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Abstract
In this paper, we introduce and study the quantum measurement detection algorithms
(QMDA), whose objective is to detect whether unwanted measurements are being
taken in a quantum circuit or not by applying the Zeno effect. A QMDA is a quantum
circuit that includes three unitary matrices, one of them being applied numerous times
consecutively, and whose initial state is fixed when no foreign measurements occur.
One example is the Elitzur–Vaidman bomb tester, which is generalized by the QMDA
definition, allowing the detection of measurements that are taken in an unknown basis
and in circuits with an arbitrary number of qubits. We prove some key properties and
limitations of these algorithms, as well as studying the performance of the Elitzur–
Vaidman bomb tester and its possible improvements. Some extensions of the definition
would lead to algorithms such as the counterfactual communication one.

Keywords Quantum measurement detection algorithms · Quantum detection ·
Quantum measurements · Elitzur–Vaidman bomb tester · Zeno effect ·
Counterfactual communication

1 Introduction

Quantum computing is known for its potential to outperform classical computation
in some specific tasks. The most popular quantum algorithms are Shor’s factoriza-
tion algorithm [1] and Grover’s search algorithm [2], which provide exponential
and quadratic time speedup, respectively, over the best known classical algorithms.
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However, other algorithms that show the potential of quantum computers have been
proposed, such as the Elitzur–Vaidman bomb tester [3]. This algorithm is based on
the Zeno effect [4], that is, the initial state of the circuit is slowly rotated to a different
state unless measurements occur. On the other hand, in the presence of measurements,
the final and initial states are the same with high probability. Zeno effect-based cir-
cuits, and mainly the Elitzur–Vaidman one, have proved to be useful in applications
to multiple fields, such as cryptography or object mapping [5–9].

In this article, we introduce a framework for studying measurement detection in an
unknown basis in circuits of the same kind. One of the aims of this work is to extend the
scope of the Elitzur–Vaidman algorithm, and study its behaviour for unknown mea-
surement bases andmultiple qubits. So, we introduce quantummeasurement detection
algorithms (QMDA), which provide a generalization of the Zeno effect of the Elitzur–
Vaidman algorithm.

A QMDA is a quantum circuit that includes three operators (U0, U , U1), one of
them (U ) being applied numerous times consecutively, and whose initial state is fixed
when no foreign measurements (i.e. undesired measurements that are not expected
during the execution of a circuit) occur.

Some properties of a QMDA are proved, including the detection of measurement
probability of error of a QMDA for a given measurement basis and the corresponding
optimal value. In addition, we find some bases that are likely to yield less accurate
detections, although the probability bounds that we provide, decrease exponentially
as the number of qubits increases. Such bases are given by a linear combination of
eigenvectors of the operator U . This framework allows to compare the generalization
of the Elitzur–Vaidman algorithm with the best possible QMDA. For more than one
qubit, it can be proved to be outperformed by some rather difficult-to-describe QMDA.

Finally,wehint at someextensions of the definition of aQMDAthatmight overcome
some problems derived from our study. Such extensions of the definition would also
include algorithms such as the counterfactual communication [5] one. In addition, a
QMDAmight also be helpful to spot interferences that cause undesired measurements
in a circuit.

The structure of this paper is as follows. In Sect. 2, we briefly describe the Elitzur–
Vaidman bomb tester. In Sect. 3, we introduce the definition of QMDA, its associated
detection scheme andwe show themain properties of these circuits. In Sect. 4,we study
the particular case of the Elitzur–Vaidman bomb tester, and finally, Sect. 6 contains
the conclusions and future work.

2 Elitzur–Vaidman algorithm

This paper has been motivated by the Elitzur–Vaidman algorithm. It aims at determin-
ing whether foreign measurements have been applied to a circuit or not. Henceforth,
by foreign measurements, we will mean undesired measurements that are not expected
during the execution of a circuit, and they will be represented as an O in the circuits. In
order to detect them, the Zeno effect is used, rotating the initial state slowly so that, if
measurements are taken, the final state of the algorithm differs, with high probability,
from the one when none of those measurements occur. We will briefly describe it next.
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Fig. 1 Elitzur–Vaidman algorithm for one qubit

Elitzur–Vaidman bomb tester
The objective is to detectmeasurements in a 1-qubit quantum circuit. Suchmeasure-

ments represent a bomb in a quantum circuit, which explodes when |1〉 is measured.
The algorithm is designed to minimize the probability of measuring |1〉, while detect-
ing the presence of the measurements in the end, without triggering the bomb. As
mentioned before, O will represent the place where a measurement may or may not
occur.

The Elitzur–Vaidman circuit is shown in Fig. 1, where θ = π
2k for a given k ∈ N,

and the rotation Rθ , whose coordinate matrix with respect to the computational basis

is

(
cos θ − sin θ

sin θ cos θ

)
, is applied k times. As we mentioned above, the rotation is applied

multiple times in order to rotate the state slowly while themeasurements may occur, so
that an interruption of such rotation (a measurement) would cause different outcomes
in the final measurement with high probability.

If there are no measurements on O (no bomb), the state |0〉 will be allowed to
rotate to |1〉, which will be the result of the last measurement with certainty. (Since
this measurement is not related to O , it does not affect the bomb.)

On the other hand, if there is actually a bomb, each O will take a measurement.
This is the casewhen the rotation is constantly being interrupted, and consequently, the
state will not be able to get to |1〉 and it is likely to stay in |0〉 for every O measurement.
More precisely, the probability of outcome |1〉 (and so exploding the bomb) is sin2 θ

each time. Therefore, the probability of measuring |0〉 in every O , is cos2k θ −−−→
k→∞ 1.

So, the probability of measuring |0〉 at the end can be as close to 1 as desired, meaning
the detection of bomb in the circuit despite not having sparked any explosion.

As we see, the algorithm detects the existence of measurements in a circuit. A
relevant question is its performance when the measurements basis is unknown and
arbitrary. This is the problem that will be addressed in this article.

3 QMDA and their properties

As shown in the previous section, we know algorithms that are able to detect, with
high probability, if measurements were taken during the circuit or not, and our aim is
to generalize them taking the Elitzur–Vaidman algorithms as the main reference. We
will provide the theoretical framework before focusing on the Elitzur–Vaidman bomb
tester.

3.1 QMDA definition

The following definition is inspired by our previouswork onQuantumAbstractDetect-
ing Systems (QADS) [10]. These systems are able to detect whether there is a marked
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Table 1 Comparison between QADS and QMDA

Algorithm Trivial
case

Implication Expected
outcome

Non-trivial case Expected outcome

QADS with initial
state |ψ0〉

f ≡ 0 U f |ψ0〉 = |ψ0〉 |ψ0〉 f �≡ 0 Different from |ψ0〉

QMDA with
initial state |ψ0〉

O ≡ I U1UkU0|ψ0〉 = |ψ0〉 |ψ0〉 O ≡ measurement Different from |ψ0〉

element in a given set. This is achieved by creating circuits that fix the initial state
when there are no marked elements, so that the outcome is predictable in that case.
Measuring any other state at the end of the circuit would inevitably mean that there
are marked elements. Different subclasses, such as combinatorial or rotational QADS,
have proved to be useful for a variety of problems [11].

Since the objective of QMDA is to detect whether there are measurements in our
circuit, we can employ the same strategy as QADS: fixing the initial state when none of
thosemeasurements occur, so that a predictable outcome is forced for this case. Hence,
the QMDA will be expected to fix the initial state when there are no measurements,
so that any other state at the end of the circuit would confirm that measurements have
happened. The similarities are illustrated in Table 1.

Definition 1 A quantum measurement detection algorithm of size n, henceforth
QMDAn , is a 5-tuple (U0, U , U1, k, |ψ0〉), where |ψ0〉 ∈ H represents the initial
state, beingH a Hilbert space of dimension N = 2n ; U0, U , U1 are unitary operators
onH and k > 0 is a natural number such that U1U kU0|ψ0〉 = |ψ0〉.

As shown in Fig. 2, U0 represents the sub-circuit before the first O (measurement
or not), U the sub-circuit that will be repeated between each two O and U1 the final
sub-circuit before the last measurement. It is clear, then, that the circuit is prepared
for k + 1 applications of O . If O ≡ I (no measurement), then the gates are applied
consecutively getting to the final state |ψ0〉. If O ≡ measure, we assume all of them
measure in the same basis.

From this, the detection scheme for measurements is the following.

Algorithm 1 Detection scheme for a QMDAn
Given a QMDAn (U0, U , U1, k, |ψ0〉):
1: Implement the circuit C starting on the initial state |ψ0〉.
2: Measure the final state over any orthonormal basis that contains |ψ0〉.
3: If the result is |ψ0〉, output ‘NO.’ If the result is any other state different from |ψ0〉, output ‘YES.’

Fig. 2 Circuit of a QMDA

123



Quantum measurement detection algorithms Page 5 of 38 274

Fig. 3 Elitzur–Vaidman algorithm as a QMDA for n qubits

We would like to minimize the probability of error of the algorithm when the
measurement basis is unknown. We should notice that the detection scheme does not
provide a wrong answer when O ≡ I , but it might fail when O ≡ measure when we
obtain |ψ0〉 at the end, so the probability of error is only related to this case.

Our definition allows us to introduce a family of Elitzur–Vaidman algorithms.

Definition 2 We define EVn,k as the 5-tuple (R⊗n
θk

, R⊗n
θk

, σX · R⊗n
θk

, k, |0〉⊗n), where
θk = π

2(k+2) . EVn,k is a QMDAn for all n and k natural numbers.

The circuit is shown in Fig. 3. The final NOT gate has the objective of fixing the
initial state whenever O ≡ IN .

3.2 Properties of a QMDAn

We begin by studying the behaviour of the circuit when the measurements occur. Let
us introduce some useful notation.

Definition 3 Given a QMDAn (U0, U , U1, k, |ψ0〉) and an orthonormal basis M =
{|mi 〉}N

i=1, we define the auxiliary matrices

M̂0 := (|〈mi |U0|ψ0〉|2)1≤i≤N (column vector),

M̂ := (|〈mi |U |m j 〉|2)1≤i, j≤N ,

M̂1 := (|〈ψ0|U1|m j 〉|2)1≤ j≤N = (|〈m j |U †
1 |ψ0〉|2)1≤ j≤N (row vector).

