number
or imperfect measurement cycles (3 and 9). The depolarising error probability (p) has been set equal to the
measurement error probability (q). For this noise model a different number of measurement cycles does
not modify significantly the decoding problem

cycles, in this case the error matches are carried out on a three dimensional graph [13].
As benchmark, in this section, we employed the simplest version of the MWPM algo-
rithm that considers all measurements as perfect. The performance of this algorithm
is sub-optimal but can be improved by adjusting the weights in the matching graphs
[37].

It is important to notice that three measurement cycles is not the standard way to
benchmark noise models with measurement errors, that is carried out using as many
measurement cycles as the distance of the code. However, we have decided to reduce
the number of measurement cycles in order to speed up the generation of the datasets
thus obtaining more training samples. In fact, the time required to generate large train-
ing sets as well as their size was at the limit of the available computational resources,
in particular in Sect. 5 where many training sets with different error probabilities have
been employed. Reducing the number of imperfect measurement cycles does not sig-
nificantly change the decoding problem. As a reference, Fig. 5 reports the performance
ofMWPMobtained on surface codes of dimension d = 9 and the previously described
noise model using three measurement cycles and nine measurement cycles.

For the depolarising plus measurement errors model it is necessary to find the best
hyperparameters for the neural network employed in the HLD. All the characteris-
tics of the neural networks, like kernel dimension and activation functions are the
same employed for the depolarising noise. The hyperparameters that were changed to
improve the performance regard the number of layers and neurons. The neural net-
works have been trained on datasets of 2 × 106 elements, using 10% of the original
training set as the evaluation set.

For the CNN the best hyperparameters are reported in Table 3. Some tests have
been carried out using a FFNN, however no interesting results have been obtained
using this architecture.

The accuracy obtained with the HLD, for the depolarising plus measurement errors
model, is reported in Fig. 6 and has been compared to the accuracy obtained with
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Table 3 Best hyperparameters
of the CNN for different code
distances for a depolarising plus
measurement errors model

d CL DL N P

7 3 2 1024 6.4× 106

9 3 2 1024 12.2× 106

11 4 2 512 7.7× 106

d is the code distance, CL is the number of convolutional layers, DL
is the number of dense layers, N is the number of neurons in the dense
layers and P is the total number of trainable weights

Fig. 6 Comparison between accuracy obtained with HLD based on CNN and the accuracy obtained with
the classical decoder MWPM for the depolarising plus measurement errors model, the depolarising error
probability (p) has been set equal to the measurement error probability (q)

MWPM. The test on different single qubit error probabilities have been made on
datasets of 2× 105 elements. When measurement errors are included the accuracy of
MWPM reduces sensibly while the HLD is able to better adapt to this different noise
model.

4.3 Dilated convolution

In order to improve the performance of the HLD for high distance codes, it should
be useful to increase the local receptive field without incrementing the number of
weights of the kernels. This result can be obtained with a dilated convolution [38].
Three different implementations of a CNNwith a dilated convolution have been tested.
In the first case only the first layer of the CNN has a dilation factor equal to two. In
the second case all the convolutional layers except the first one have dilation factor
two and in the third case all the layers have this dilation factor. The training has been
performed, for all code dimensions, on the same datasets described in Sect. 4.1 for the
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depolarising error model and in Sect. 4.2 for the depolarising plus measurement errors
model. The best results have been obtained using a dilated convolution for all the
convolutional layers except the first one. The performance of this CNN architecture
has been compared with the same model without the dilation factor. The results are
reported inFig. 7 for depolarising errormodel (top) and depolarising plusmeasurement
errors model (bottom).

The results obtained in this study show that dilated convolution may be a good way
to improve the performance of the decoder for high distance codes. In fact, while for
codes of distance 7 and 9 the use of dilated convolution doesn’t alter the performance
sensibly, for codes of distance 11, where there are more convolutional layers, it is
possible to obtain a performance improvement.

The performance increase obtainedwith the dilated convolution is due to a reduction
of the number of trainable weights in the neural network. In fact, no padding is used
in the layers after the first one, so incrementing the local receptive field reduces the
number of neurons of the first dense layer.

5 Choice of the training set

Neural networks are algorithms highly employed for their good generalisation prop-
erties. For the HLD it is possible to test these properties by training and testing the
neural networks on datasets with different error probabilities. This is also very useful
in real applications where the exact physical error rate is unknown.

For the depolarising error model, error probabilities of p = 0.05; 0.075; 0.1; 0.13
have been used to train the CNN for each code dimension. Each dataset is composed of
5×106 elements. The hyperparameters of the CNN are the ones described in Sect. 4.2
(Table 2). The performance has been evaluated on different error probabilities, the
same datasets used in Sect. 4.1. The results of this study are reported in Fig. 8.

