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Abstract
Quantum computing allows a significant speed-up over traditional CPU- and GPU-
based algorithms when applied to particular mathematical challenges such as
optimisation and simulation. Despite promising advances and extensive research in
hard- and software developments, currently available quantum systems are still largely
limited in their capability. In linewith this, practical applications in quantitative finance
are still in their infancy. This paper analyses requirements and concrete approaches
for the application to risk management in a financial institution. On the examples of
Value-at-Risk for market risk and Potential Future Exposure for counterparty credit
risk, the main contribution lies in going beyond textbook illustrations and instead
exploring must-have model features and their quantum implementations. While con-
ceptual solutions and small-scale circuits are feasible at this stage, the leap needed
for real-life applications is still significant. In order to build a usable risk measure-
ment system, the hardware capacity—measured in number of qubits—would need to
increase by several magnitudes from their current value of about 102. Quantum noise
poses an additional challenge, and research into its control and mitigation would need
to advance in order to render risk measurement applications deployable in practice.
Overall, given the maturity of established classical simulation-based approaches that
allow risk computations in reasonable time and with sufficient accuracy, the business
case for a move to quantum solutions is not very strong at this point.
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1 Introduction

The term ‘quantum computing’ refers to using quantum mechanics, i.e. the theory to
describe physical properties and effects of atoms and subatomic particles, on specially
designed devices.1 Compared to ‘classical’ computations onCPUandGPUhardware,2

the use of quantum hardware and specially designed software promises a significant
speed advantage, dependent on the problem at hand. For certain types of applica-
tions, such as integer factorisation—often used as a basis for encryption—quantum
computing is the only known way to obtain solutions in an acceptable timeframe.

The landscape of quantum technologies, research and investments has seen an
exponential growth over recent years [55]. Financial institutions such as large banks
have been investing substantially into quantum research—mainly on rented hardware
with so far limited capabilities—and the exploration of its use cases. High hopes have
been expressed for applications such as trading and risk management [11, 20, 22, 44,
69, 90]. The recent trend of using machine learning for financial problems offers a
straightforward extension to quantum computing. It is as such vigorously pursued by
banks [19]. Suitable quantum applications are especially those where a large number
of algorithmic repetitions is required, for example, the brute-force enumeration of
possible solutions for a system of equations and, to a lesser extent, in Monte Carlo
simulation.

The contribution of this study is an exploration of the feasibility of using quantum
computing in actual large-scale risk applications in financial institutions. In a typical
market risk application that makes use of simulating future market scenarios—such
as a Monte Carlo-based Value-at-Risk (VaR)—a large number of risk factors and their
joint evolution need to be reflected. Furthermore, the corresponding changes in the
present value (PV) of instruments in a portfolio require revaluations in each potential
future state. The situation in a counterparty credit risk context is similar: scenarios
across a multitude of risk factors and, additionally, numerous time steps need to be
combined with portfolio revaluations.

The analysis shows that the capacity of current state-of-the-art quantum systems,
measured through the number of ‘qubits’, severely limits both the number of risk
factors that can be simulated as well as the accuracy of their marginal and joint distri-
butions. In conjunctionwith typical ‘noise’ patterns that quantumcircuits experience in
practice, risk measurement applications with real-life use cases are out of reach for the
foreseeable future.3 Bearing in mind that practical risk applications in financial insti-
tutions using classical computing are meanwhile mature and deliver accurate enough

1 See, for example, the introductory work in [45] and the state-of-the-art technology summary in [32].
2 CPU: Central Processing Unit; GPU: Graphics Processing Unit.
3 On the example of market risk, the authors of [37] come to a similar assessment.
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results in acceptable amounts of time even for large-scale portfolios, the business case
for a move to quantum computing is not apparent at this point.

The paper is organised as follows. Sect. 2 summarises the current state of research
into quantum applications in quantitative finance. Sect. 3 defines the framework for
practical quantum use cases in riskmeasurement. It outlines fundamental challenges in
terms of size, speed and accuracy requirements and recalls some essentials on quantum
computing. The basic building blocks in the form of quantum amplitude estimation
as well as techniques for scenario modelling and working with profit-and-loss (P&L)
distributions are described. Furthermore, quantum-specific challenges for real-life use
cases such as the handlingof noise are covered. Sect. 4 presents an application tomarket
risk as typically encountered in financial services. Starting from the underlying risk
factor model with its calibration and the VaR calculation, the creation of a suitable
quantum circuit is described. This is followed by an analysis of the estimation results.
Covering the same aspects, a worked example for measuring counterparty credit risk
is discussed in Sect. 5. In Sect. 6, the influence of adding typical quantum noise as
present in current devices is illustrated. The Python-based Qiskit framework4 of IBM
is used for the actual implementations. Section 7 concludes and provides an outlook
for future research.

2 Research landscape in quantitative finance

Quantitative finance is a prime candidate for the use of quantum computing, given
that many algorithms rely on simulation or on solving complex optimisation problems
which either demand a vast amount of computational power or are even unsolvablewith
classical approaches.5 Practical applications of quantum computing in quantitative
finance are still comparatively limited.

Pricing of derivatives. Amongst financial instruments, some classes are easier to han-
dle than others. For the purpose of ‘pricing’, i.e. the determination of the PV, one will
typically rely on (1) replication arguments—assembling the same payoff from more
basic building blocks whose PVs are known or easier to obtain—and/or (2) assump-
tions on the future evolution of the value drivers (e.g. stock prices) and obtain the
PV through mathematical derivation or simulation. A particular challenge are deriva-
tives, whose values depend on that of one or more underlying variables. Especially the
pricing of instruments with nonlinear payoffs such as options is an established chal-
lenge.6 In case no closed-form pricing formulas or efficient PDE-based7 approaches
are available, Monte Carlo simulation is the standard tool. Quantum approaches have
been proposed for a variety of applications, for example:

4 See https://qiskit.org.
5 Amongst many others, [1, 12, 29] provide an overview of applications in finance, current techniques and
prospects.
6 See [47] as an industry reference on derivatives contracts and their pricing.
7 PDE: Partial Differential Equation.

123

https://qiskit.org


51 Page 4 of 38 S. Wilkens, J. Moorhouse

• Pricing of standard (‘vanilla’), path-dependent (e.g. barrier and Asian) and multi-
asset options in a Black-Scholes [9] and local volatility [28] framework [4, 18, 33,
38, 51, 54, 64, 72, 73, 75, 76, 80]

• Pricing of options under a stochastic volatility [16] and jump-diffusion process [95]
• Pricing of American-style options [27, 62]
• Pricing of interest-rate derivatives with a multi-factor model [58, 84]
• Pricing of collateralised debt obligations (CDOs) [83]

Risk measurement. In a financial context, ‘risk’ usually refers to an adverse event
associated with a (financial) loss. Quantum applications that have been proposed so
far span, for instance:

• Estimationof riskmeasures such asVaR (see alsoSect. 4),ConditionalVaR (CVaR)
[91] and the corresponding risk contributions [63]

• Estimation of credit risk (Economic Capital) [30]
• Sensitivity analysis for a (business) risk model at an exchange [15]

Miscellaneous. Quantum algorithms have been applied across a range of other areas
in finance as well. For example:

• Portfolio optimisation—construction of ‘optimal’ portfolios, for instance, in terms
of the best trade-off between expected return and risk [6, 26, 46, 56, 70, 87, 88]

• Time series forecasting [31]
• (High-frequency) trading and arbitrage [21, 94]
• Credit scoring and classification [61]
• Handling of transaction settlements (i.e. the exchange of securities and cash
between parties) at a clearing house [13]

Notably, techniques for estimating gradients and higher-order derivatives on quan-
tum hardware [57, 78, 81] are highly relevant for many applications in finance such
as pricing, hedging and risk management. The same is true for techniques to reflect
pseudo-random numbers, as an essential building block in typical Monte Carlo use
cases, in a quantum circuit [50, 65]. Crucial for risk applications is the reflection
of the dependence structure amongst value drivers, usually expressed by means of
copulas (see also Sect. 4). The corresponding quantum implementation [60, 93] is
therefore an important component. Furthermore, QuantumMachine Learning (QML)
has received considerable attention across the full range of techniques such as super-
vised and unsupervised learning as well as generative modelling tasks [7, 8, 71, 77].
Specifically for financial applications, methods for market scenario generation, such
as the joint evolution of dependent risk factors [53], are a promising route [3, 23, 52,
97].

3 Framework for quantum computing in risk measurement

3.1 Fundamental requirements

Practical use cases in quantitative finance usually exhibit several vital challenges. One
of the most important ones is the scalability of any application—such as the pricing
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and/or risking of instruments—so that calculations with a minimum accuracy8 are
technically feasible within acceptable runtimes.