M̂0 gathers the probability of the QMDAn circuit collapsing into each |mi 〉 in the
first O measurement, after starting in the state |ψ0〉; M̂ gathers its probability of
collapsing into each |mi 〉 in the following O measurements, after starting each sub-
circuit in the corresponding |m j 〉 measured in the previous O; and M̂1 gathers its
probability of collapsing into |ψ0〉 at the end (which would mean a wrong detection),
depending on the state |m j 〉 it started in after the final O measurement.

The auxiliary matrices are central in our study, due to the fact that they will allow
us to calculate the probability of error of the detection scheme.

Theorem 1 Given a QMDAn (U0, U , U1, k, |ψ0〉), and assuming that every O rep-
resents a measurement in an orthonormal basis M = {|mi 〉}N

i=1, the probability of

measuring the state |ψ0〉 at the end of the algorithm is given by M̂1M̂k M̂0.

The proof of every result of this section can be found in “AppendixA.” This theorem
theoretically allows us to calculate the probability of error of the algorithm for a given
basis M . However, a practical computation of M̂k might be difficult when n >> 1. In
this sense, a useful property that we can use to calculate the three auxiliary matrices
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is the fact that every row and column adds up to 1, and so some tricks to calculate M̂k

are used in subsequent proofs (gathered in the appendices).
Moreover, since there may be a high number of undesired measurements in the

circuits that are out of our control and that might be conditioned by an interfering
environment, it is reasonable to question the effect that noisy measurements would
have on QMDA. We can obtain a first insight into this subject by considering that,
for every measurement in O , the probability of measuring the state |mi 〉 when, in
absence of noise, we would have measured |m j 〉, is given by 〈mi |E |m j 〉, where E is
a stochastic matrix. This type of noise has been used before to study measurement
errors, for instance in [12].

Under these conditions, the formula for the probability of error changes, as the
stochastic matrix gets represented once for each O measurement.

Theorem 2 Given a QMDAn (U0, U , U1, k, |ψ0〉), and assuming that every O rep-
resents a noisy measurement in an orthonormal basis M = {|mi 〉}N

i=1, being E
the associated readout error stochastic matrix, the probability of measuring the
state |ψ0〉 at the end of the algorithm is given by M̂1(Ê M̂)k Ê M̂0, where Ê :=
(〈mi |E |m j 〉)1≤i, j≤N .

The effect of more complex types of noise is an interesting subject that would
deserve a more thorough and independent study. For now, our aim is to find an algo-
rithm capable of detecting whether measurements have taken place or not, but without
knowing the basis in which they occur. To guide us, we will use the following natural
definition for the worst behaviour of the detection scheme.

Definition 4 LetM be the set of orthonormal bases of a Hilbert spaceH of dimension
N . Given a QMDAn Q, we define δ(Q) := sup{M̂1M̂k M̂0}M∈M, and we say that Q
is a δ(Q)-detector algorithm.

Obviously, we aim to find a QMDA whose δ(Q) is as low as possible.
It is time to prove some bounds to the probability of error and to δ(Q), some of

them being related to the eigenvectors of U , due to their ability to skip the influence
of every U gate.

Proposition 1 Let (U0, U , U1, k, |ψ0〉) be a QMDAn and M an orthonormal basis of
a Hilbert space of dimension N. Then

M̂1M̂k M̂0 ≥ 1

N 2(k+1)
> 0.

This immediately shows that it is impossible for a QMDAn to achieve a perfect
accuracy for any basis we are measuring in, so our best option is to be able to decrease
the probability of error as much as desired, which will always require an increment of
k. Although this can be easily overcome, in the next theoremswe identifymeasurement
bases having particularly undesired properties.
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Theorem 3 Let (U0, U , U1, k, |ψ0〉) be a QMDAn and let A = {|ai 〉}N
i=1 be an

orthonormal basis of eigenvectors of U. Then Â = IN , Ât
1 = Â0 and

Â1 Âk Â0 = Â1 Ât
1 = Ât

0 Â0 ≥ 1

N
.

Moreover,

Â1 Âk Â0 = 1

N
⇔ |〈ai |U0|ψ0〉|2 = 1

N
, ∀i = 1, . . . , N .

As we can see, when measurements occur in a basis of eigenvectors of U, the
detection is immediately restricted to 1

N . This property suggests that eigenvectors-
related bases are worth studying and will be our main concern. Several conclusions
can be deduced from it, mainly bounds for δ(Q) that warn us about the difficulty of
dealing with these bases.

Corollary 1 If Q is a QMDAn, then δ(Q) ≥ 1
N .

Corollary 2 IfQ is a QMDAn, then δ(Q) = 1
N if and only if the maximum of M̂1M̂k M̂0

is reached for any basis of eigenvectors of U and its value is 1
N .

Corollary 3 If Q is a QMDAn and ∃|a〉 eigenvector of U such that U0|ψ0〉 = |a〉, then
|〈a|U0|ψ0〉|2 = 1, and hence, δ(Q) = 1.

Although the first corollary is a lower bound for the probability of error, this bound
decreases exponentially with n, so it is not as restrictive as expected. Additionally, it
suggests the following definition.

Definition 5 We say that a QMDAn Q is optimal if δ(Q) = 1
N .

Corollary 4 If a QMDAn is optimal and A is a basis of eigenvectors of U, then
|〈ai |U0|ψ0〉|2 = 1

N , ∀i = 1, . . . , N.

It is worth pointing out that this bound does not mean that the maximum of
M̂1M̂k M̂0 is always reached for a basis of eigenvectors of U . In fact, as we will
see in the next section, the maximum probability of error in the case of any EV1,k is
not reached for the basis of eigenvectors {|+ i〉, |− i〉}, but for {|+〉, |−〉}. This means
that no EVn,k is optimal. However, at least every EV1,k will satisfy the following
definition, which is inspired by the properties proved in Proposition 1 and Theorem 3.

Definition 6 We say that an infinite family {Qp}∞p=1 of QMDAn , dependent on the

parameter p, is asymptotically optimal if δ(Qp) −−−→
p→∞

1
N and ∃M ∈ M such that

M̂1,p M̂k(p)
p M̂0,p −−−→

p→∞ 0.

If a family {Qp}∞p=1 is asymptotically optimal, then we know from Proposition 1
that p → ∞ ⇒ k(p) → ∞. After these two definitions, we aim at finding some
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QMDAn that verifies the conditions presented. As we already advanced, EV1,k does
the job for n = 1, but as n increases, we need to consider QMDAs with clever
combinations of eigenvectors of U . This is because, as we will prove, they tend to
cause high probabilities of error if they are not treated correctly. We gather the bases
of linear combinations of eigenvectors of U in the following definition.

Definition 7 For any basis A = {|ai 〉}N
i=1 and any P divisor of N , we say the basis M

is a P-combination of A if

|m Pd+i 〉 = 1√
P

P∑
j=1

σi ( j)|aPd+ j 〉,

where i = 1, . . . , P; d = 0, . . . , N/P − 1 and each σi ( j) is either 1 or -1 (in other
words, it just indicates the sign accompanying each |a j 〉 for the i th element of M).
Moreover, M must verify the following properties:

1. σ1( j) = σi (1) = 1, ∀i, j

2a.
P∑

j=1

σi1( j)σi2( j) = 0, ∀i1 �= i2

3a. ∀i1, i2, ∃p such that σi1( j)σi2( j) = σp( j), ∀ j

3b. ∀ j1, j2, ∃q such that σi ( j1)σi ( j2) = σi (q), ∀i

This bases are just linear combinations of the vectors of A, but with every coefficient
being ±1/

√
P . We will see how to construct one soon. Property 1 means that the

first element of M is the sum of the first P elements of A. Property 2a ensures the
orthonormality of the basis, and 3a means that the product of the signs of two different
elements of M are the signs of another element of M . We will need all of them for
proving the upcoming theorems. In addition, some extra properties can be deduced
from these:

Proposition 2 If M is a P-combination of the basis A, the following properties are a
consequence of the properties 1 and 2a.

2b.

P∑
i=1

σi ( j1)σi ( j2) = 0, ∀ j1 �= j2

2c.
P∑

j=1

σi ( j) = 0, ∀i �= 1

2d.

P∑
i=1

σi ( j) = 0, ∀ j �= 1

We will also benefit from the property 3a and 3b to introduce some notation. Since
3a is a property of the signs ‘by rows’, and 3b is analogous ‘by columns’, we will use
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the notation

(i1, i2)r = p :⇔ σi1( j)σi2( j) = σp( j),

( j1, j2)c = q :⇔ σi ( j1)σi ( j j ) = σi (q).

In order to find an example of P-combination basis, we only have to choose a
proper combination of signs. A way of doing it is by using the Sylvester matrices [13].
The Sylvester matrix S(k) of order 2k is

S(k) =
(+ +

+ −
)⊗k

.

These matrices offer an example of signs election that can be used for constructing
P-combination bases, as we prove in the following proposition.

Proposition 3 If S(k) is a Sylvester matrix and σi ( j) := S(k)i j , then, for all k and
any given a basis A,

|m Pd+i 〉 = 1√
P

P∑
j=1

σi ( j)|aPd+ j 〉

is a P-combination of the basis A for P = 2k .

The first Sylvester matrices are:

S(1) =
(+ +

+ −
)

, S(2) =

⎛
⎜⎜⎝

+ + + +
+ − + −
+ + − −
+ − − +

⎞
⎟⎟⎠ , S(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So, given any basis A, an example of 2-combination basis of A for n = 2 is:

|m1〉 = 1√
2

(|a1〉 + |a2〉) |m3〉 = 1√
2

(|a3〉 + |a4〉)

|m2〉 = 1√
2

(|a1〉 − |a2〉) |m4〉 = 1√
2

(|a3〉 − |a4〉) .

For n = 3, an example of 4-combination basis is

|m1〉 = 1

2
(|a1〉 + |a2〉 + |a3〉 + |a4〉) |m5〉 = 1

2
(|a5〉 + |a6〉 + |a7〉 + |a8〉)
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|m2〉 = 1

2
(|a1〉 − |a2〉 + |a3〉 − |a4〉) |m6〉 = 1

2
(|a5〉 − |a6〉 + |a7〉 − |a8〉)

|m3〉 = 1

2
(|a1〉 + |a2〉 − |a3〉 − |a4〉) |m7〉 = 1

2
(|a5〉 + |a6〉 − |a7〉 − |a8〉)

|m4〉 = 1

2
(|a1〉 − |a2〉 − |a3〉 + |a4〉) |m8〉 = 1

2
(|a5〉 − |a6〉 − |a7〉 + |a8〉) .