Figure 8 shows that a better performance is obtained when the neural network is
trained on a higher error probability. This is due to the fact that, in datasets with higher
error probability there are statistically relevant samples that are not present in datasets
with a lower error probability.

However, when the dimension of the code becomes greater, a high error probability
for the training set may cause problems for the training of the neural network. This
happened for codes of dimension 11, using an error probability p = 0.13, in this
case it has been possible to train the network only by starting from the weights of the
network previously trained on an error probability p = 0.1. This procedure is very
interesting as in this way it is possible to add more complicated error syndromes to
the training set thus improving the performance of the decoder.

A similar analysis has been carried out for the depolarising plusmeasurement errors
noise model. Four datasets (2× 106 elements each) with different error probabilities
have been generated for different code dimensions. The depolarising error probability
is indicated with p while the measurement error probability with q, the four datasets
have error probabilities of: p = q = 0.005, p = q = 0.0075, p = q = 0.01 and
p = q = 0.013.
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Fig. 7 Comparison of the accuracy, on different code distances (d), obtained with a CNN with no dilation
factor (N) and the same model with a dilated convolution with a dilation rate equal to two on all the
convolutional layers except the first one (D). For the depolarising error model (Top) the neural networks
have been trained on a dataset with p = 0.1. While for the depolarising plus measurement errors model
(Bottom) p = q = 0.01 (three measurement cycles). The graphs report the accuracy of the CNN decoder
obtained using the described neural network architectures for different physical qubit error rates
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Fig. 8 Accuracy of the HLD trained and tested on different single qubit error probabilities for different
code distances d. The training set single qubit error probability (p) is reported in the legend

For each code distance four neural networks have been trained using a single dataset.
The CNN architecture and characteristics are the same of Sect. 4.2 (Table 3). The
performance test with different error probabilities has been carried out on the same
datasets used in Sect. 4.2. The results of this study are reported in Fig. 9, they are
similar to the results obtained for the depolarising error model: it is better to use a
higher error probability to train the neural network. However, also in this case, a high
error probability may cause the neural network not to train correctly. In fact for both
codes of distance 9 and 11 it was possible to train the network on an error probability
p = q = 0.013 only by starting from the weights of the neural network previously
trained on a lower error probability.

6 Model explainability

In order to trust complex and less transparent algorithms like artificial neural networks,
it is necessary to know why they fail or work correctly. In particular, for convolutional
neural networks trained for classification, it is important to understand the inputs that
influence more the final decision. Many methods have been developed to construct
saliency maps of the input pixels for image classification [39]. For example, with the
GradCAM and Occlusion algorithms [40, 41], it is possible to obtain an heatmap of
the input pixels based on their relevance for the output probability.

In the occlusion method several small regions of the image are systematically
masked (all input pixels of the covered region are set to zero), and the changes in the
loss function between the occluded and standard image are recorded. The saliency
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Fig. 9 Accuracy of theHLD trained and tested on different depolarising andmeasurement error probabilities
for different code distances d. The training set single qubit error probability (p) and measurement error
probability (q) is reported in the legend

value corresponding to a given masked region is given by:

Saliency(region) = [
loss(imageoriginal) − loss(imagemasked)

]2

We expect that a region that contributes more to the prediction of the model would
change significantly the loss if masked. By shifting the masked region horizontally
and vertically and repeating the process it is possible to construct the saliency map
of the input features. For example, giving an image of 28x28 pixels and a occlusion
patch of size 4x4 to mask the image, with a stride of 4 steps, an occlusion saliency
map of size 7x7 is obtained. The salience map build in this way is then zoomed back
to the original image resolution and overlaid to it.

Saliency maps help understanding if the trained HLD is performing as expected,
and so allow to validate the algorithm, but they can also employed to better understand
the errors of HLD in order to try to improve their performance. An original example
of using salience maps to improve the algorithm itself is presented in Sect. 6.2.

6.1 Saliencymap analysis

Occlusion method has been applied to the neural network of the HLD in order to
understand how error syndromes are detected. Tests have been carried out for different
code distances and neural networks trained on different error probabilities, the results
obtained are very similar. In the following saliency maps of the input are reported for
a depolarising noise model for codes of distance 11, using the neural network trained
on an error probability p = 0.13. In fact this is the neural network that showed better
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Fig. 10 Saliency map of a manually generated error syndrome analysed with a neural network decoder, the
dark red regions are the ones that contribute more to the output. The error syndrome has been overlaid to
the map, data qubits with X errors are highlighted in green, while the measurement qubits that report the
error signal are highlighted in blue. Two single X errors, E1 and E2, and two errors chains composed of
three X errors, E3 and E4 have been inserted in the surface code. The errors closer to the centre between
the X sides (E1 and E3) are the ones that contribute more for the classification

results for codes of dimension 11, and with the depolarising noise model it is easier
to find the more critical regions of the input. In the implementation of the occlusion
method squared occlusion patches of the input of dimension 2×2 have been artificially
set to zero. The dimension of the occluded window has been chosen in order to obtain
a compromise between the smoothness and the granularity of the saliency map.