For instance, a market risk application in a large financial institution typically
encounters the following ‘size challenges’:

• Portfolios: 1,000 to 10,000
• Instruments/trades:9 100,000 to 1,000,000
• Valuation parameters: 10,000 to 10,000,000

For the actual risk quantification, one would rely on:

• Scenarios (for a subset of the valuation parameters): 100 to 1,000,000
• Time horizons (not necessarily equally spaced): 1 to 1,000

In spite of the inherent model risk, accuracy of risk measures is expected to be high
in practice, usually not exceeding ±10% around the ‘true’ value. Risk calculations
need to fit into a few hours as a maximum (e.g. overnight batches), but, dependent on
the application, outputs can be required in a matter of minutes or even seconds (e.g.
for intraday risk and what-if analyses for trading decisions).

These requirements drive, amongst others, storage needs as well as the minimum
processing speed of a risk system.

3.2 Essentials on quantum computing

The core idea behind quantum computing is the ability to perform parallel com-
putations at scale. As a building block, a two-dimensional quantum-mechanical
system—a qubit—is used, which encodes the classical ‘0’ and ‘1’ bits in its basis
states, |0〉 and |1〉. Through superposition the quantum system can be in all of its
states at the same time, which can be exploited from a computational angle.

In a practical application, one will usually (a) encode the input data through the
initial states of the qubits, (b) bring those qubits into superposition, (c) apply an
algorithm (also: oracle) across all states (see, for example, Sect. 3.3) and (d) measure
one or several qubits. This measurement has a random result whose interpretation is
to reflect the solution to the problem at hand.10

8 ‘Accuracy’, defined as a measurement close to the true value, should ideally be accompanied by ‘preci-
sion’, i.e. the property that repeated measurements—ceteris paribus—lead to the same result.
9 While the terms ‘instrument’ and ‘trade’ are often used interchangeably in practice, more precisely, there
are usually many trades referring to the same instrument. The aggregation of trades might lead to an overall
‘position’ in one instrument. In the following, the study largely refers to instruments.
10 See, for example, [69, 88], amongst many others. Note that quantum computations per se are entirely
deterministic, i.e. given a starting state of the system, the same final state will always be reproduced.
When extracting the output in ‘classical terms’, however, the same final quantum state may be measured
as different classical states, following a probability distribution. In rare cases, the probability is one for a
particular output, rendering the algorithm de facto deterministic.
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3.3 Quantum amplitude estimation as a basis

Quantum Amplitude Estimation (QAE) [14] promises a speed-up in the calcula-
tion of expected values compared to ‘classical’ simulation. Concretely, with an
operator A acting on a system11,

|�〉 = A|0〉 = √
β|�̃1〉|1〉 + √

1 − β|�̃0〉|0〉,

the unknown parameter β = |〈�̃1|�̃1〉| ∈ [0, 1] is estimated, the amplitude of the
state |�̃1〉.

Quantum phase estimation leads to an estimator β̃ with the property

|β − β̃| ≤ π

M
+ π2

M2 = O(M−1)

with a probability of at least 8/π2 ≈ 81.1% (see, for example, [29]). M is hereby the
number of quantum samples. Estimating β in this way leads to a quadratic speed-up
compared to classical Monte Carlo simulation with its convergence rate O(M−1/2) .

The original QAE requires large circuits and is computationally expensive. Various
improvements have been developed over time [16, 36, 41, 43, 66, 74, 82] and form part
of industry-standard implementations by now, for example, Iterative QAE (IQAE).

3.4 Modelling future scenarios

Distributions. In the context of quantitative finance, the evolution of asset prices is
regularly modelled with the help of distributions. These can either reflect the prices
directly or their changes (returns) relative to fixed (= current) values. Alternatively, one
can simulate the valuation parameters that—in conjunction with pricing functions—
determine the future value or return distribution of the assets in question. An example
are stock prices that feed an option pricing formula.

For instance, assuming a log-normal asset distribution, the asset price ST at a time
horizon T can be expressed through

P(ST ) = 1

S0σ
√
2πT

e− (ln ST −μ)2

2σ2T (1)

with μ := (
r − 1

2σ
2
)
T + ln S0, S0 as the current price, r as the risk-free interest rate

and σ as the asset volatility.
In the quantum setup, one generally represents a random variable X through a

quantum state consisting of n qubits [80]. The first step usually consists of a trun-
cation to [X lower, Xupper] and a discretisation of the distribution. For the latter, let
i = 2n−1 jn−1 + · · · + 2 j1 + j0 with jk ∈ {0, 1} and k = 0, . . . , n − 1. The affine-

11 With potentially n qubits (|0〉n ); to simplify the notation, a single qubit (|0〉) is used here.
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linear transformation

{0, . . . , 2n − 1} � i −→ X lower + Xupper − X lower

2n − 1
i ∈ [X lower, Xupper]

then fulfills the requirement. With pi ∈ [0, 1] as the corresponding probabilities, one
can use a loading operator PX to create a state

|0〉n PX−−→ |ψ〉n =
2n−1∑

i=0

√
pi |i〉n, (2)

with an n-qubit state |i〉n = | jn−1 . . . j0〉. The d-dimensional extension of (2) reads

|ψ〉n =
∑

i1,...,id

√
pi1,...,id |i1〉n1 ⊗ · · · ⊗ |id〉nd , (3)

whereby ⊗ denotes the tensor product.
This setup allows the reflection of future scenarios of quantities such as asset prices,

if required also jointly with other factors.

Stochastic processes. In order to express the evolution of asset prices, their returns or
those of their valuation drivers through time, stochastic processes are a convenient way
to formalise the dynamics. Notably, a stochastic process (St ) implies a distribution of
its modelled quantities at any future time point 0 < t ≤ T .

An important and flexible class of stochastic processes is the Ornstein-Uhlen-
beck (O-U) type [85]. It has many applications in quantitative finance and can be
used, for example, to model mean-reverting behaviour. A typical application is the
modelling of interest rates, whose values tend to be ‘constrained’ to certain corridors
through time. An O-U process is Gaussian and Markovian.12 The general form reads
dxt = θ (μ − xt ) dt+σdWt . Assuming theMarkov property, in a discrete setting, the
increments of (St ) between t to t + 1 can be expressed by a distribution that depends
only on St .

In the quantum setup, in analogy to (3), one can prepare |ψ〉n as

| i1︸︷︷︸
�t

i2︸︷︷︸
2�t

. . . iN︸︷︷︸
T

〉,

to reflect the prices or returns over time, based on N discrete time steps of length
�t = T /N . An extension to reflect the joint evolution of multiple stochastic processes
follows the same building blocks.

12 Generally, stochastic processes with stationary and independent increments have the Markov property.
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3.5 Distributional properties: mean and quantiles

As explained, for example, in [91], one can define a function f : {0, . . . , 2n − 1} →
[0, 1] and with this an operator

F : |i〉n|0〉 → |i〉n
(√

1 − f (i)|0〉 + √
f (i)|1〉

)
, i ∈ {0, . . . , 2n − 1}

that acts on an ancilla qubit. After applying F to |ψ〉n|0〉 as per (2), one can use the
resulting expression,

2n−1∑

i=0

√
1 − f (i)

√
pi |i〉n|0〉 +

2n−1∑

i=0

√
f (i)

√
pi |i〉n|1〉,

to approximate various quantities of the distribution. QAE can be applied to obtain the
probability of measuring |1〉 in the last qubit, equal to ∑2n−1

i=0 pi f (i). This expression
is also that of the expectation of a (discrete) random variable X , i.e. E[ f (X)].
Estimation of the mean. With

f (i) := i/(2n − 1),

one can estimate E[ X
2n−1 ] and from that E[X ].

Estimation of distribution quantiles. Quantile estimation is integral to risk mea-
surement. Given the stochastic nature of the evolution of value drivers for financial
instruments, their future values are expressed through distributions. By zooming into
a particular quantile, one can summarise the risk in a single figure. For a random
variable X and a given probability level α ∈ [0, 1], the quantile measure is defined as
Qα(X) = inf{x ∈ R : P[X ≤ x] ≥ α}. In a quantum setup, let

f I (i) =
{
1, if i ≤ I

0, otherwise

so that applying the corresponding FI to |ψ〉n|0〉 yields a probability of measuring |1〉
in the last qubit of

∑I
i=0 pi = P[X ≤ I ]. With an interval search over I one can find

the smallest Iα that fulfils P[X ≤ Iα] ≥ α and that is hence an estimator for Qα(X).