In this last example, we have combined elements 1-2-3-4 and 5-6-7-8 of A, but
any other combination could be possible, for example, 1-5-7-8 and 2-3-4-6. For any
A basis, and for any given n and P , there are

(
N

P

)
·
(

N − P

P

)
·
(

N − 2P

P

)
· . . . ·

(
2P

P

)
= N !

(P!)N/P

different possible P-combination bases. Our theorems provide results for one of the
P combination bases, but the optimality requires an acceptable behaviour for every
possible basis.

We will focus on bases of eigenvectors of U . Their P-combination bases chal-
lenge the optimality of the algorithm and their properties simplify the calculations
considerably.

Theorem 4 Given a QMDAn, A an orthonormal basis of eigenvectors of U and M a
P-combination basis of A, then, if the eigenvalue associated with |ai 〉 is λi = eiϕi ,

M̂1M̂k M̂0 =
N/P−1∑

d=0

1

P

⎛
⎝ P∑

j=1

|βPd+ j |2
⎞
⎠

2

+
P∑

i=2

⎛
⎝ 1

P

P∑
j=1

cosϕPd+ j,Pd+(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

|βPd+ j ||βPd+(i, j)c | cosβPd+ j,Pd+(i, j)c

⎞
⎠

·
⎛
⎝ 1

P

P∑
j=1

|βPd+ j ||βPd+(i, j)c | cos(βPd+ j,Pd+(i, j)c + kϕPd+ j,Pd+(i, j)c)

⎞
⎠ ,

where ϕi j = ϕi − ϕ j , and βi j is the angle between βi := 〈ai |U0|ψ0〉 and β j :=
〈a j |U0|ψ0〉.

The optimality of the QMDAn requires this probability not to exceed 1
N . We can

simplify the formula assuming that |βi |2 = |〈ai |U0|ψ0〉|2 = 1
N , which is a necessary

condition for the optimality.
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Theorem 5 In the conditions of the previous theorem, if |βi |2 := |〈ai |U0|ψ0〉|2 = 1
N

and P = 2q , then

M̂1M̂k M̂0 = 1

2n
+ 1

22n−q

N/P−1∑
d=0

P∑
i=2

⎛
⎝ 1

P

P∑
j=1

cosϕPd+ j,Pd+(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

cosβPd+ j,Pd+(i, j)c

⎞
⎠

·
⎛
⎝ 1

P

P∑
j=1

cos(βPd+ j,Pd+(i, j)c + kϕPd+ j,Pd+(i, j)c)

⎞
⎠ .

This formula does not imply that M̂1M̂k M̂0 ≥ 1
N , due to the fact that the cosines

may be negative. Unfortunately, making the cosines negative requires large angles,
and since the number of angles increases exponentially with n, getting large ones
becomes a problem of unclear solution. Moreover, we have to remember that the P
combination can be done with any group of P eigenvectors of A, so the angles of the
cosines can be combined however we desire to, and the summation must be negative
(or 0) for all of them in order to achieve the optimality.

Minimizing the formula analytically is difficult in general, but in the case of P = 2
it can be cleverly done. The trick is based on the fact that 2-combination bases are the
only ones in which there is no mixture of angles in the cosines, so that they can be
treated independently.

Theorem 6 Given a QMDAn, A an orthonormal basis of eigenvectors of U, and M a
2-combination basis, then

M̂1M̂k M̂0 = 1

2

⎡
⎣N/2∑

i=1

(|β2i−1|2 + |β2i |2
)2

+4
N/2∑
i=1

|β2i−1|2|β2i |2 cosk ϕ2i−1,2i cosβ2i−1,2i cos(β2i−1,2i + kϕ2i−1,2i )

⎤
⎦ .

Moreover, defining Ci := cosk ϕ2i−1,2i cosβ2i−1,2i cos(β2i−1,2i + kϕ2i−1,2i ), the
following bound is verified:

M̂1M̂k M̂0 ≥ 1

2
N/2∑
i=1

1

Ci + 1

.
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274 Page 12 of 38 G. L. Fernández et al.

The equality is satisfied if and only if

∀ j = 1, . . . , N/2, |β2 j−1|2 + |β2 j |2 = 1
N/2∑
i=1

C j + 1

Ci + 1

, and, if C j �= 0

⇒ |β2 j−1|2 = |β2 j |2.

The condition for the equality is rather cumbersome. Consequently, since we aim at
a minimization for every 2-combination basis, we focus on the case of independence
of the constants, i.e. |βi |2 = |β j |2 = 1

N , ∀i, j . This condition is convenient for a
QMDAn since it unifies the probability formulas for every P-combination basis for
any given P and is a necessary condition for the optimality. Applied to a 2-combination
basis, the probability under this condition is

M̂1M̂k M̂0 = 1

2n
+ 1

22n−1

N/2∑
i=1

cosk ϕ2i−1,2i cosβ2i−1,2i cos(β2i−1,2i + kϕ2i−1,2i ).(1)

However, being able to minimize the probability of error under one 2-combination
basis does not provide a way of minimizing the probability of error under every 2-
combination basis at the same time, especially for great values of n.

Finally, before getting into the study of EVn,k , we will prove a very useful result
for calculating probabilities of a QMDAn+m constructed from other QMDAn and
QMDAm of smaller size.

Theorem 7 Let (U0, U , U1, k, |ψ0〉) be a QMDAn, (V0, V1, V , k, |ϕ0〉) a QMDAm and
X , Y two orthonormal bases of dimension 2n and 2m, respectively. Then, given the
QMDAn+m (U1⊗V1, U ⊗V , U0⊗V0, k, |ψ0〉⊗|ϕ0〉), the basis Z = {|xi 〉⊗|y j 〉,∀i =
1, . . . , 2n,∀ j = 1, . . . , 2m} verifies

Ẑ0 = X̂0 ⊗ Ŷ0, Ẑ1 = X̂1 ⊗ Ŷ1, and Ẑ = X̂ ⊗ Ŷ .

As a consequence, Ẑ1 Ẑ k Ẑ0 = X̂1 X̂ k X̂0 · Ŷ1Ŷ k Ŷ0.

This intuitive property allows us to calculate probabilities associated to any basis
that verifies the given conditionswheneverwe areworkingwith aQMDAn constructed
from a tensor product, as it is the case of any EVn,k = EV1,k ⊗ . . . ⊗ EV1,k .

4 Study of the Elitzur–Vaidman algorithm

In this last section, we will analyse the behaviour of the Elitzur–Vaidman algorithm.
We will prove that, for n = 1, EV1,k is an asymptotically optimal family of QMDAn .
However, this is not the case for n > 1, due to the P-combination bases, as the angles
involved in the formula of Theorem 4 get smaller when k −→ ∞. We will suggest
an adjustment that overcomes this for n = 2, but for greater n the solution in unclear.
The main theorem of this section is the following.
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Theorem 8 Given k, we consider the QMDA1 EV1,k and we define c := cos θk, s :=
sin θk . If every O is equivalent to a measurement in the basis M where |m1〉 =
cos θ

2 |0〉 + eiϕ sin θ
2 |1〉 and |m2〉 = sin θ

2 |0〉 − eiϕ cos θ
2 |1〉, then

M̂1M̂k M̂0 = 1

2
+ (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ)

2
.

The proofs of the two main results of this section can be found in “Appendix B.”
As a consequence, when we measure in the basis of eigenvalues of U = Rθk , which
is A = | + i〉, | − i〉, we get Â1 Âk Â0 = 1

2 = 1
N . Unfortunately, this does not imply

its optimality, as we are about to prove.

Theorem 9 Given k and EV1,k , the critical points of the formula in Theorem 8 are
reached for the bases {|0〉, |1〉}, {|+〉, |−〉} and {| + i〉, | − i〉}.

Obviously, the basis {|0〉, |1〉} corresponds to the minimum, and we need to confirm
where the maximum is.

Corollary 5 Given k and EV1,k , if measurements occur in the basis M = {|0〉, |1〉},
then

M̂1M̂k M̂0 = 1 − (cos π
k+2 )

k+2

2
.

Proof We substitute directly in the formula of Theorem 8 taking into account that, for
|0〉, θ = 0, obtaining

M̂1M̂k M̂0 = 1 − (c2 − s2)k+2

2
= 1 − (cos 2θk)

k+2

2
. ��

As expected,
1−(cos π

k+2 )k+2

2 −−−→
k→∞ 0, so one of the conditions for the asymptotical

optimality is verified. For the second one, we have the following result.

Corollary 6 Given k and EV1,k , if measurements occur in the basis A = {|+ i〉, |− i〉},
then Â1 Âk Â0 = 1

2 . If measurements occur in the basis M = {|+〉, |−〉}, then

M̂1M̂k M̂0 = 1

2
+ 2 cosk π

k + 2
cos2

π

2(k + 2)
sin2

π

2(k + 2)
>

1

2
.

Proof We can substitute directly in the formula of Theorem 8 knowing that, for |+ i〉,
θ = ϕ = π

2 . The same applies for M , taking into account that for |+〉, θ = π
2 and

ϕ = 0. ��
Aswe can see, themaximum is reached for M = {|+〉, |−〉}, forwhich M̂1M̂k M̂0 >

1
2 . However, the fact that M̂1M̂k M̂0 −−−→

k→∞
1
2 = 1

N allows us to conclude:

Theorem 10 The family EV1,k of QMDA1 is asymptotically optimal.
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This confirms that there exists a family of QMDA1 with the desirable properties.
For n > 1, the EVn,k circuit looks like:

|0〉⊗n R⊗n
θk O R⊗n

θk O . . . R⊗n
θk O R⊗n

θk
σ⊗n

X
��

Because EVn,k = EV1,k ⊗ . . . ⊗ EV1,k , Theorem 7 guarantees a good behaviour
for any basis built from a tensor product of 1-qubit bases. The next step is to study
entangled bases, as P-combination bases can be.

The eigenvectors of Rθk are | + i〉, | − i〉, with eigenvalues eiθ , e−iθ , respectively,
so we can consider the basis A of eigenvectors of R⊗2

θk
as

|a1〉 = | + i〉| + i〉, |a2〉 = | − i〉| − i〉, |a3〉 = | + i〉| − i〉, |a4〉 = | − i〉| + i〉.

Their eigenvalues would be, respectively, ei2θ , e−i2θ , 1, 1. Keeping this in mind, the
following result is verified.

Theorem 11 Given k and EV2,k , we consider M a 2-combination basis of A. Then,

M̂1M̂k M̂0 = 1

4
+ cosk+2 2π

k+2 + 1

8
.