The first study regards how single errors or small chains of errors affect the final
result, based on their position in the surface code (Fig. 10). Two single X errors have
been placed, one in the middle between the X sides (E1), and one near an X side (E2).
The single decoder is able to correct E2 but creates an X logical error when trying
to decode E1. The Neural network is able to identify the introduction of a logical
error, the region near E1 contributes to the output probability while the region near E2
doesn’t contribute significantly. This is due to the fact that occluding the region of the
error E1 reverses the output of the neural network (X logical error can’t be identified)
thus significantly changing the loss.

Two errors chains composed of three X errors have been placed one in the middle
between the X sides (E3) and one near an X side (E4). The simple decoder is able
to correct E4 but creates a logical error correcting E3. The regions near the ends of
the chain E3 contribute more to the output than the regions near the ends of the chain
E4. Also in this case this is due to the fact that covering the error syndrome of E3
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Fig. 11 Saliency map of a manually generated error syndrome analysed with a neural network decoder, the
dark red regions are the ones that contribute more to the output. The error syndrome has been overlaid to the
map, data qubit with depolarising errors are highlighted in green, while the measurement qubit that report
the error signal are highlighted in blue. Two errors chains composed respectively of five X (horizontal) and
Z (vertical) errors have been inserted in the middle of the surface code. The HLD is not able to identify the
creation of an Y logical error after the correction of the simple decoder

reverse the output of the CNN. Moreover, we have observed also in other examples,
that errors placed near the centre of the surface code influence more the output of the
decoder.

The left side of the chain E3 contributes more to the output than the right side.
Similar asymmetries can be found in other saliency maps and change with respect
to the horizontal or vertical position of the errors chain as well as the presence and
position of other errors in the code. For example in the case reported in Fig. 10 the
asymmetry is mainly due to the presence of the error E2. Note that there are active
regions of the input between the right side of the chain E3 and the left side of the
chain E4. This first study considered only X depolarising errors, similar results can
be obtained for single Z errors or small chains of Z errors. In this case the errors
that contribute more to the output of the decoder are the ones placed near the middle
between the Z sides.

For a depolarising error model the minimum weight perfect matching showed a
better accuracy than the high level decoder, especially for codes of dimension 11. This
means that there are cases where MWPM correctly identifies error chains while the
high level decoder fails. An example is reported in Fig. 11 where two error chains,
composed of five errors, have been inserted in the code. The first chain is composed
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of X errors and is placed horizontally in the centre of the code, the second chain,
composed of Z errors, is placed vertically in the centre of the code. Chains of this kind
are very dangerous as they may be easily misidentified by a decoder and corrected
by matching the error syndrome with the nearest border of the code thus creating a
logical error. This is the case of the HLD, that is not able to identify the creation of
an Y logical error after the correction of the simple decoder. In particular, the neural
network classifies the error syndrome with no logical errors, this means that it is not
able to find both the X and Z errors chains. Looking at the saliency map, reported
in Fig. 11, it is possible to notice that the most relevant regions of the input are the
ones located between the extremity of the chains and the nearest border of the surface
code. This is probably due to the fact that the neural network decoder is looking for
other errors in these regions in order to find the other extremities of the chains rather
than matching X and Z syndromes with a single chain. This kind of error occurs
almost every time a chain of length more than five appears in codes of distance 11.
For codes of distance 9 and 7 the HLD correctly identifies chains of length 4 and 3
respectively. The MWPM is able to correct errors chains of length less than or equal
(d − 1)/2, where d is the dimension of the code. This means that this algorithm can
correct chains of length 5 for d = 11 surface codes, while the maximum number of
correctable errors in the chains is equal to 4 for d = 9 and 3 for d = 7. This explains
the performance reduction of the HLD with respect to MWPM for codes of distance
11. The introduction of more samples in the training set, containing error chains of
length five, can be a solution to improve the performance of HLD. This has been
studied in Sect. 6.2.

There are some cases where the HLD is able to correct an error syndrome of a
depolarising noise model where MWPM fails. An example is reported in Fig. 12, the
error chain that gives problems to MWPM has been isolated by eliminating the other
errors present in the code. After the correction ofMWPM, an X error chain connecting
the X sides of the code is introduced. On the other way, the HLD identifies all the
logical errors introduced by the simple decoder. Looking at the saliency map in Fig. 12
it is possible to notice that the central region of the surface code, where two isolated
errors are present, is not really relevant for the output. On the other way, the region
near the right X side, where there is a small error chain, is the one that mostly affects
the output.