3.6 Motivation for application in risk measurement

Many risk calculations are based on Monte Carlo simulation in order to obtain a
distribution of future ‘states of the world’, from which measures can be derived—and
on which usually risk controls such as limits will be imposed.

Basic Monte Carlo approaches can be improved in various ways to enhance con-
vergence beyond O(M−1/2). A typical example is the use of quasi-Monte Carlo
simulation that relies on deterministic, low-discrepancy sequences of random draws.
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However, these are difficult to work with in higher dimensions that are required in
financial risk calculations with a large numbers of risk factors. Not only is a better
convergence rate not guaranteed, but results can even be subject to biases.

A quantum implementation for risk measurement purposes aims at exploiting the
quadratic speed-up of Monte Carlo simulation offered through the use of QAE, as
described in Sect. 3.3, i.e. a convergence rate O(M−1). Established techniques to
reduce further the variance of estimators can be applied if considered necessary and
suitable for high-dimensionality problems.

3.7 Quantum-specific challenges

Commercially relevant risk calculations present a particular challenge for quantum
computing, especially for the following reasons:

• Number of risk factors and their dependence structure. The currently available
quantum hardware exhibits only a limited number of qubits, typically not more
than around 100 [34]. This can be a severe limiting factor for large-scale practi-
cal applications. Financial risk calculations often require a significant number of
risk factors (see Sect. 3.1), modelled as correlated random variables. It is in part
an algorithmic problem to construct these factors as quantum states in order to
minimise the use of qubits as well as gates. Even the accurate reflection of distri-
butions as per (2) and (3) already demands at least five qubits for each dimension
(equivalent to a support with 25 = 32 discrete points). Operations for risk factor
convolutions, the application of payoff profiles, the determination of distributional
properties and QAE itself require a non-negligible number of additional qubits.
While it is possible to ‘re-use’ qubits in a quantum circuit—essentially by ‘undo-
ing’ previous operations, exploiting the unitary nature of all quantum gates—this
process is not only adding complexity but also subjects the circuit to noise (see
below). Furthermore, while the number of available qubits in hardware grows, not
all designs allow all operations across all qubits. An example is a ‘swap’ of any two
qubits, which might be limited to certain parts of the system. Quantum simulators
can be used to develop and test algorithms, but the size of the problems cannot
exceed a certain size, given that the calculations would tend to be prohibitively
expensive in terms of computation time on classical machines.
As a consequence, at least until quantum hardware has reached a much more
mature state, ‘hybrid’ approaches have been suggested: only time-critical and suit-
able operations—ideally in a highly QPU-optimised format—are passed from the
CPU to theQPU and back afterwards, also bearing inmind noise implications [24].

• ‘Noise’. Randomness arising from experiments like Monte Carlo simulation can
be addressed by established statistical means such as confidence intervals as a
function of the number of runs. An added layer of complexity in a quantum system
stems from the fact that operations like gates are subject to ‘quantum noise’.
This encompasses any undesired sources that change the quantum system and
can originate, for example, from hardware imperfections or thermal noise. Any
practical quantum algorithm therefore needs to take the impact of noise on the
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estimation results into account (see also Sect. 6) and, ideally, mitigate them to the
largest extent possible [35, 48].

4 Application tomarket risk

4.1 General setup

Market risk relates to adverse changes in the PV of financial instruments. The projec-
tion horizon is usually short, between one and ten business days. It is quantified by
determining the future distribution of changes to a portfolio PV. An extreme outcome
of this P&L distribution is the VaR, which serves as a standard market risk measure.13

It quantifies the extent of possible financial losses over a specific time horizon and
for a given level of confidence. For a random variable �P representing the P&L and
a probability α ∈ [0, 1], the measure is defined as

VaR1−α(�P) = − inf{p ∈ R : P[�P ≤ p] ≥ α}.

Typical values in practice are α = 0.01 and α = 0.05.14

For the actual risk calculation, it is common to model the joint distribution of the
returns, i.e. moves, of all relevant risk factors (e.g. stock prices and interest rates for
variousmaturities). In conjunctionwith a repricingof the instruments in a portfolio, this
allows to determine the P&L distribution and, from that, the VaR. One distinguishes
three key methods for its calculation:

A. Historical VaR. Risk factors are modelled by directly applying historically
observed returns to current market values. The dependence structure between risk
factors is implicitly determined by their past co-movements.

B. Parametric VaR. Risk factors are modelled using probability distributions cali-
brated to historical returns; simplifying assumptions such as a multivariate normal
distribution are made in order to obtain closed-form expressions for the VaR.

C. Monte Carlo VaR. Risk factors are again reflected by probability distributions
calibrated to historically observed returns. The joint distributions are often fitted
to historical data more closely than in the case of a Parametric VaR and, as such,
usually do not allow for closed-form expressions.

The Monte Carlo VaR lends itself well to applying the QAE algorithm (as
per Sect. 3.3). Practical use cases typically rely on a good representation of the
marginal risk factor returns for which a normal distribution is an over-simplification.

Figure 1 summarises the components of a Monte Carlo-based market risk calcu-
lation and how classical and quantum computer implementations differ. In Sect. 4.2,
the risk factor modelling and its calibration are described. Besides the move from
normal to non-normal marginal factor distributions, the way to ‘decouple’ those from
the dependence structure with the help of copulas is introduced. Starting from the

13 See [49] as a standard reference on market risk.
14 An extension to Expected Shortfall (ES) [59] is straightforward. As a ‘tail average’, it is defined as
ES1−α(�P) = 1

α

∫ α
0 VaR1−γ (�P)dγ .
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Fig. 1 Components of a market risk calculation—comparing classical and quantum implementations. In
Step A, risk factor model parameters are inferred from historical market data. With the exception of more
complex model-fitting routines, there is no specific use case for a quantum algorithm, and the approach is
identical to the classical one.Based on currentmarket data, future scenarios of theworld are then simulated in
Step B. Combining those with risk factor sensitivities leads to the corresponding P&Ls (Step C). These two
steps are formulated differently on a quantum compared to a classical computer: there are no Monte Carlo
scenarios, with each being a realisation of a random variable. Instead, quantum registers represent the
random variables for both the risk factor returns and the P&Ls. In order to obtain the output in the form of a
risk measure (Step D), the classical approach makes use of the simulated P&L distribution and its statistics,
such as an extreme quantile. A quantum algorithm will encode this last step (see Sect. 3.5) and ultimately
rely on [Iterative] Quantum Amplitude Estimation to obtain a measurement

derivation of the underlying P&L distribution, the VaR calculation itself is covered
in Sect. 4.3. In Sect. 4.4, following the approach in [91], the model implementation
on a quantum computer is presented; a special focus hereby lies on the distribution
loading. Sect. 4.5 analyses the estimation results.

4.2 Risk factor model

4.2.1 Return definitions

Let the set of d relevant risk factors for a portfolio, for example, stocks or commodity
prices, at a time point t be denoted by

St := (S1,t , S2,t , . . . , Sd,t ).

Between any two points t and t +�t , the vectors of absolute, logarithmic and relative
risk factor returns are given by

�Sabst = St+�t − St ,

�Slogt = ln(St+�t) − ln(St),

�Srelt = �Sabst /St ≈ �Slogt .
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The approximation for the relative returns follows from series expansion and tends to
hold in the case of small returns.

4.2.2 Accommodating empirical risk factor distributions

Acommonapproximation used particularly in ParametricVaR is that risk factor returns
over a period �t follow a multivariate normal distribution:

�Slogt ∼ N (μ,�), (4)

with mean vector μ and covariance matrix �, both assumed to be constant over
time. The associated risk factor distribution is then given by a multivariate extension
of (1). An advantage of this normal model is that efficient implementations exist for
the distribution loading, i.e. the preparation of quantum registers holding correlated
normal random variables (see Sect. 4.4.1).

In many empirical cases, however, marginal probability density functions (PDFs)
of risk factor returns are leptokurtic, and the simple normal model is not sufficiently
accurate. A more appropriate modelling of actual marginal distributions is one of the
main reasons for choosing a Monte Carlo over a Parametric VaR.

Copulas [60, 67] provide a convenient way of separating the marginal risk fac-
tor PDFs from the underlying dependence structure. This facilitates both calibration
and efficient implementation of the Monte Carlo VaR, even for a large number of risk
factors. The Sklar theorem of copula theory states that for real-valued random vari-
ables (X1, . . . , Xd) with joint cumulative density function (CDF) FX (x1, . . . , xd) =
P[X1 ≤ x1, . . . , Xd ≤ xd ], there exists a copula C : [0, 1]d → [0, 1] such that

FX (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) .