Proof Combining Theorem 6 with the fact that |〈ai |R⊗2
θ |00〉|2 = 1

4 ,∀i = 1, 2, 3, 4,
we can substitute on formula (1) knowing that n = 2, θk = π

2(k+2) , ϕ12 = β12 = 4θ

and ϕ34 = β34 = 0. We should notice that β12 + kϕ12 = (k + 1)4θ = (k+1)2π
k+2 =

− 2π
k+2 = −4θk , and cos−4θk = cos 4θk . ��

The important observation is that 1
4 + cosk+2 4θk+1

8 −−−→
k→∞

1
2 . Moreover, 1

4 +
cosk+2 4θk+1

8 < 1
2 , which means that the probability of error increases as k −→ ∞!

This leads us inevitably to the conclusion:

Theorem 12 The family EVn,k of QMDAn is asymptotically optimal if and only if
n = 1.

The reason why the previous theorem prevents the optimality also for n > 2 is due
to Theorem 7, which can be used to generate bases from the tensor product of this
2-combination basis and yield a probability of error higher than 1

N .
A way of overcoming this issue with 2-combination bases is by adjusting the angles

involved. For example, if {ϕi }4i=1 = {0, π
2 , π, 3π

2 } and β̃i }4i=1 = {π
2 , 0, π, 3π

2 }, where
β̃i is the argument of βi = 〈ai |U0|00〉. This means thatU := ∑4

j=1 eiϕ j |a j 〉〈a j |. And,
for example, we can define U0 := ∑4

j=1 β j |a j 〉〈00| + ∑4
j=1 β j |a j 〉〈11|. The angles

are chosen so that, no matters how the eigenvectors are paired in the 2-combination
basis, the product of cosines is always equal to 0. Unfortunately, this alternative does
not generalize for greater values of n.

However, the Elitzur–Vaidman circuit of any number of qubits can be adapted to
any basis in which we desire to achieve maximum accuracy by adjusting the initial
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state and the rotation axis of U . This is already suggesting a possibility for the future:
mixing or nesting two different QMDAn so that one can fix the weaknesses of the other
by providing high detecting probabilities over those bases where the other struggles.

5 Possible extensions of QMDAn and counterfactual communication

Asmentioned throughout the article, there are somepossible extensions of theQMDAn
definition that can be considered in order to generalize their behaviour further, which
we want to address in the future. Some extensions include the study when each O only
measures on certain qubits (and not on all of them), or the study of properties of the
QMDAn circuits having intentional, intermediate measurements. These extensions of
our framework, along with some others, would lead to other well-known algorithms,
such as the counterfactual communication [5] one.

The counterfactual communication algorithm works with three-qubit modelling
photons, and the objective is to establish a communication between two parties, Alice
and Bob, in such a way that Bob can communicate a decision (blocking Alice’s photon
or not) to Alice without any photon crossing the transmission channel. This means
that Bob and Alice have communicated without actually sharing any information. The
circuit is shown in Fig. 4.

A |1〉 in one of the arms means that Alice’s photon is currently in that arm. The two
upper arms belong to Alice’s side and the lower one to Bob’s side. This means that,
whenever we have the state |001〉, the photon would have crossed the transmission
channel. Here, BSP stands for beam splitter with reflectivity cos2 θP , being θP = π

2P .
In other words, with respect to the computational basis,

BSP =

⎛
⎜⎜⎝
1 0 0 0
0 cos θP − sin θP 0
0 sin θP cos θP 0
0 0 0 1

⎞
⎟⎟⎠ .

Fig. 4 Counterfactual communication algorithm
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The BSM gate will be applied M times to the two upper arms, and after each one
(except the last one) a whole cycle of N applications of BSN gates to the two lower
arms. The natural numbers M and N can be chosen unrestrictedly. The algorithm
ensures that Alice, based on the measured state at the end, will be able to infer Bob’s
choice with a probability as close to 1 as desired and without |1〉 being ever measured
in the third qubit. (No photon has crossed the transmission channel.)

The similarities with QMDAn are clear, since the algorithm, from Alice’s perspec-
tive, intends to detect whether measurements have been taken in every O (Bob has
decided to block her photon) or not (Bob has decided to let her photon pass). However,
the intermediate measurements, the nested loops of BSM and BSN and the measure-
ments on a specific qubit instead of on all of them, prevents this algorithm from being
a QMDAn yet, but makes its study interesting enough to deserve another work.

6 Conclusions and future work

In this paper, we have introduced a general framework to detect foreign measurements
in circuits with respect to an unknown basis. The definition of quantum measurement
detection algorithms generalizes the Elitzur–Vaidman bomb tester circuit.

Our results show the key properties and scope of QMDA. We have obtained the
measurement detection probability error in terms of three matrices. In particular, for
high number of qubits, we have derived explicit expressions of such a probability.
Optimality of QMDA has been addressed, showing that bases that do not contain
eigenvectors of the above-mentioned matrices yield better results. Finally, we study
the performance of the Elitzur–Vaidman bomb tester and conclude its asymptotic
optimality for the single-qubit circuit.

Future work includes the study when each O only measures on certain qubits (and
not on all of them). Also, the study of properties of the QMDA circuits having internal
measurements. Other extensions of our framework may include the counterfactual
communication algorithm. Finally, we intend to provide a deeper insight into the
effect of different types of noisy measurements on the detection power of QMDA.
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Appendix A: Proofs of the results in Sect. 3

Before getting into the results, let us fix our notation. We will work with mixed states
of the form

∑N
i=1 pi |ψi 〉〈ψi |, where∑N

i=1 pi = 1. Here, the nonnegative real number
pi represents the probability of the circuit being in the pure state |ψi 〉. If the current
pure state is |ψ〉〈ψ |, and we apply a measurement in the orthonormal basis {|mi 〉}N

i=1,
the state evolves to

n∑
i=1

|mi 〉〈mi ||ψ〉〈ψ ||mi 〉〈mi | =
n∑

i=1

|mi 〉〈mi |ψ〉〈ψ |mi 〉〈mi |

=
n∑

i=1

|〈ψ |mi 〉|2|mi 〉〈mi |.

Since |〈ψ |mi 〉|2 is the probability of measuring |mi 〉 from the state |ψ〉, observe
that the coefficients add up to 1 and no normalization is needed. For the sake of brevity,
we will write sums as an inner product of vectors.

N∑
i=1

pi |ψi 〉〈ψi | = �ψ · �p t , where �ψ = (|ψ0〉〈ψ0|, . . . , |ψN 〉〈ψN |) and �p

= (p1, . . . , pN ).

Theorem 13 Given a QMDAn (U0, U , U1, k, |ψ0〉), and assuming that every O rep-
resents a measurement in an orthonormal basis M = {|mi 〉}N

i=1, the probability of

measuring the state |ψ0〉 at the end of the algorithm is given by M̂1M̂k M̂0.

Proof We begin proving that the mixed state after the pth measurement, being p ≤
k + 1, is

�m · M̂ p−1M̂0,

where �m = (|m1〉〈m1|, . . . , |m N 〉〈m N |).
We will prove this by induction over p. Let us denote some useful states: |ϕ0〉 :=

U0|ψ0〉 and |ϕi 〉 := U |mi 〉. For p = 1, we have to follow the circuit until the first O
measurement. It starts in the state |ψ0〉〈ψ0| and evolves to |ϕ0〉〈ϕ0| after applying U0.
Here, the first measurement is taken, which leaves us with the mixed state

N∑
i=1

|〈mi |ϕ0〉|2|mi 〉〈mi | = �m · M̂0 = �m · M̂ p−1M̂0

The next step is to prove that, if the result is correct for p, then it will be for p + 1.
So, our induction hypothesis is that, after the pth measurement, the state of the circuit
is

�m · M̂ p−1M̂0.
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Then we apply a U gate that evolves the state to

�ϕ · M̂ p−1M̂0 =
N∑

i=1

(
M̂ p−1M̂0

)
i
|ϕi 〉〈ϕi |,

where
(

M̂ p−1M̂0

)
i
represents the i th element of the column vector M̂ p−1M̂0. More-

over, M̂i · will stand for the i th row of M̂ . The next measurement occurs, so the new
state is

N∑
j=1

(
N∑

i=1

|〈m j |ϕi 〉|2
(

M̂ p−1M̂0

)
i

)
|m j 〉〈m j | =

N∑
j=1

M̂ j ·M̂ p−1M̂0|m j 〉〈m j |

= �m · M̂ p M̂0.

With this result, we know that the final state of the circuit will be

N∑
i=1

M̂i ·M̂k−1M̂0|φi 〉〈φi | = �φ · M̂k M̂0,

for |φi 〉 := U1|mi 〉. This is due to the fact that, according to what has been proved, the
state after the (k +1)th measurement (the last application of an O), will be �m · M̂k M̂0.
The next step is to apply U1, obtaining the final state �φ · M̂k M̂0.

We are now ready to calculate the probability of error of the algorithm when every
O represents a measurement, which is given by the probability of measuring |ψ0〉
after the final measurement. The final state of the circuit is �φ · M̂k M̂0; therefore, the
probability of measuring |ψ0〉 in this situation is

〈ψ0|
(

N∑
i=1

(
M̂k M̂0

)
i
|φi 〉〈φi |

)
|ψ0〉 =

N∑
i=1

|〈ψ0|U1|mi 〉|2
(

M̂k M̂0

)
i
= M̂1M̂k M̂0.

��

When we add noise to our measurements, if the current pure state is |ψ〉〈ψ | and
we apply a measurement in the orthonormal basis {|mi 〉}N

i=1, the state evolves to

n∑
i=1

⎛
⎝ n∑

j=1

〈mi |E |m j 〉|〈ψ |m j 〉|2
⎞
⎠ |mi 〉〈mi | =

n∑
j=1

|〈ψ |m j 〉|2
n∑

i=1

〈mi |E |m j 〉|mi 〉〈mi |.

Basically, this means that the probability of measuring |mi 〉 is the sum of the
probabilities of every situation in which we should have measured |m j 〉 (|〈ψ |m j 〉|2)
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but noise made us measure |mi 〉 (〈mi |E |m j 〉). Again, since
n∑

i=1

n∑
j=1

〈mi |E |m j 〉|〈ψ |m j 〉|2 =
n∑

j=1

|〈ψ |m j 〉|2
n∑

i=1

〈mi |E |m j 〉 =
n∑

j=1

|〈ψ |m j 〉|2 = 1,

no normalization is needed.