6.2 Performance enhancement with data augmentation driven bymodel
explainability

Model Explainability may be an interesting tool to improve the performance of ML
algorithms. This can be done, for example, by analysing the critical issues in order
to remove or attenuate them. In this section we have applied this idea to improve the
performance of HLD.

Figure 11 showed that the CNN decoder fails to recognise some error chains of
length 5 in a surface code of dimension 11. As these kinds of error chains can be
corrected by MWPM, they account for the better performance of this decoder with
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Fig. 12 Saliency map of an error syndrome analysed with a neural network decoder, the dark red regions
are the ones that contribute more to the output. The error syndrome has been overlaid to the map, data
qubit with X errors are highlighted in green, while the measurement qubit that report the error signal are
highlighted in blue. In this case the HLD is able to correct the error syndrome while the MWPM fails. This
example has been generated using a depolarising error model (perfect measurements) with single qubit
error probability p = 0.15, the error chain responsible for the failure of MWPM has been extracted and
analysed

respect to a HLD. In order to reduce this problem, we have generated an enhanced
augmented data training set that includes some samples of these error chains.

These special samples have been generated with the following procedure. An error
chain, composed of five single qubit errors of the same kind and on the same row or
column, is added to the surface code. Both the row (or column) position of the chain,
as well as the error locations, are randomly drawn. A single X error chain is added
with probability 1/3; with the same probability a single Z error chain is added and, in
the other cases, both an X and a Z error chains are added.

The enhanced train set used to improve the performance of the CNN is composed
of 7× 106 samples divided as follows. 106 special samples containing error chains of
length 5 (as previously described). 5×106 sampleswith a single qubit error probability
p = 0.1 (standard train set employed in Sect. 4.1). 106 samples with a single qubit
error probability p = 0.13; a higher single qubit error probability helps produce
samples with longer error chains.

The employedCNNis the samedescribed inSect. 4.1 for surface codes of dimension
11. As the enhanced train set contains samples of different kind, the training batch
size has been set to 128 to increase training stability. The model has been trained for
four epochs, starting from the parameters trained in Sect. 4.1 on the standard train set
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Fig. 13 Performance comparison between HLD trained on a standard train set with single qubit error
probability p = 0.1 and the model trained on the enhanced train set that includes samples of error chains
of length five

with a single qubit error probability p = 0.1. The trained model has been tested on
different single qubit error probabilities, the same test sets introduced in Sect. 4.1.

Figure 13 reports the performance improvement obtained with the enhanced train
set, with respect to the standard train set employed in Sect. 4.1. The performance
improvement is significant, about 1% for single qubit error probability p = 0.1 and
up to 2% for higher single qubit error probabilities. Moreover, the new model is able
to correctly decode the example reported in Fig. 11. The new saliency map, obtained
with this model, is reported in Fig. 14. A comparison with Fig. 11 shows how the HLD
trained on the enhanced dataset gives the same importance to X and Z error signals.
This decoder is able to better understand the importance of the error signals at the end
of the error chains, as well as the central region of the surface code.

7 Conclusions

Neural network based decoders have proved to be excellent algorithms for the decoding
of surface codes due to their constant execution time, good accuracy and adaptability
to different noise models. The use of a convolutional architecture, with respect to a
dense architecture, helps scaling to higher distance codes. However, as increment-
ing the distance of the code increments exponentially the possible error syndromes,
larger datasets are required for correct training. This makes difficult to apply a simple
convolutional architecture to decode really high distance codes. Convolutional neural
networks decoders remain interesting as they may be used as the first step of a more
sophisticated decoder to process local information [34]. Moreover, it is likely that in
the future only small distance surface codes will be available for the first tests.
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Fig. 14 Saliency map of the
same error syndrome reported in
Fig. 11, decoded with the HLD
trained on the enhanced train set.
The dark red regions are the
ones that contribute more to the
output, they are placed near the
error signals and the centre of
the surface code. This HLD is
able to correctly identify the
presence of error chains from a
sparse error syndrome

The results obtained in this work are promising and helpful to improve the accuracy
obtained with HLD based on convolutional neural networks. Different convolutional
neural network architectures and training strategies have been tested for different code
distances and noise models. The results suggest that using a training set with a higher
error probability helps improving the performance of the decoder, and that successful
training benefits can be obtained from a pre-training based on examples on a lower
error probability. It was also shown how it is possible to use dilated convolution to
reduce the number of parameters that can be trained with decoders based on very
deep convolutional neural networks. This suggest a possible way to try to scale the
convolutional neural networks based decoder to larger surface codes.

Finally, explainability methods have been proposed and applied to get insights on
how error syndromes are classified by the neural network decoder. A better knowledge
of the causes of the failure of the decoding is in fact fundamental to improve the
performance, robustness and confidence in neural network HLD for real applications.
In this respect an original example of use of the salience maps to improve the HLD
algorithm has been presented.
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