Here Fk(xk) = P[Xk ≤ xk] is the marginal distribution of random variable Xk ,
k = 1, . . . , d.

For extrememarket events, reflecting strong ‘tail dependence’ between themarginal
risk factor distributions can be required. Here, as a simplifying assumption and in line
with industry practice, a Gaussian copula is chosen:

CGaussian
K (u) = �d(�

−1(u1), . . . , �
−1(ud);K), (5)

where �(z) is the CDF of a standard normal variable, and �d(z;K) denotes a joint
standard normal multivariate CDF with mean zero and correlation matrix K.15 For
classical and quantum computers, variates reflecting empirical distributions can then
be generated efficiently by applying functions Gk such that Xk = Gk(Zk). Hereby,
Zk are random variables governed by Z ∼ N (0, K ). This is apparent when first
considering the CDF of Z expressed in terms of the Gaussian copula, i.e.

FZ (z1, . . . , zd) = CGaussian
K (�(z1), . . . , �(zd)) .

15 The relationship between correlation K and covariance � is given by K = D−1�D−1, with D =√
diag(�).
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With xk = Gk(zk) ⇔ zk = G−1
k (xk), the CDF of the targeted random variables can

then be written as

FX (x1, . . . , xd) = CGaussian
K

(
�(G−1

1 (x1)), . . . , �(G−1
d (xd))

)
.

In classicalMonteCarlo simulation, samples z = (z1, . . . , zd) are drawn from themul-
tivariate normal distribution �d . From this, non-normal variates are obtained through

xk = Gk(zk). (6)

On a quantum computer, a register represents a random variable, and the transfor-
mation Gk is applied to each of them. Given the limited number of available qubits,
it is convenient to define and calibrate the quantities of interest in the following stan-
dardised way, to ensure numerical values of Xk of similar magnitude:

Xk := �Srelk

σk
= Gk(Zk), (7)

with σk obtained from � in (4). The aim of the model calibration is to determine the
Gk for all k.

4.2.3 Calibration

Market risk models project the P&L over a short time horizon of length η (years).
A typical value found in practice amounts to ten business days. An assumption of
252 business days per year translates into η = 10/252. The model calibration uses at
least one year of historical data prior to the risking date. In the following, four years
are chosen. This is helpful in obtaining sufficiently large samples in the tails of the
distributions and thereby allowing a good demonstration of the approach.

For illustration purposes, a portfolio driven by two risk factors—the stock prices of
Microsoft Corporation (msft) and Apple Inc. (aapl)—is created. S1 relates to msft
and S2 to aapl. Such a portfolio can consist of various financial instruments. If these
were to be solely stocks, the sensitivity to price changes would be constant and equal
to one (or minus one for stocks that are sold short). In the more general case, the
portfolio with a current value of P will have sensitivities δk = ∂P

∂Sk
to each risk factor

and potentially higher-order ones as well.
The reference date for the calibration is selected as 1st April 2021, and the cali-

bration data comprises the period 31st March 2017 through 31st March 2021.16 The
history of the prices for msft is plotted in Fig. 2a. By choosing ten-day returns for the
calibration, the resulting distribution reflects the targeted risk projection horizon. As
an initial step, the individual series of (overlapping) log-returns for the stock prices

16 Daily closing prices in USD. Data source: Yahoo! Finance, http://finance.yahoo.com.
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Fig. 2 Marginal CDF. The figures are derived from msft stock price data (in USD), as shown in a. Ten-day
overlapping log-returns are calculated and expressed in units of standard deviation for b through d. The
distribution is leptokurtic; for example, a cumulative probability of 1% corresponds to a normal return
of −2.33 standard deviations and an empirical return of −3.26 standard deviations. In d, for the cumulative
probability associated with each empirical return on the y-axis, the corresponding normal return is plotted
on the x-axis (a form of Q–Q plot); a function G as per (7) can be fitted to this data

are calculated (omitting the risk factor index k in the following for clarity):17

�slogti = ln(sti+10) − ln(sti ),

where sti is the historical closing price at time ti , with i = 1, 2, ..., n indexing the
business days.

For the actual marginal risk factor calibrations, it is useful to postulate that the
mean (‘drift’) for each stock is equal to zero. This assumption is justifiable given
that the estimation of the drifts from historical data points is not only prone to large
estimation uncertainty but also not necessarily predictive of the future stock price
trends.

17 The choice of the length of the return window and whether to use overlapping or decimated returns does
not impact the facility of the quantum circuit implementation.
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In a multivariate normal model as per (4), the resulting parameters read μ := (0)
and

� =
(
1.854 1.698
1.698 3.446

)
· 10−3.

This covariance matrix equates to standard deviations of the msft and aapl stocks
of σ1 = 0.0431 and σ2 = 0.0587, respectively.18 The pairwise linear correlation
amounts to about +67%.

In line with the standardised form of (7), let

xi = �slogti − μ

σ

denote the standardised risk factor series, with mean μ and standard deviation σ as
their respective moments. From this, the empirical cumulative probability of each
value xi , fi , is calculated as19

fi = 1

n

n∑

j=1

1x j≤xi .

The result for msft is plotted in Fig. 2b (linear scale) and 2c (log-scale).
As outlined in Sect. 4.2.2, the aim is to obtain functions Gk for each return series k

as per (7). To this end, Fig. 2d is a scatter plot formsftwith xi on the y-axis (‘empirical
returns’) and �−1( fi ) on the x-axis (‘normal returns’). Gk is then fitted to this data.20

Piecewise polynomials of low order will often be sufficient for this step, which is
helpful for the implementation on a quantum computer.

For the marginal msft returns, a piecewise cubic fit using seven knot points is
shown in Fig. 3a. The corresponding density is plotted in Fig. 3b, over a histogram of
the empirical returns. Such an approach can capture the specificities of the marginal
distribution. Even a simple piecewise linear fit using only two knot points (Fig. 3c)
already provides a significant improvement over a normal distribution. In particular,
as shown in Fig. 3d, a much-improved fit to the 1% cumulative probability is obtained.

4.3 VaR calculation

The portfolio P&L—between t and t +�t—is a random variable, �P , and expressed
as a function of the changes in the risk factors, here �Sabs1 and �Sabs2 . With δ as

18 Under the assumption of normality of returns, the annualised and easier-to-interpret values read 22%
and 29%.
19 Even when assuming perfect stationarity, the estimation from limited datasets results in uncertainty in
the CDFs. This is not taken into account here but might deserve closer attention when judging quantum
estimation errors and quantum noise with respect to their practical implications.
20 For simplicity, �Srelt ≈ �Slogt is assumed here; by applying xi → exp(σ xi )−1

σ before the fit, this
approximation can be removed.
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Fig. 3 Fitting of marginal CDF. The functions Gk as per (7) are obtained by fitting empirical to normal
returns. A piecewise cubic fit is used in a and b, with the latter demonstrating a ‘smoothing effect’ on the
PDF. c and d are based on a piecewise linear fit, which already provides a reasonable approximation of the
tails of the empirical distribution

the stock-specific portfolio sensitivity to price changes and only retaining first-order
terms:21

�P = δ1�Sabs1 + δ2�Sabs2

= δ1S1,tσ1
�Srel1

σ1
+ δ2S2,tσ2

�Srel2

σ2
.

To facilitate the implementationon aquantumcomputer, theP&Lequation is expressed
using two constants a and b.22 Furthermore, (7) is substituted:

21 The full ‘repricing’ of the portfolio would be an alternative, but given the computational demand, a
sensitivity-based approach is often preferred when using a Monte Carlo-based VaR. Notably, higher-order
sensitivities and various other improvements can be added in practice if deemed necessary.
22 For simplicity, the multiplication by b is performed as part of the distribution loading.
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�P = δ1S1,tσ1

(
�Srel1

σ1
+ b

�Srel2

σ2

)

= a (G1(Z1) + bG2(Z2))

where

a = δ1S1,tσ1

b = δ2S2,tσ2
δ1S1,tσ1

.

The normalised P&L is defined by omitting the constant a:

�P = a�Pnorm
�Pnorm = G1(Z1) + bG2(Z2). (8)

The VaR is calculated from the quantiles of�Pnorm, multiplied by a in order to obtain
the final result.

4.4 Setup for a quantum computer

4.4.1 Distribution loading for probability density functions

A range of algorithms has been proposed to create a joint PDF in a quantum state.
The authors of [79] describe how an arbitrary quantum state can be initialised using
2q−2 − 2q CNOT gates, where q is the total number of qubits used in all quan-
tum registers representing the random variables. [42] describes an algorithm that can
be used for ‘efficiently integrable’ PDFs. While a normal distribution can be han-
dled, there is a restriction on the distributions that can be generated. More recent
work attempts to find algorithms that can load arbitrary distributions with fewer gates
[25, 96].