Theorem 14 Given a QMDAn (U0, U , U1, k, |ψ0〉), and assuming that every O rep-
resents a noisy measurement in an orthonormal basis M = {|mi 〉}N

i=1, being E
the associated readout error stochastic matrix, the probability of measuring the
state |ψ0〉 at the end of the algorithm is given by M̂1(Ê M̂)k Ê M̂0, where Ê :=
(〈mi |E |m j 〉)1≤i, j≤N .

Proof The proof is analogous to the previous one. We begin proving that the mixed
state after the pth measurement, being p ≤ k + 1, is

�m · (Ê M̂)p−1 Ê M̂0.

We will prove this by induction over p. For p = 1, we follow the circuit until the
first O measurement. After evolving from |ψ0〉〈ψ0| to |ϕ0〉〈ϕ0|, the first measurement
is taken:

n∑
j=1

|〈ϕ0|m j 〉|2
n∑

i=1

〈mi |E |m j 〉|mi 〉〈mi | = �m · Ê M̂0 = �m · (Ê M̂)p−1 Ê M̂0

Now we assume that the result is correct for p, and we will prove it for p + 1. So,
our induction hypothesis is that, after the pth measurement, the state of the circuit is

�m · (Ê M̂)p−1 Ê M̂0.

Then we apply a U gate that evolves the state to

�ϕ · (Ê M̂)p−1 Ê M̂0 =
N∑

i=1

(
(Ê M̂)p−1 Ê M̂0

)
i
|ϕi 〉〈ϕi |.

The next measurement occurs, so the new state is

N∑
i=1

(
(Ê M̂)p−1 Ê M̂0

)
i

N∑
j=1

|〈m j |ϕi 〉|2
N∑

k=1

〈mk |E |m j 〉|mk〉〈mk |

=
N∑

k=1

⎛
⎝ N∑

j=1

〈mk |E |m j 〉
N∑

i=1

|〈m j |ϕi 〉|2
(
(Ê M̂)p−1 Ê M̂0

)
i

⎞
⎠ |mk〉〈mk |
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=
N∑

k=1

Êk·M̂(Ê M̂)p−1 Ê M̂0|mk〉〈mk | = �m · (Ê M̂)p Ê M̂0.

With this result, we know that the final state of the circuit, after the k applications of
O and the gate U1, will be �φ · (Ê M̂)k Ê M̂0. The probability of error of the algorithm,
then, is given by the probability of measuring |ψ0〉 at the end:

〈ψ0|
(

N∑
i=1

(
(Ê M̂)k Ê M̂0

)
i
|φi 〉〈φi |

)
|ψ0〉 =

N∑
i=1

|〈ψ0|U1|mi 〉|2
(
(Ê M̂)k Ê M̂0

)
i

= M̂1(Ê M̂)k Ê M̂0. ��

Proposition 4 Let (U0, U , U1, k, |ψ0〉) be a QMDAn and M an orthonormal basis of
a Hilbert space of dimension N. Then

M̂1M̂k M̂0 ≥ 1

N 2(k+1)
> 0.

Proof We expand M̂1M̂k M̂0 as follows

N∑
i0=1

|〈ψ0|U1|mi0〉|2
N∑

i1=1

|〈mi0 |U |mi1〉|2 . . .

N∑
ik=1

|〈mik−1 |U |mik 〉|2|〈mik |U0|ψ0〉|2

=
N∑

i0=1

N∑
i1=1

. . .

N∑
ik=1

|〈ψ0|U1|mi0〉|2|〈mi0 |U |mi1〉|2 . . . |〈mik−1 |U |mik 〉|2

|〈mik |U0|ψ0〉|2. (A.1)

Sincewe have a summation of positive terms,we only need to prove that one of them
is ≥ 1

N2(k+1) . Firstly, the components of M̂1 add up to 1, so there exists a 1 ≤ j0 ≤ N

such that |〈ψ0|U1|m j0〉|2 ≥ 1
N ⇒ |〈m j0 |U †

1 |ψ0〉| ≥ 1√
N
. Here we can apply the basic

property U1U kU0|ψ0〉 = |ψ0〉 ⇒ U kU0|ψ0〉 = U †
1 |ψ0〉, which implies:

1√
N

≤ |〈m j0 |U kU0|ψ0〉| =
∣∣∣∣∣∣〈m j0 |U k

⎛
⎝ N∑

ik=1

|mik 〉〈mik |
⎞
⎠ U0|ψ0〉

∣∣∣∣∣∣

=
∣∣∣∣∣∣

N∑
ik=1

〈mik |U0|ψ0〉〈m j0 |U k |mik 〉
∣∣∣∣∣∣

≤
N∑

ik=1

|〈mik |U0|ψ0〉||〈m j0 |U k |mik 〉|.
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Since the summation is ≥ 1√
N
and every term is nonnegative, then some of them

must be ≥ 1
N

√
N
, so there exists a 1 ≤ jk ≤ N such that |〈m jk |U0|ψ0〉||〈m j0 |U k |m jk 〉

| ≥ 1
N

√
N
. Applying the same argument again we get

1

N
√

N
≤ |〈m jk |U0|ψ0〉||〈m j0 |U k |m jk 〉|

≤ |〈mik |U0|ψ0〉|
N∑

ik−1

|〈m j0 |U k−1|mik−1〉||〈mik−1 |U |m jk 〉|.

From this inequality we deduce that there exists a 1 ≤ jk−1 ≤ N such that

|〈m j0 |U k−1|m jk−1〉||〈m jk−1 |U |m jk 〉||〈mik |U0|ψ0〉| ≥ 1

N 2
√

N
.

Reiterating the procedure we will find j1, j2, . . . jk−2 such that

|〈m j0 |U |mi1〉| . . . |〈m jk−1 |U |m jk 〉||〈m jk |U0|ψ0〉| ≥ 1

N k
√

N

⇒ |〈ψ0|U1|m j0〉|2|〈m j0 |U |m j1〉|2 . . . |〈m jk−1 |U |m jk 〉|2|〈m jk |U0|ψ0〉|2 ≥ 1

N 2(k+1)

Since this last expression represents one of the terms of (A.1), we conclude that

M̂1M̂k M̂0 ≥ 1

N 2(k+1)
> 0. ��

Theorem 15 Let (U0, U , U1, k, |ψ0〉) be a QMDAn and let A = {|ai 〉}N
i=1 be an

orthonormal basis of eigenvectors of U. Then Â = IN , Ât
1 = Â0 and

Â1 Âk Â0 = Â1 Ât
1 = Ât

0 Â0 ≥ 1

N
.

Moreover,

Â1 Âk Â0 = 1

N
⇔ |〈ai |U0|ψ0〉|2 = 1

N
, ∀i = 1, . . . , N .

Proof It is immediate to see that, because |ai 〉 is an eigenvector of U , then

Â = (|〈ai |U |a j 〉|2)1≤i, j≤N = (|〈ai |eiφ j |a j 〉|2)1≤i, j≤N = (|〈ai |a j 〉|2)1≤i, j≤N = IN .

Therefore, Â1 Âk Â0 = Â1 Â0. In addition, let us show that under these conditions
Ât
1 = Â0. We can notice that the i th component of Â1 is

|〈ai |U †
1 |ψ0〉|2 = |〈ai |U kU0|ψ0〉|2 = |〈ai |U0|ψ0〉|2,
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which corresponds to the i th component of Â0. Here, we used the fact that U |ai 〉 =
λi |ai 〉 ⇒ 〈ai |U † = λi 〈ai | ⇒ (λi )

−1〈ai | = 〈ai |U .
To prove the inequality, we expand the product Ât

0 Â0:

N∑
i=1

|〈ai |U0|ψ0〉|2|〈ai |U0|ψ0〉|2 =
N∑

i=1

(|〈ai |U0|ψ0〉|2)2.

This is a summation of squared real numbers, (each |〈ψ0|U1|ai 〉|2). In other words, we
have a real function

∑N
i=1 x2i where

∑N
i=1 xi = 1, and this function reaches its mini-

mum 1
N when xi = 1

N , ∀i = 1, . . . , N . Hence, Â1 Âk Â0 = ∑N
i=1(|〈ψ0|U1|ai 〉|2)2 ≥

1
N , and Â1 Âk Â0 = 1

N ⇔ |〈ai |U0|ψ0〉|2 = 1
N , ∀i = 1, . . . , N . ��

Proposition 5 If M is a P-combination of the basis A, the following properties are a
consequence of the properties 1 and 2a.

2b.

P∑
i=1

σi ( j1)σi ( j2) = 0, ∀ j1 �= j2

2c.
P∑

j=1

σi ( j) = 0, ∀i �= 1

2d.

P∑
i=1

σi ( j) = 0, ∀ j �= 1

Proof Property 2c is a direct consequence of 1 and 2a, and property 2d is a direct
consequence of 1 and 2b, so we only need to prove that 2b is a consequence of 2a. As
M is an orthonormal basis (due to 2a), then, for any k (and assuming without loss of
generality that k ≤ P),

|ak〉 =
N∑

i=1

〈mi |ak〉|mi 〉 =
P∑

i=1

1√
P

σi (k)|mi 〉 =
P∑

i=1

P∑
j=1

1

P
σi (k)σi ( j)|a j 〉

=
P∑

j=1

1

P

(
P∑

i=1

σi (k)σi ( j)

)
|a j 〉.

This immediately implies that
∑P

i=1 σi (k)σi ( j) = 0 whenever j �= k. This proves
2b for a fixed k, but as k could have been chosen as desired, the proof is general. ��
Proposition 6 If S(k) is a Sylvester matrix and σi ( j) := S(k)i j , then, for all k and
any given a basis A,

|m Pd+i 〉 = 1√
P

P∑
j=1

σi ( j)|aPd+ j 〉
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is a P-combination of the basis A for P = 2k .

Proof We will prove every property for the rows and columns of every S(k) by induc-

tion. For k = 1, S(1) =
(+ +

+ −
)
and the properties can be easily verified. Now let us

assume that S(k) verifies the properties. We shall prove that S(k + 1) does.

S(k + 1) =
(+ +

+ −
)

⊗ S(k) =
(

S(k) S(k)

S(k) −S(k)

)
.