The functions Gk as defined in (7) can be applied to reflect the empirical marginal
risk factor distributions needed for the VaR calculation. This provides an alternative
to the ‘direct’ approach of [79]. The ‘piecewise transformation’ technique avoids the
problem with the direct method that the number of required gates becomes prohibitive
when generating large sets of risk factors as in typical market risk applications. Each
approach has its advantages, however, and is presented in turn.

‘Direct’ loading. The approach of [79] is used to initialise two quantum registers
representing the risk factor returns to a vector of amplitudes. This is the implementation
of the loading operator PX from Sect. 3.4.23 The amplitudes are calculated using the
joint PDF. This can be achieved by expressing the PDF with the help of the copula C :

23 The ‘StatePreparation’ class in Qiskit is used for this step.
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Fig. 4 Marginal PDF of a calibrated quantum state. Using q = 4 qubits, the distribution—with 24 =
16 discrete states—is generated by (noise-free) simulation. The underlying CDF is the piecewise cubic fit
of msft returns as per Sect. 4.2.3

f (x1, . . . xd) = ∂dC

∂x1 . . . ∂xd
= c (F1(x1), . . . , Fd(xd)) f1(x1) . . . fd(xd), (9)

whereby c denotes the copula density and fk(xk) = dFk
dxk

. For the case of the Gaussian
copula as in (5), the density is given by

cGaussianK (u) = |K |−1/2 exp(−ζ�(K−1 − Id)ζ/2),

with ζ := (�−1(u1), . . . , �−1(ud))� and Id as the identity matrix [67].
In the d-dimensional case, the probabilities, pi1,...,id , are computed using the

joint PDF from (9). The discrete values of xk are given by x
ik
k with ik ∈ {0, . . . , n−1}

and n indicating the number of possible values of xk :

pi1,...,id = f (xi1 , . . . , xid )/
∑

i1,...,id

f (xi1 , . . . , xid ).

A ‘loaded state’ for the msft returns based on q = 4 qubits is shown in Fig. 4. For
this calculation, piecewise cubic fits (as per Fig. 3a) are used to generate the CDF.24

Piecewise transformation. An alternative way to load the distribution is to apply
transformations—the functions Gk as in (7)—to quantum registers that have been
loaded in a multivariate normal state (for which efficient algorithms exist). These
transformations are applied to each register in isolation. The number of required gates
therefore scales linearly with the number of risk factors, rendering the algorithm

24 The piecewise linear fit is also a good approximation. Using the piecewise cubic fit illustrates that, for
the case of direct loading, the functional form is not a restriction.
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suitable for large-scale calculations. The functions Gk themselves are constructed
as piecewise transformations.

For the distribution loading, a three-section piecewise linear transformation is
applied to a quantum register |i〉n , a discretised random variable defined by (2) and
based on n qubits. The function is shown in Fig. 3c on the example of msft. The
transformation can be written as

F(i) := ap · i + bp, cp−1 ≤ i < cp, (10)

with p = 0, 1, 2 and c−1 := −∞. Integer arithmetic is used: ap, bp and cp are
all integers and, as above, i ∈ {0, . . . , 2n − 1}. The register holding F(i) requires
n + m qubits; the additional m qubits are needed as a result of the multiplication
and addition/subtraction operations, i.e. m depends on ap and bp. This setup allows
a non-integer transformation of a normal return (in units of the standard deviation),
z(i), to an empirical return (in units of the standard deviation), x(i). Explicitly, normal
returns are discretised by25

z(i) = Z lower + Zupper − Z lower

2n − 1
i

and empirical returns by

x( j) = X lower + Xupper − X lower

2n+m − 1
j .

The transformation is given by

x(i) = G(z(i)) = X lower + Xupper − X lower

2n+m − 1
F(i).

Asan example, a three-qubit normal distribution is converted into afive-qubit empirical
distribution (n = 3,m = 2). Figure 5a shows the transformation of the actual values,
and Fig. 5b plots the integer transformation as per (10). For comparison, the piecewise
transformation of the real quantities without discretisation is displayed. Five qubits
are chosen to representF(i), a compromise that provides a sufficiently good fit whilst
keeping the number of qubits low.

This form of distribution loading is not identical to the ‘direct’ approach but instead
represents a redistribution of the probability density. The normal distribution in Fig. 5c
is transformed into the empirical distribution as per Fig. 5d.

4.4.2 Quantum circuit

Following the approach of [91], QAE (see Sect. 3.3) is used to compute the VaR.
Figure 6a shows the layout of the circuit. It calculates cumulative probabilities of the

25 The upper and lower bounds are selected as three standard deviations below and above the mean.
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Fig. 5 Piecewise transformation applied to a three-qubit register. a and b show a piecewise linear fit of the
transformation from normal to empirical returns and a discretised form of this transformation that can be
applied to the (integer) quantum registers. c and d provide the PDFs of the quantum registers pre- and post-
transformation, respectively, illustrating the redistribution of probabilities. Note that an extra two qubits are
added for d

normalised P&L �Pnorm as per (8); all numerical values derived and shown subse-
quently are for the case a := 1, which is just a multiplicative constant. Furthermore, an
example value of b := 1 is chosen, although the circuit can accommodate an arbitrary
value by means of modifying the piecewise transformation coefficients.26

A correlated normal distribution is first loaded into two three-qubit registers by
circuit P(x) of Fig. 6a.27 Each three-qubit random variable is then transformed into an
empirical random variable using a piecewise linear transformation circuit and added
to the result register; three extra qubits are needed to store the result. Finally, an
additional integer comparator—as described in [91]—is used to generate the single-
qubit objective, the amplitude of which is to be estimated. A bisection search applied
to the CDF is then employed to calculate the VaR (see as well [91] for more details).

26 For b = 1, it is ensured that the P&L contributions from both risk factors are relevant for the portfolio.
27 The ‘NormalDistribution’ class in Qiskit is used. The implementation is based on [79], although—
importantly—alternatives with a better scaling to a large number of risk factors exist [42].

123



Quantum computing for financial risk measurement Page 21 of 38 51

Fig. 6 Quantum circuit for market risk. a shows the circuit that obtains a quantum register of P&Ls. As
a final step, an integer comparator (‘cmp’) is applied, which flips the objective qubit if the register value
is less than a specified integer; the amplitude of this objective is then estimated using QAE. In order to
test the Qiskit implementation, one million measurements of the result register are used to construct the
probability distribution of the P&L, as shown in b. For comparison, the equivalent distribution is obtained
by classical Monte Carlo simulation through one million samples drawn from a continuous multivariate
normal distribution and transformed using (6); the result is displayed in c

The details of the piecewise transformation circuits are shown in Fig. 7. Integer
comparators compare the value in the n-qubit register to c0 and c1 of (10). The result-
ing qubits are used to control three in-place multiply-add circuits that apply the three
linear transformations of (10) for p ∈ {0, 1, 2}. Each of the three performs an in-place
multiplication by a classical integer and in-place addition with the result, followed
by an addition with a classical integer. This arithmetic makes use of circuits adapted
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Fig. 7 Quantum circuit for piecewise transformation applied to a three-qubit register. Three conditional
in-place multiply-add circuits are used to apply (10) for p ∈ {0, 1, 2}. The coefficients ap and bp used
in the multiply-adds are classical. Two integer comparators store the result of i ≥ c0 and i ≥ c1 into
ancilla qubits ancilla_0 and ancilla_1, respectively. Two additional qubits, ancilla_8 and ancilla_9, are
used to calculate booleans i < c0 and c0 ≤ i < c1 from these qubits. ancilla_8, ancilla_9 and ancilla_1
are then utilised to condition the multiply-add circuits. The multiply-add circuits include an ‘uncompute’
step, and additional gates (shown) are added to uncompute ancilla_8, ancilla_9 and ancilla_10. Finally,
the comparator ancillas ancilla_0 and ancilla_1 are uncomputed. These steps allow the ancilla qubits to be
re-used

from [86].28 A number of ancilla qubits are required to perform the piecewise trans-
formation. These are ‘uncomputed’ following each transformation and then re-used
for each marginal distribution.

The circuit ‘depth’, as a measure of size and representing the smallest number
of steps required to execute an experiment, depends on the circuit transpiler and the
quantum hardware to run on. While gates without common qubits can be processed
in the same step, every gate that has at least one qubit in common needs to act on a
different step. Using only elementary rotation and conditional NOT gates, the depth
amounts to 9,387 (q = 2 per risk factor) and 22,589 (q = 3), respectively.29

4.5 Estimation results

All computations are carried out on a quantum simulator.30 The implementation of the
quantum circuit is tested by executing the quantum circuit and the final comparator

28 The ripple-adder of [86], as opposed to an approach based on the Quantum Fourier Transformation, is
selected, because it is expected to be more noise-tolerant for the next generation of quantum computers.
29 The Qiskit implementation allows the transpilation of the circuits and provides a ‘depth’ method to
obtain the gate count.
30 As of November 2022, IBM provides (paid-for) access to systems with 27 qubits, extended to up to
127 qubits on experimental devices; see https://quantum-computing.ibm.com/services?services=systems.
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Fig. 8 Cumulative normalised P&L probability distribution. The normalised P&L refers to the definition
in (8). The values obtained using q = 2 and q = 3 qubits per risk factor are shown, together with the
‘continuous’ values—i.e. with no discretisation

of Fig. 6a to calculate the probability distribution of the normalised P&L. This is
shown in Fig. 6b. The analogue can be achieved classically, by using the PDF of the
discretised quantum register output from P(x) of Fig. 6a and the same coefficients
for the piecewise approximation as in the quantum case. In this way, it is verified that
the same distribution is produced. The classical calculation without using the same
discretisation as the quantum circuit—in fact, without discretisation at all—is shown
in Fig. 6c.

With this validation complete, the (Iterative) QAE algorithm31 is applied to the
objective qubit of the circuit of Fig. 6a. This is used to obtain the CDF of the nor-
malised P&L as per (8). The cumulative probabilities are shown in Fig. 8a, b which
are identical apart from the scale. The results are plotted with three qubits for each
of the two correlated normal registers (the case shown in Fig. 7), as well as the two-
qubit case for comparison. The result obtained without discretisation error is also
provided as a reference. For this comparison, continuous normal distributions are
used in place of the discretised versions, in conjunction with a piecewise linear trans-
formation free from discretisation error.32 This can be thought of as being the result
calculated with a large number of qubits. Results for three typical P&L quantiles are
found in Table 1.33 Using q = 3 qubits for each normal register provides a tolerable—
though still rather large—level of discretisation error. The 99% VaR calculated using
three qubits amounts to -6.22 and differs by around 14% from the correct value of
-5.44. Practitioners would therefore likely require a larger number of qubits.34

31 Parameters are set to α = 0.05 and ε = 0.01. Still, any accuracy sufficient to verify consistency with
the results of Fig. 6b suffices.
32 This entails relying on the ‘fitted’ as opposed to the ‘fitted, discretised’ function in Fig. 5a.
33 The ES can be calculated using the same circuit from Fig. 6a See also [91] for more details on a suitable
quantum implementation.
34 For comparison: if one were to rely on a Parametric VaR and hence a multivariate normal distribution
of the stock returns, the 99% VaR would read -4.30. The use of empirical marginal distributions is hence
material in this example. It even outweighs the discretisation error in the quantum calculation.
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Table 1 Estimation results for the market risk example

VaR quantile

1% 2.5% 5%

A. Classical computation

Continuous −5.44 −4.21 −3.23

B. Quantum computation—simulator

q = 2 · 2 −6.56 (20%) −5.13 (22%) −5.01 (55%)

q = 2 · 3 −6.22 (14%) −4.88 (16%) −3.77 (17%)

The figures compare the VaR at various quantiles between classical (Panel A) and quantum computa-
tions (Panel B). The latter result from applying IQAE, with 210 = 1,024 shots each, on a quantum simulator.
The input registers use q = 2 and q = 3 qubits per risk factor, respectively. Confidence intervals are very
tight and hence omitted in the table. Relative unsigned differences between the quantum-derived figures
and the references values in Panel A are shown in parentheses

5 Application to counterparty credit risk

5.1 General setup

Counterparty credit risk (CCR) is concerned with cases where one party to a portfolio
of instruments—usually bilaterally negotiated financial derivatives—defaults and is
not able to honour its obligations.35 Examples of such transactions are forwards,
which allow to lock in an exchange rate such as USD/EUR in advance, and options,
which entail the right to purchase or sell assets such as stocks or commodities at
a pre-determined price at a later date. While market risk is centred around losses
occurring from a decline in the value of instruments, CCR arises from portfolios that
have a positive PV and which cannot be realised if the counterparty defaults. Since the
surviving party, such as a bank, will typically have hedged the exposure with other—
non-defaulted—counterparties, it is left with ‘open’ positions in this case. Replacing
those in the market will in some circumstances only be possible at worse conditions
than at origination. CCR is therefore the loss associated with these replacement costs.

Contrary to straightforward loans, the exposure over time versus a particular coun-
terparty is not deterministic if the instruments are exposed to PV changes. This is
nearly always the case with derivatives.36 CCR modelling is about estimating the
Potential Future Exposure (PFE).

If trade netting has been agreed between the parties, positive and negative PVs can
be offset against each other in the case of a default. A notablemitigant ofCCRexposure
is the use of collateral, which can be posted between the counterparties or by one or
both of them to an independent depositary. As an example, if party A buys an option
from party B, B will post the PV of the option at inception as collateral (‘variation
margin’). This, in turn, renders the resulting exposure equal to zero since A could use

35 See, for example, the introductory overview to CCR in [40].
36 Note that CCR requires at least two parties to a trade. Buying a stock at an exchange and holding it
therefore does not give rise to CCR. The risk in this case is purely associated with the inherent risk of the
stock and its issuing firm.
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the collateral to enter a new option trade in case B were to default. As the value of the
option evolves over time, the collateral balance is either topped up or decreased—or
in some cases, left unchanged.37 For the purposes of PFE measurement, the collateral
balance through time is added to the portfolio PVs to determine the overall counterparty
exposure profile.38 In spite of using variation margin, residual CCR can result from
the legal and operational process associated with a default requiring several days or
even weeks to complete. A re-hedging in the market by the surviving counterparty
might hence only take place with a delay. During this ‘slippage’ period, the market
value of the portfolio can evolve and lead to non-zero replacement costs even after
taking any received collateral into account. As a solution, additional ‘initial margin’
can be posted by both parties, these days typically to a third-party custodian bank. In
case of a default, the amount is released to cover any slippage-related costs.39

In order to obtain the PFE of a portfolio, one will focus on a projection hori-
zon (T ) that covers the period up to the longest maturity across all instruments.
The time interval is divided into N , not necessarily equally spaced discrete points
ti ∈ [0, T ], i = 1, 2, . . . N with ti < ti+1 and t0 = 0. In the first process step, risk
drivers of the instruments (e.g. stock prices) are diffused over time, expressed either by
means of stochastic processes or through distributions.40 In certain cases, the resulting
risk factor distribution at each ti is known in closed form; in the most general case,
it can be approximated through Monte Carlo simulation. On the back of the joint
risk factor distributions across time, the corresponding instrument PVs as well as the
resulting portfolio PVs are determined as a second step.41 In cases where collateral
is exchanged between the parties, a third step is added, applying the projected collat-
eral value across time and adding it to the PVs. Since CCR is only concerned with
positive balances vis-a-vis a counterparty, the portfolio PVs including collateral are
transformed into exposures by flooring them to zero. The result of these steps is a series
of exposure distributions Eti , i = 1, 2, . . . N .42,43 Given the stochastic nature of the
exposure, one will often work with quantile measures, qc(Eti ), to quantify the CCR.
Hereby, c ∈ {0.90, 0.95, 0.99} are typical quantiles chosen in practice.44 One can

37 If the instrument can have a positive or negative value to the parties, such as in the case of an interest-rate
swap, the side that posts (receives) collateral over time can alternate.
38 If the collateral itself were to be exposed to changes in value over time, for instance, because it consists
of bonds or cash in a different currency, these fluctuations would need to be modelled as well.
39 The protection from CCR through variation and initial margin is still not guaranteed to be all-
encompassing since extreme market moves might not be sufficiently covered.
40 As noted previously, the former imply the latter.
41 Given the typically much longer projection horizon compared to themarket risk case, counterparty credit
risk almost exclusively relies on full trade and portfolio repricing and not on sensitivity-based approaches.
42 The exposure at t0 is equal to the current portfolio PV plus any collateral balance—and, as such,
deterministic.
43 The integration of a non-zero ‘slippage period’ would demand a slightly more complex setup, which is
not discussed here.
44 An application closely linked to CCR is the calculation of various valuation adjustments (‘xVA’). These
combine thePFE, the counterparty default probability over time, the cost of received andposted collateral and
other parameters in order to adjust the ‘fair value’ of a portfolio PV and allow the hedging of related changes.
Proposals for a quantum implementation on the example of ‘CVA’, the Credit Valuation Adjustment, are
provided in [2, 92].
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Fig. 9 Components of a counterparty credit risk calculation—comparing classical and quantum implemen-
tations. The components of the counterparty credit risk calculation are broadly analogous to those in the
market risk case (see Fig. 1). Again, the main implementation difference lies in the move fromMonte Carlo
scenarios to working directly with random variables in the form of qubit registers

loosely interpret CCR as a through-time variant of market risk, with a focus on the
positive rather than the negative tail of the P&L distributions.