Properties 1a and 1b are satisfied trivially. In properties 2a and 3a rows are multi-
plied, and we have three ways of doing it: multiplying two rows from the upper half of
S(k + 1), two from the lower half or one from each half. A row from the upper half is
of the form S(k)i ·||S(k)i ·, where ‘||’ stands for the concatenation symbol; a row from
the lower half would be S(k)i ·||(−S(k)i ·). For the first case, the product of rows i, j ,
using the symbol ‘*’ to denote the term-by-term product, will result in

S(k)i · ∗ S(k) j ·||S(k)i · ∗ S(k) j · = S(k)(i, j)r ·||S(k)(i, j)r · = S(k + 1)(i, j)r ·,

which proves property 3a. Moreover,

2k+1∑
l=1

S(k + 1)il ∗ S(k + 1) jl =
2k+1∑
l=1

S(k + 1)(i, j)r l =
2k∑

l=1

S(k)(i, j)r l +
2k∑

l=1

S(k)(i, j)r l

= 0

proves property 2a. The other two cases are solved similarly, as well as the procedure
for property 3b. ��

Theorem 16 Given a QMDAn, A an orthonormal basis of eigenvectors of U and M a
P-combination basis of A, then, if the eigenvalue associated with |ai 〉 is λi = eiϕi ,

M̂1M̂k M̂0 =
N/P−1∑

d=0

1

P

⎛
⎝ P∑

j=1

|βPd+ j |2
⎞
⎠

2

+
P∑

i=2

⎛
⎝ 1

P

P∑
j=1

cosϕPd+ j,Pd+(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

|βPd+ j ||βPd+(i, j)c | cosβPd+ j,Pd+(i, j)c

⎞
⎠

·
⎛
⎝ 1

P

P∑
j=1

|βPd+ j ||βPd+(i, j)c | cos(βPd+ j,Pd+(i, j)c + kϕPd+ j,Pd+(i, j)c )

⎞
⎠ ,

where ϕi j = ϕi − ϕ j , and βi j is the angle between βi := 〈ai |U0|ψ0〉 and β j :=
〈a j |U0|ψ0〉.
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Proof Wewill begin calculating M̂0.We should remember that β j = 〈a j |U0|ψ0〉 ∈ C,

β̂i is the argument of βi and βi j = β̂i , β j = β̂i − β̂ j . A generic element of this matrix
would be

∣∣∣∣∣∣
1√
P

⎛
⎝ P∑

j=1

σi ( j)〈aPd+ j |
⎞
⎠ U0|ψ0〉

∣∣∣∣∣∣
2

= 1

P

∣∣∣∣∣∣
P∑

j=1

σi ( j)〈aPd+ j |U0|ψ0〉
∣∣∣∣∣∣
2

= 1

P

∣∣∣∣∣∣
P∑

j=1

σi ( j)βPd+ j

∣∣∣∣∣∣
2

.

For M̂1, we have

∣∣∣∣∣∣
1√
P

⎛
⎝ P∑

j=1

σi ( j)〈aPd+ j |
⎞
⎠ U †

1 |ψ0〉
∣∣∣∣∣∣
2

= 1

P

∣∣∣∣∣∣
P∑

j=1

σi ( j)〈aPd+ j |U kU0|ψ0〉
∣∣∣∣∣∣
2

= 1

P

∣∣∣∣∣∣
P∑

j=1

σi ( j)λk
Pd+ jβPd+ j

∣∣∣∣∣∣
2

.

We conclude then,

M̂0 = 1

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∑P
j=1 σ1( j)β j

∣∣∣2
...∣∣∣∑P

j=1 σP ( j)β j

∣∣∣2
...∣∣∣∑P

j=1 σ1( j)βN−P+ j

∣∣∣2
...∣∣∣∑P

j=1 σP ( j)βN−P+ j

∣∣∣2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̂1 = 1

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∑P
j=1 σ1( j)λk

jβ j

∣∣∣2
...∣∣∣∑P

j=1 σP ( j)λk
jβ j

∣∣∣2
...∣∣∣∑P

j=1 σ1( j)λk
N−P+ jβN−P+ j

∣∣∣2
...∣∣∣∑P

j=1 σP ( j)λk
N−P+ jβN−P+ j

∣∣∣2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

.

For M̂ , if we consider, for example, d1 = d2 = 0, we have

∣∣∣∣∣∣
1

P

⎛
⎝ P∑

j=1

σi1( j)〈a j |
⎞
⎠ U

⎛
⎝ P∑

j=1

σi2( j)|a j 〉
⎞
⎠

∣∣∣∣∣∣
2

= 1

P2

∣∣∣∣∣∣
P∑

j=1

σi1( j)σi2( j)〈a j |U |a j 〉
∣∣∣∣∣∣
2

= 1

P2

∣∣∣∣∣∣
P∑

j=1

σi1( j)σi2( j)λ j

∣∣∣∣∣∣
2

.
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On the other hand, it is easy to see that, when d1 �= d2, the termwill be 0. Combining
these two properties together, we obtain that M̂ =

1

P2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∑P
j=1 λ j

∣∣∣2 . . .

∣∣∣∑P
j=1 σP ( j)λ j

∣∣∣2 . . . 0 . . . 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.∣∣∣∑P
j=1 σP ( j)λ j

∣∣∣2 . . .

∣∣∣∑P
j=1 λ j

∣∣∣2 . . . 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 . . . 0 . . .

∣∣∣∑P
j=1 λN−P+ j

∣∣∣2 . . .

∣∣∣∑P
j=1 σP ( j)λN−P+ j

∣∣∣2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 . . . 0 . . .

∣∣∣∑P
j=1 σP ( j)λN−P+ j

∣∣∣2 . . .

∣∣∣∑P
j=1 λN−P+ j

∣∣∣2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The next step is calculating M̂k , for which we will need the properties of P-
combination bases. We should notice that M̂ includes several sub-matrices of size
P × P that we can treat separately, so we will focus on the first one:

S1 =

⎛
⎜⎜⎜⎝

∣∣∣∑P
j=1 λ j

∣∣∣2 . . .

∣∣∣∑P
j=1 σP ( j)λ j

∣∣∣2
...

. . .
...∣∣∣∑P

j=1 σP ( j)λ j

∣∣∣2 . . .

∣∣∣∑P
j=1 λ j

∣∣∣2

⎞
⎟⎟⎟⎠ .

A generic element i1i2 of this matrix would be
∣∣∣∑P

j=1 σi1( j)σi2( j)λ j

∣∣∣2 =∣∣∣∑P
j=1 σ(i1,i2)r ( j)λ j

∣∣∣2. Property 3a ensures us that each ∣∣∣∑P
j=1 σi ( j)λ j

∣∣∣2 will appear
only once in every row and column of S1. This motivates the definition:

Ai :=
∣∣∣∣∣∣

P∑
j=1

σi ( j)λ j

∣∣∣∣∣∣
2

,

Ai1i2 :=
∣∣∣∣∣∣

P∑
j=1

σi1( j)σi2( j)λ j

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

P∑
j=1

σ(i1,i2)r ( j)λ j

∣∣∣∣∣∣
2

= A(i1,i2)r .

Rewriting the matrix:

S1 = (Ai1i2)1≤i1,i2≤P =

⎛
⎜⎜⎜⎜⎜⎝

A11 A12 A13 . . . A1P

A21 A22 A23 . . . A2P

A31 A32 A33 . . . A3P
...

...
...

. . .
...

AP1 AP2 AP3 . . . AP P

⎞
⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎝

A1 A2 A3 . . . AP

A2 A1 A(2,3)r . . . A(2,P)r

A3 A(3,2)r A1 . . . A(3,P)r
...

...
...

. . .
...

AP A(P,2)r A(P,3)r . . . A1

⎞
⎟⎟⎟⎟⎟⎠

Now we define the numbers

Bk
i1i2 := 1

P

P∑
j1=1

σi1( j1)σi2( j1)

⎛
⎝ P∑

j2=1

σ j2( j1)A j2

⎞
⎠

k

.

We will prove that Sk
1 = (Ai1i2)

k
1≤i1,i2≤P = (Bk

i1i2
)1≤i1,i2≤P by induction. We first

show that B1
i1i2

= Ai1i2 :

B1
i1i2 = 1

P

P∑
j1=1

σi1( j1)σi2( j1)

⎛
⎝ P∑

j2=1

σ j2( j1)A j2

⎞
⎠

= 1

P

P∑
j2=1

A j2

P∑
j1=1

σ(i1,i2)r ( j1)σ j2( j1).

However, due to 3a and 2a,
∑P

j1=1 σ(i1,i2)r ( j1)σ j2( j1) = 0 for all j2 except when
j2 = (i1, i2)r , which means

1

P

P∑
j2=1

A j2

P∑
j1=1

σ(i1,i2)r ( j1)σ j2( j1) = 1

P
A(i1,i2)r

P∑
j1=1

1 = A(i1,i2)r = Ai1i2 .

We suppose now that Sk
1 = (Bk

i1i2
)1≤i1,i2≤P and we have to prove that (Sk+1

1 )i1i2 =∑P
l=1 Bk

i1l Ali2 = Bk+1
i1i2

:

P∑
l=1

Bk
i1l Ali2 = 1

P

P∑
l=1

P∑
j1=1

σi1( j1)σl( j1)

⎛
⎝ P∑

j2=1

σ j2( j1)A j2

⎞
⎠

k

Ali2

= 1

P

P∑
j1=1

σi1( j1)

⎛
⎝ P∑

j2=1

σ j2( j1)A j2

⎞
⎠

k
P∑

l=1

σl( j1)B1
li2 . (A.2)

Focusing on the last sum of this expression:

P∑
l=1

σl( j1)B1
li2 = 1

P

P∑
l=1

σl( j1)
P∑

j3=1

σl( j3)σi2( j3)

⎛
⎝ P∑

j4=1

σ j4( j3)A j4

⎞
⎠
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= 1

P

P∑
j4=1

A j4

P∑
l=1

σl( j1)
P∑

j3=1

σl( j3)σ(i2, j4)r ( j3)

= 1

P

P∑
j4=1

A j4σ(i2, j4)r ( j1)
P∑

j3=1

1 = σi2( j1)
P∑

j4=1

σ j4( j1)A j4 .

Substituting in A.2, we obtain

P∑
l=1

Bk
i1l Ali2 = 1

P

P∑
j1=1

σi1( j1)

⎛
⎝ P∑

j2=1

σ j2( j1)A j2

⎞
⎠

k

σi2( j1)
P∑

j4=1

σ j4( j1)A j4

= 1

P

P∑
j1=1

σi1( j1)σi2( j1)

⎛
⎝ P∑

j2=1

σ j2( j1)A j2

⎞
⎠

k+1

= Bk+1
i1i2

.

Once this result is proved, it can be applied to every Sd+1:

M̂k = 1

P2k

⎛
⎜⎜⎜⎜⎜⎝

Sk
1 0 . . . 0 0
0 Sk

2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Sk
N/P−1 0

0 0 . . . 0 Sk
N/P

⎞
⎟⎟⎟⎟⎟⎠

.

Now we can calculate Sk
d+1/P2k , that is, Bk

i1i2
/P2k for each component. We will use

the property of complex numbers: for x, y ∈ C, |x ± y|2 = |x |2+|y|2±2 < x, y >=
|x |2 + |y|2 ± 2|x ||y| cos x̂, y. Its generalization is

∣∣∣∣∣∣
P∑

j=1

σi ( j)x j

∣∣∣∣∣∣
2

=
P∑

j1=1

P∑
j2=1

σi ( j1)σi ( j2)|x j1 ||x j2 | cos x̂ j1 , x j2 .

We focus again on S1:

Bk
i1i2

P2k
= 1

P

P∑
j1=1

σi1( j1)σi2( j1)

(∑P
j2=1 σ j2( j1)A j2

P2

)k

. (A.3)

Now, we deduce

∑P
j2=1 σ j2( j1)A j2

P2 = 1

P2

P∑
j2=1

σ j2( j1)

∣∣∣∣∣∣
P∑

j3=1

σ j2( j3)λ j3

∣∣∣∣∣∣
2
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= 1

P2

P∑
j2=1

σ j2( j1)
P∑

j3=1

P∑
j4=1

σ j2( j3)σ j2( j4) cosϕ j3 j4

= 1

P2

P∑
j3=1

P∑
j4=1

cosϕ j3 j4

P∑
j2=1

σ j2(( j1, j3)c)σ j2( j4)

= 1

P2

P∑
j3=1

cosϕ j3( j1, j3)c

P∑
j2=1

1 = 1

P

P∑
j3=1

cosϕ j3( j1, j3)c .

Coming back to A.3, we have

Bk
i1i2

P2k
= 1

P

P∑
j1=1

σi1( j1)σi2( j1)

⎛
⎝ 1

P

P∑
j2=1

cosϕ j2( j1, j2)c

⎞
⎠

k

.

For Sd+1, we have

Bk
Pd+i1,Pd+i2

P2k
= 1

P

P∑
j1=1

σi1( j1)σi2( j1)

⎛
⎝ 1

P

P∑
j2=1

cosϕPd+ j2,Pd+( j1, j2)c

⎞
⎠

k

.

We are ready to multiply M̂k M̂0. The first P components will correspond with d = 0,
the next P with d = 1, etc. For d = 0, the i th component of the column vector would
be

P∑
l=1

Bk
il

P2k
· (M̂0)l = 1

P2

P∑
l=1

P∑
j1=1

σi ( j1)σl( j1)

⎛
⎝ 1

P

P∑
j2=1

cosϕ j2( j1, j2)c

⎞
⎠

k ∣∣∣∣∣∣
P∑

j=1

σl( j)β j

∣∣∣∣∣∣
2

= 1

P2

P∑
j1=1

σi ( j1)

⎛
⎝ 1

P

P∑
j2=1

cosϕ j2( j1, j2)c

⎞
⎠

k

·
P∑

j3=1

P∑
j4=1

|β j3 ||β j4 | cosβ j3 j4

P∑
l=1

σl(( j1, j3)c)σl( j4)

=
P∑

j1=1

σi ( j1)

⎛
⎝ 1

P

P∑
j2=1

cosϕ j2( j1, j2)c

⎞
⎠

k

· 1
P

P∑
j3=1

|β j3 ||β( j1, j3)c | cosβ j3( j1, j3)c .

Before continuing, we should notice that arg(eikϕi βi ) = kϕi+ arg(βi ), which

means that ̂(eikϕi βi , eikϕ j β j ) = kϕi+ arg(βi ) − (kϕ j+ arg(β j )) = kϕi j + βi j . With
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this, it is time to add M̂1. Finally,

M̂1M̂k M̂0 = 1

P

P∑
i=1

P∑
j1=1

σi ( j1)

⎛
⎝ 1

P

P∑
j2=1

cosϕ j2( j1, j2)c

⎞
⎠

k

⎛
⎝ 1

P

P∑
j3=1

|β j3 ||β( j1, j3)c | cosβ j3( j1, j3)c

⎞
⎠

∣∣∣∣∣∣
P∑

j4=1

σi ( j)λk
j4β j4

∣∣∣∣∣∣
2

.

Applying the same procedure as before, we deduce

1

P

P∑
i=1

σi ( j1)

∣∣∣∣∣∣
P∑

j4=1

σi ( j)λ j4β j4

∣∣∣∣∣∣
2

=
P∑

j4=1

|β j4 ||β( j1, j4)c | cos(β j4( j1, j4)c + kϕ j4( j1, j4)c).

Substituting in the previous expression, we obtain

M̂1M̂k M̂0 = P
P∑

i=1

⎛
⎝ 1

P

P∑
j=1

cosϕ j(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

|β j ||β(i, j)c | cosβ j(i, j)c

⎞
⎠ ·

·
⎛
⎝ 1

P

P∑
j=1

|β j ||β(i, j)c | cos(β j(i, j)c + kϕ j(i, j)c)

⎞
⎠

Moreover,when i = 1, then (1, j)c = j , so that cosϕ j(i, j)c = cosϕ j j = cos 0 = 1.
Separating this case, we have

M̂1M̂k M̂0 = P

⎛
⎝ 1

P

P∑
j=1

|β j |2
⎞
⎠

2

+ P
P∑

i=2

⎛
⎝ 1

P

P∑
j=1

cosϕ j(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

|β j ||β(i, j)c | cosβ j(i, j)c

⎞
⎠

·
⎛
⎝ 1

P

P∑
j=1

|β j ||β(i, j)c | cos(β j(i, j)c + kϕ j(i, j)c )

⎞
⎠

= 1

P

⎛
⎝ P∑

j=1

|β j |2
⎞
⎠

2

+ P
P∑

i=2

⎛
⎝ 1

P

P∑
j=1

cosϕ j(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

|β j ||β(i, j)c | cosβ j(i, j)c

⎞
⎠
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·
⎛
⎝ 1

P

P∑
j=1

|β j ||β(i, j)c | cos(β j(i, j)c + kϕ j(i, j)c )

⎞
⎠

This completes the case d = 0. The overall formula of the algorithm is

M̂1M̂k M̂0 =
N/P−1∑

d=0

1

P

⎛
⎝ P∑

j=1

|βPd+ j |2
⎞
⎠

2

+P
P∑

i=2

⎛
⎝ 1

P

P∑
j=1

cosϕPd+ j,Pd+(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

P

P∑
j=1

|βPd+ j ||βPd+(i, j)c | cosβPd+ j,Pd+(i, j)c

⎞
⎠

·
⎛
⎝ 1

P

P∑
j=1

|βPd+ j ||βPd+(i, j)c | cos(βPd+ j,Pd+(i, j)c + kϕPd+ j,Pd+(i, j)c )

⎞
⎠

��
Theorem 17 Given a QMDAn, A an orthonormal basis of eigenvectors of U, and M
a 2-combination basis, then

M̂1M̂k M̂0 = 1

2

⎡
⎣N/2∑

i=1

(
|β2i−1|2 + |β2i |2

)2 +

+4
N/2∑
i=1

|β2i−1|2|β2i |2 cosk ϕ2i−1,2i cosβ2i−1,2i cos(β2i−1,2i + kϕ2i−1,2i )

⎤
⎦ .

Moreover, defining Ci := cosk ϕ2i−1,2i cosβ2i−1,2i cos(β2i−1,2i + kϕ2i−1,2i ), the
following bound is verified:

M̂1M̂k M̂0 ≥ 1

2
N/2∑
i=1

1

Ci + 1

.

The equality is satisfied if and only if

∀ j = 1, . . . , N/2, |β2 j−1|2 + |β2 j |2 = 1
N/2∑
i=1

C j + 1

Ci + 1

, and, if C j �= 0

⇒ |β2 j−1|2 = |β2 j |2.
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Proof M̂1M̂k M̂0 for P = 2 is obtained directly from formula of Theorem 4:
M̂1M̂k M̂0 =

N/2−1∑
d=0

1

2

⎛
⎝ 2∑

j=1

|β2d+ j |2
⎞
⎠

2

+ 2
2∑

i=2

⎛
⎝ 1

2

2∑
j=1

cosϕ2d+ j,2d+(i, j)c

⎞
⎠

k

·
⎛
⎝ 1

2

2∑
j=1

|β2d+ j ||β2d+(i, j)c | cosβ2d+ j,2d+(i, j)c

⎞
⎠

·
⎛
⎝ 1

2

2∑
j=1

|β2d+ j ||β2d+(i, j)c | cos(β2d+ j,2d+(i, j)c + kϕ2d+ j,2d+(i, j)c )

⎞
⎠

= 1

2

⎛
⎝N/2∑

d=1

(|β2d−1|2 + |β2d |2)2 + 4
N/2∑
d=1

|β2d−1|2|β2d |2 cosk ϕ2d−1,2d cosβ2d−1,2d cos(β2d−1,2d + kϕ2d−1,2d )

⎞
⎠

It is important to notice that the cosines are independent from each |βi |2, because
they only depend on the argument of βi , and not on the module. Both values can
be chosen as desired and independently when building the algorithm. This allows
us to rewrite the expression as

∑N/2
i=1

(|β2i−1|2 + |β2i |2
)2 +4

∑N/2
i=1 Ci |β2i−1|2|β2i |2,

where eachCi = cosk ϕ2i−1,2i cosβ2i−1,2i cos(β2i−1,2i +kϕ2i−1,2i ) can be considered
a constant. The reason why this is not possible for P > 2 is that, in those cases, the
angles of the cosines are combined (for example, pairing 1-2, 3-4 some times and 1-3,
2-4 other times), which prevents writing them as constants independent from each
other.

Writing x j = |β j |2, wemust minimize the function with the restriction
∑N

j=1 x j =
1. If M := N/2, we obtain

f (x1, . . . , xN−1) =
M−1∑
i=1

(x2i−1 + x2i )
2 +

(
1 −

N−2∑
i=1

xi

)2

+4
M−1∑
i=1

Ci x2i−1x2i + 4CM xN−1

(
1 −

N−1∑
i=1

xi

)
.

Its derivative with respect to a variable x2 j is

∂ f

∂x2 j
= 2(x2 j−1 + x2 j ) − 2

(
1 −

N−2∑
i=1

xi

)
+ 4C j x2 j−1 − 4CM xN−1 = 0

(2C j + 1)x2 j−1 + x2 j +
N−2∑
i=1

xi − 2CM xN−1 = 1

When deriving with respect to x2 j−1,

x2 j−1 + (2C j + 1)x2 j +
N−2∑
i=1

xi − 2CM xN−1 = 1,
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so we can subtract the equations and get

2C j x2 j−1 − 2C j x2 j = 0 ⇒ x2 j−1 = x2 j .