The following exploration builds on the market risk example from Sect. 4. In this
case, let the portfolio consist of bought call options on each of the two stocks, msft
and aapl, and both maturing at time T = 2 (years from now). The respective stock
prices over time shall be denoted by Sk,t , k = 1, 2. The options give the holder the
right to purchase the underlying stock at T and a pre-determined price (‘strike’) K . If
the stock price ends up above K at maturity, the option will be ‘in-the-money’ and can
be exercised against the seller accordingly.45 For simplicity, let K = 0 for both options
here, which means that they are always exercised at maturity and, importantly, that
their PVs are equal to Sk,t for all t . With risk factors and instrument values coinciding
in this case, the revaluation over time (see step two above) can be avoided. The initial
option premia are assumed to sum up to 100. They have been paid by the buyer,
and collateral (variation margin) in the same amount has been posted by the seller;
this hence renders the initial exposure E0 = 0. No further collateral is exchanged
throughout the life of the instruments. The PFE projection interval [0, T ] is reflected
by N = 2 equidistant time steps of length T /N .

Figure 9 provides a sketch of the components required for a counterparty credit risk
calculation and how classical and quantum computer implementations differ.

45 This exercise can entail buying the stock at K and immediately selling it in the market to lock in a
positive amount, or the seller paying the difference between the market price of the stock and the strike
directly to the seller (‘cash settlement’).
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5.2 Risk factor model

The risk drivers behind an exposure calculation need to be evolved in a dependent
(‘correlated’) way, as for market risk applications. The historical calibration period in
practice usually stretches over three years ormore.A particular challenge inCCRmod-
elling is to capture the long-term evolution of risk drivers and their dependence.

For the postulated example portfolio composed of call options, the two stock prices
are the only relevant risk drivers.46 Assuming that these evolve according to (4) as
in the market risk case, the means (‘drifts’) μ again amount to zero for both stocks.
Recalling that the covariance matrix � in Sect. 4.2.3 is based on ten-day returns, its
values are scaled to �′ = � · 252

10 in order to reflect an annual horizon.

5.3 Exposure calculation

The starting point is given by E0 = 0. With a time horizon of T = 2 (years) and
N = 2 time points for the process discretisation, the PFE for the options portfolio
from the buyer’s perspective is to be determined at t = 1 and t = 2(= T ). In each
of these periods, the joint stock returns are governed by N (μ,�′). This, in turn,
describes the PV evolution of the two options over time and, as such, determines the
counterparty exposure for the option holder.

Ignoring a flooring to zero for better illustration, the CDFs of the respective expo-
sures Et are described by the distributions of PVs, including the initial collateral. The
90%, 95% and 99% quantiles serve as dedicated exposure measures.

5.4 Setup for a quantum computer

The approach follows the technique for measuring credit risk in [91], extended to a
multi-period setup.47 The steps to reflect the task on a quantum computer consist in

• loading the probability distributions (see Sect. 3.4);
• adding the distributions across time steps;48

• using (Iterative) Quantum Amplitude Estimation (see Sect. 3.3) to determine the
values of the CDF and, from that, the exposure quantiles.

For the two-dimensional risk factor distribution, assume that each of the marginal
stock return distributions is discretised using q qubits. Repeating this over all
N time steps results in 2qN qubits required for the quantum setup. The addition
of the distributions across time steps as well as the final IQAE step demand additional
qubits. In Fig. 10, the case of q = 2 and N = 2 is depicted in a stylised circuit dia-
gram. Figure 11 provides a snapshot of the first few gates when preparing the actual
quantum circuit scheme. In a two-time step setup and again using only elementary

46 If the strikes of the options were to be different from zero, other risk factors could become relevant, such
as the ‘implied volatility’; see [47] for more background information.
47 For ways to implement discrete (Markov) processes on a quantum computer, see the discussions in [10,
68]. In [95], the implementation of continuous-time stochastic processes is examined.
48 In a more general setup, one would typically have additional revaluation steps at each risk horizon.
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Fig. 10 Stylised quantum circuit for counterparty credit risk. The setup shows a two-period setting. The first
block of qubits (risk_factor_prob1) reflects the two risk factors, discretisedwith two qubits each. The second
block (risk_factor_prob2) is the equivalent set for the second period. qae_objective is the objective qubit
required for the (iterative) quantum amplitude estimation. sum_factor_risk_factors serve for the addition
of the risk factor distributions. The final CDF_return_sum are used to evaluate the CDF at a given point.
aux_addition and aux_compare are the required ancillaries for the circuit

rotation and conditional NOT gates, the circuit depth reads 1,015 (q = 2 per risk
factor) and 2,237 (q = 3), respectively.

Note that it is not obvious how to create a single quantum circuit that can provide
measures for distributional quantiles at several time points as an output. A pragmatic
way to generate exposure figures over multiple forecasting horizons is to use separate
quantum circuits for each, which can be generated algorithmically in a straightforward
manner.

123



Quantum computing for financial risk measurement Page 29 of 38 51

Fig. 11 Quantum circuit for counterparty credit risk—gate decomposition. The graph shows the first set of
gates behind the loading of the probability distribution for the first risk factor, as per Fig. 10. U (θ, φ, λ)

standards for single-qubit gate and its Euler rotation angles. In the given case,U (θ, 0, 0) represents rotations
along theY-axiswith angle θ . The two-qubit ‘+’ operations are conditionalNOT (‘CNOT’) gates. Using only
these two elementary building blocks, the entire circuit with its 20 qubits (of which twelve are ‘state qubits’)
has a depth of 1,015—a number that typically also depends on the optimisation during the transpilation.

5.5 Estimation results

The main output from the estimation is the CDF of the exposure at a given time
point. Results are again obtained with the help of a quantum simulator. In Fig. 12, the
classically derived CDF are compared to those from the quantum computation; for
the latter, q = 2 or q = 3 qubits are used for each of the risk factor distributions.49

In the given example, the ‘correct’ CDF is depicted (right scale), together with its
90% quantile as a typical risk quantity in the CCR context.

At both t = 1 and t = 2 (years), when using only q = 2 qubits per risk factor, the
resulting CDF is very far off (left scale). This is driven by the fact that the risk factor
distributions are discretised only very coarsely (four points each). With q = 3 qubits
per risk factor (eight points each), the approximation is much better. In the latter
case, the deviation from the correct CDF is well below 0.05 across the range for both
projection horizons.

Table 2 summarises how the CDF estimations translate into actual exposure figures.
At inception at t = 0, the exposure is zero. The table provides the PFE at both time
horizons, t = 1 and t = 2, and for the 90%, 95% and 99% quantile.

The results from the classical computation—here obtained as the sum of two multi-
variate normal distributions and hence available in closed form—are shown in PanelA.
These figures reflect scenarios where the (highly correlated) stock prices increase sub-
stantially, giving rise to high PVs of the options in the portfolio. In spite of the initial
collateral exchange, a counterparty default could result in a sizable undercollaterali-
sation and associated replacement costs for the option holder.

As evidenced in Panel B, in line with results for the CDF in Fig. 12, using only
two qubits per risk factor leads to significant errors in the exposure estimates.50 This
renders those essentially unusable in practice. The case of three qubits per factor
limits the PFE errors to about ±10%, which is more tolerable and reaches a level of
approximation that might be suitable for practical applications in risk measurement.
For example, the actual 90% quantile one and two years ahead reads 82 and 134,
respectively. The quantum equivalents with three qubits per risk factor are 75 and 127,
i.e. off by 9% and 5%.
49 The parameters for the IQAE as per [41] are once again chosen as α = 0.05 and ε = 0.01.
50 As in the market risk example from Sect. 4, the ‘error’ is defined as the relative (unsigned) difference
between the estimated and the correct value.
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Fig. 12 Distribution functions for the counterparty credit risk example. For two time horizons, (a) t = 1
and (b) t = 2 (years), the figures compare the CDF of the PFE between classical and quantum computation.
For the example at hand, the results for the classical case are known in closed form (dotted CDF, right
scale). The quantum estimations are obtained by using q = 2 or q = 3 qubits to reflect each of the
distributions; notably, the actual quantum circuits require a series of additional (ancillary) qubits to execute
the required operations. The figures show the differences in CDF across the distribution range (left scale).
The 90% quantile, as a typical quantity to measure counterparty credit risk exposure, is marked explicitly
(vertical dotted line). Confidence intervals around the quantum estimates, obtained by applying IQAE with
210 = 1,024 shots each, are very tight and hence omitted in the figures. Notably, they are of much lower
magnitude than the differences in the CDFs themselves.
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Table 2 Estimation results for the counterparty credit risk example

PFE quantile

t=1 t=2

90% 95% 99% 90% 95% 99%

A. Classical computation

Closed-form 82 116 197 134 197 367

B. Quantum computation—simulator

q = 2 · 2 93 (14%) 104 (10%) 113 (43%) 211 (72%) 252 (34%) 288 (25%)

q = 2 · 3 75 (9%) 109 (6%) 178 (10%) 127 (5%) 186 (5%) 343 (6%)

The figures compare the PFE at various quantiles between classical (Panel A) and quantum computa-
tion (Panel B). For the example at hand, the results for the classical case are known in closed form. Two
time horizons, t = 1 and t = 2 (years), are considered. With two risk factors determining the PFE here,
the quantum estimations are obtained by using q = 2 and q = 3 qubits to reflect each of the distributions;
notably, the actual quantum circuits require a series of additional ancillary qubits to execute the required
operations. Panel B reports the estimates from applying IQAE, with 210 = 1,024 shots each, on a quantum
simulator. Confidence intervals are very tight and hence omitted in the table. Relative unsigned differences
between the quantum-derived figures and the reference values in Panel A are shown in parentheses

6 Influence of quantum noise

The analyses in Sects. 4 and 5 assume ideal, not yet available quantum hardware.
Besides the discussed loss of accuracy from a limited number of qubits, quan-
tum circuits experience ‘noise’ in practice. This results from quantum processors
being susceptible to their environment and losing their quantum state due to quan-
tum decoherence [35, 48]. The theoretical quadratic speed-up compared to classical
Monte Carlo simulation is therefore highly dependent on whether this quantum error
can be contained and ideally eliminated in future [5]. Until this is achieved, quantum
noise needs to be factored into any results obtained from circuits like those proposed
here for risk measurement. Otherwise, certain conclusions would not be valid: for
instance, even when adding more and more qubits to a system, the measurement of
financial risks could still be of no use if noise levels distorted the resulting figures.

While the aspect of quantum noise lends itself to further in-depth research, at least
an approximate impact analysis is required for the cases discussed here. Understanding
the sensitivity of the measurements to typical noise levels sheds light on how much
noise can be tolerated to render results accurate enough for practical applications.

The magnitude of quantum noise on current state-of-the-art gate-based devices
amounts to about 0.1% for each gate, somewhat varying, for example, based on how
many qubits a gate is applied to [39]. In the following, all one- and two-qubit gates
in the quantum circuit as well as the final measurement are subjected to these noise
levels to form a simplified ‘noise model’. Practically, this entails flipping each bit with
the given probability on every affected operation in the circuit. Continuing the work
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on a quantum simulator,51 the model is applied to the example for counterparty credit
risk from Sect. 5.52

Using q = 3 qubits per risk factor and time point t = 1, Fig. 13a compares the
CDF for the PFE in the case of no noise as well as with the defined noise model. It
is visually evident that the resulting perturbation can have a non-negligible influence
on the risk measurement. In Fig. 13b, the noise level is varied around the base case of
0.1% with a factor of 2i , i = −3,−2, . . . ,+3; from this, the resulting relative errors
in the CDF quantiles relative to the ‘noise-free’ case are calculated. For instance,
the 90% quantile in the base case with 0.1% of noise exhibits a relative error of
about 15%. For lower noise levels, the relative error in the quantile(s) tapers down,
while it increases substantially in the case of more pronounced noise.

According to Table 2, even for the promising case with q = 3 qubits per risk
factor, the typical noise levels distort the estimations and—given relative errors easily
exceeding ±25%—render them essentially unusable.

7 Conclusion and outlook

The study investigates the feasibility of implementing real-world risk measurement
applications on quantum computers. Typical use cases in financial institutions such as
banks require large-scale solutions with usually several thousands of risk factors. The
core challenge is to project those at one or over several future time points and revalue
portfolios of instruments accordingly. Extending previous research, this paper con-
tributes a feasibility analysis with respect to running realistic market and counterparty
credit risk applications on quantum devices.

On a conceptual level, modelling risk factors and simulating their joint behaviour
that ultimately determines the relevant distributions for risk measurement is feasible.
The single-horizon nature of a market risk measure renders the setup more accessible
than for the case of counterparty credit risk, which demands multiple, longer-term
projections. Moving away from idealised normal distributions and potentially even a
linear dependence structure amongst risk factors is achievable.

The central limiting aspect from a practical angle is the far too-limited capacity
in terms of available qubits on real-world devices that would be necessary to reflect
the large set of required risk factors with sufficient accuracy and across multiple
forecasting horizons. Specific optimisations such as in-place additions of risk factors
are possible, but this does not materially address the limitation. A secondary though
still important aspect is quantum noise: even for basic examples of VaR and PFE
calculations, the accuracy of risk estimations is quickly downgraded beyond a tolerable
level. Loading realistic probability distributions to quantum registers and representing
non-trivial payoffs and pricing functions are additional obstacles.

In the current ‘noisy intermediate-scale quantum’ (NISQ) era, the path to real-world
applications in risk measurement depends heavily on progress in the various active

51 Running a circuit on actual hardware (e.g. IBM devices) could allow a slightly more realistic ‘noise
pattern’, but the results would ultimately be qualitatively similar.
52 An application of the noise pattern to the more complex market risk example from Sect. 4 is computa-
tionally too expensive when run on a quantum simulator.

123



Quantum computing for financial risk measurement Page 33 of 38 51

Fig. 13 Influence of ‘noise’ in the counterparty credit risk example. When adding ‘noise’ of 0.1% to all
one- and two-qubit gates in the quantum circuit as well as for the final measurement, a shows the influence
on the CDF for a horizon of t = 1 (years) and q = 3 (qubits) for both risk factors. b illustrates how different
levels of noise translate into errors in the estimation of typical PFE quantiles

areas of quantum research. Besides the hardware and its accessibility, error control and
mitigation are essential topics to be addressed.Hereby, the trade-off betweenmodel and
circuit complexity on one side and acceptablemeasurement error tolerance on the other
side need to be operationalised for practical use. The optimal interaction betweenCPU,
GPU andQPU is another field for further exploration, specifically for risk applications.
In [89], three critical attributes for quantum computing performance are put forward—
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quality (measured by quantum volume), speed (measured by circuit layer operations
per second), and scale (measured by number of qubits). The ultimate aim is to define
holistic benchmarks that capture all system components, are appropriate for real-world
applications, without being too cumbersome to execute and difficult to interpret.

Overall, the analysis evidences that the number of qubits available on current hard-
ware, and even within quantum simulators, is still far too low to render an actual
business application viable. This constraintmight be eased in the not-too-distant future,
however, based on claims that hardware with more than 1,000 qubits are deemed
achievable by 2023 [34]. Nevertheless, only once the stated target of 1,000,000 qubits
on a fault-tolerant quantum computer by 2029 is reached [17], at least certain compu-
tationally intensive algorithms and applications from the financial engineering world
might be routinely handled with quantum hardware.

Given the comparatively new technology, applyingquantumcomputing—especially
in established areas such as risk measurement—will face certain scepticism at the
beginning. This is even more relevant when also applied for calculating regulatory
capital requirements and, as such, demanding approval from supervisors. The initial
enthusiasm by banks is already wearing a bit thin meanwhile, given that ready-to-use
technology is still a long way off [22]. The business case from a computational angle
is not very strong in areas such as market and counterparty credit risk since running
‘traditional’ calculations even in large financial institutions is currently a matter of
minutes or at most a few hours. A quadratic speed-up of Monte Carlo simulations is
hence not removing major obstacles. The pricing of derivatives, even complex ones,
has already been established in principle by now—with promising short-term feasibil-
ity [18]. However, the commercial need for a large-scale roll-out is not apparent even
here, given that the speed-up is ultimately limited and that latency for non-vanilla
derivatives is not a significant concern in practice. The same might not be true for
so far intractable problems such as portfolio optimisation, which are therefore more
suitable contenders for a first wave of real-world (risk) applications.

Data availability The stock prices used in the study are publicly available (Yahoo! Finance).
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