When we derive with respect to xN−1, we arrive to an analogous result:

∂ f

∂xN−1
= 4CM

(
1 −

N−1∑
i=1

xi

)
− 4CM xN−1 = 0

xN−1 =
(
1 −

N−1∑
i=1

xi

)
= xN .

It might be the case that C j = 0, so that the equation cannot be cancelled. In that
case, then for j, k such that C j = Ck = 0, we deduce from the previous equations
that x2 j−1 + x2 j = x2k−1 + x2k := p. We will suppose, without loss of generality,
that those C j = 0 are exactly the last r , so that Ci �= 0, ∀i = 1, . . . , M − r , for
which x2i−1 = x2i . Let us rewrite f accordingly and take into account that p is also
a variable to be computed.

f (x1, . . . , xN ) =
M∑

i=1

(x2i−1 + x2i )
2 + 4

M∑
i=1

Ci x2i−1x2i

= r p2 + 4
M−r∑
i=1

x22i + 4
M−r∑
i=1

Ci x22i

= r p2 + 4
M−r∑
i=1

(Ci + 1)x22i = r p2 + 4
M−r−1∑

i=1

(Ci + 1)x22i

+4(CM−r + 1)

(
1

2
− r p

2
−

M−r−1∑
i=1

x2i

)2

.

We derive with respect to any variable x2 j .

∂ f

∂x2 j
= 8(C j + 1)x2 j − 8(CM−r + 1)

(
1

2
− r p

2
−

M−r−1∑
i=1

x2i

)
= 0

(C j + 1)x2 j = (CM−r + 1)

(
1

2
− r p

2
−

M−r−1∑
i=1

x2i

)

(C j + 1)x2 j = (CM−r + 1)xM−r .
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Now we derive with respect to p.

∂ f

∂ p
= 2r p − 4r(CM−r + 1)

(
1

2
− r p

2
−

M−r−1∑
i=1

x2i

)
= 0

p = 2(CM−r + 1)xM−r .

This is equivalent to (C j + 1)x2 j = (CM−r + 1)xM−r , due to the fact that, for
each k = M − r + 1, . . . , M , (Ck + 1)(x2k−1 + x2k) = 2(CM−r + 1)xM−r , which
is the same as the previous one but without x2k−1 = x2k being necessary. Moreover,
we have (Ck + 1)(x2k−1 + x2k) = (C j + 1)(x2 j−1 + x2 j ) for every pair ( j, k). This
allows us to deduce

N∑
i=1

xi =
M∑

i=1

x2i−1 + x2i =
M∑

i=1

C j + 1

Ci + 1
(x2 j−1 + x2 j ) = 1 ⇒ x2 j−1 + x2 j

= 1
M∑

i=1

C j + 1

Ci + 1

.

For those j such that C j �= 0 we have, additionally, the promised x2 j = x2 j−1.
The previous procedure is only possible if Ci �= −1, ∀i , but this is satisfied in our
particular case. If, for example, cosk ϕ12 cosβ12 cos(β12+kϕ12) = −1, there are only
four possibilities: (−1) · 1 · 1, 1 · (−1) · 1, 1 · 1 · (−1) or (−1) · (−1) · (−1). It is easy
to discard them one by one. Finally, the value of the function in the critical point is

M∑
j=1

(x2 j−1 + x2 j )
2 + 4

M∑
j=1

C j x2 j−1x2 j

=
M∑

j=1

1(
M∑

i=1

C j + 1

Ci + 1

)2 +
M−r∑
j=1

C j
1(

M∑
i=1

C j + 1

Ci + 1

)2

=
M∑

j=1

1(
M∑

i=1

C j + 1

Ci + 1

)2 +
M∑

j=1

C j
1(

M∑
i=1

C j + 1

Ci + 1

)2

= 1(
M∑

i=1

1

Ci + 1

)2

M∑
j=1

1

(C j + 1)
= 1

M∑
i=1

1

Ci + 1

.

In the worst case (Ci = 1, ∀i), f would take the value 1
2n−2 . On the other hand, if

x1 = 1 and the rest of the variables are 0, then f = 1. This confirms that the critical
point is the minimum of the function. ��
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Theorem 18 Let (U0, U , U1, k, |ψ0〉) be a QMDAn, (V0, V1, V , k, |ϕ0〉) a QMDAm
and X , Y two orthonormal bases of dimension 2n and 2m, respectively. Then, given the
QMDAn+m (U1⊗V1, U ⊗V , U0⊗V0, k, |ψ0〉⊗|ϕ0〉), the basis Z = {|xi 〉⊗|y j 〉,∀i =
1, . . . , 2n,∀ j = 1, . . . , 2m} verifies Ẑ0 = X̂0 ⊗ Ŷ0, Ẑ1 = X̂1 ⊗ Ŷ1 and Ẑ = X̂ ⊗ Ŷ .
As a consequence, Ẑ1 Ẑ k Ẑ0 = X̂1 X̂ k X̂0 · Ŷ1Ŷ k Ŷ0.

Proof First, we will sort the basis Z as follows:

Z = {|x1〉 ⊗ |y1〉, . . . , |x1〉 ⊗ |ym〉, . . . , |xn〉 ⊗ |y1〉, . . . , |xn〉 ⊗ |ym〉}.

Proving this result for Ẑ0 and Ẑ1 is almost immediate, as they are column and row
vectors. Hence, we will detail the proof for Ẑ . If we look at an i j component of Ẑ
where i = (c1 − 1)m + r1 and j = (c2 − 1)m + r2, being 1 ≤ c1, c2 ≤ n and
1 ≤ r1, r2 ≤ m, then

Ẑi j = |〈zi |(U ⊗ V )|z j 〉|2 = |(〈xc1 | ⊗ 〈yr1 |)(U ⊗ V )(|xc2〉 ⊗ |yr2〉)|2
= |(〈xc1 |U |xc2〉) ⊗ (〈yr1 |V |yr2〉)|2
= |〈xc1 |U |xc2〉|2|〈yr1 |V |yr2〉|2 = X̂c1c2 Ŷr1r2 .

This immediately implies that Ẑ = X̂ ⊗ Ŷ . Having proved this, the last equality is
straightforward.

Ẑ1 Ẑ k Ẑ0 = (X̂1 ⊗ Ŷ1) · (X̂ ⊗ Ŷ )k · (X̂0 ⊗ Ŷ0) = X̂1 X̂ k X̂0 · Ŷ1Ŷ k Ŷ0.

��

Appendix B: Proofs of the results in Sect. 4

Theorem 19 Given k, we consider the QMDA1 EV1,k and we define c := cos θk, s :=
sin θk . If every O is equivalent to a measurement in the basis M where |m1〉 =
cos θ

2 |0〉 + eiϕ sin θ
2 |1〉 and |m2〉 = sin θ

2 |0〉 − eiϕ cos θ
2 |1〉, then

M̂1M̂k M̂0 = 1

2
+ (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ)

2
.

Proof We begin with M̂0 taking into account that U0|ψ0〉 = (c s)t .

〈m1|U0|ψ0〉 = (
cos θ

2 e−iϕ sin θ
2

) (
c
s

)
= c cos

θ

2
+ e−iϕs sin

θ

2

= c cos
θ

2
+ s sin

θ

2
cosϕ − i

(
s sin

θ

2
sin ϕ

)

⇒ |〈m1|U0|ψ0〉|2 =
(

c cos
θ

2
+ s sin

θ

2
cosϕ

)2

+ s2 sin2
θ

2
sin2 ϕ
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= c2 cos2
θ

2
+ 2cs cos

θ

2
sin

θ

2
cosϕ + s2 sin2

θ

2

= c2 cos2
θ

2
+ cs sin θ cosϕ + s2 sin2

θ

2
.

As M̂0 only has two components that sum to one, we deduce:

M̂0 =
(

c2 cos2 θ
2 + cs sin θ cosϕ + s2 sin2 θ

2

c2 sin2 θ
2 − cs sin θ cosϕ + s2 cos2 θ

2

)
.

Besides, U †
1 |ψ0〉 = (s c)t , so M̂1 is built in the same way as M̂0 but exchanging

the c and s:

M̂1 =
(

s2 cos2 θ
2 + cs sin θ cosϕ + c2 sin2 θ

2

s2 sin2 θ
2 − cs sin θ cosϕ + c2 cos2 θ

2

)t

.

For M̂ , we calculate the first component M̂11.

〈m1|U |m1〉 = (
cos θ

2 e−iϕ sin θ
2

) (
c −s
s c

)(
cos θ

2

eiϕ sin θ
2

)

= (
cos θ

2 e−iϕ sin θ
2

) (
c cos θ

2 − seiϕ sin θ
2

s cos θ
2 + ceiϕ sin θ

2

)

= c + (e−iϕ − eiϕ)s cos
θ

2
sin

θ

2
= c − i

(
2s cos

θ

2
sin

θ

2
sin ϕ

)

= c − i(s sin θ sin ϕ) ⇒
⇒ |〈m1|U |m1〉|2 = c2 + s2 sin2 θ sin2 ϕ.

We know that its rows and columns add up to 1, so we conclude that

M̂ =
(

c2 + s2 sin2 θ sin2 ϕ s2 − s2 sin2 θ sin2 ϕ

s2 − s2 sin2 θ sin2 ϕ c2 + s2 sin2 θ sin2 ϕ

)
.

For calculating M̂k , we use a lemma that is easily proved by induction:

(
a b
b a

)k

= 1

2

(
(a + b)k + (a − b)k (a + b)k − (a − b)k

(a + b)k − (a − b)k (a + b)k + (a − b)k

)
⇒

M̂k = 1

2

(
1 + (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k 1 − (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k

1 − (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k 1 + (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k

)

= 1

2

(
1 + Ak 1 − Ak

1 − Ak 1 + Ak

)
.
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We are ready to calculate the final probability.

M̂k M̂0 = 1

2

(
1 + Ak 1 − Ak

1 − Ak 1 + Ak

) (
c2 cos2 θ

2 + cs sin θ cosϕ + s2 sin2 θ
2

c2 sin2 θ
2 − cs sin θ cosϕ + s2 cos2 θ

2

)
=

= 1

2

(
1 + Ak [(c2 − s2)(cos2 θ

2 − sin2 θ
2 ) + 2cs sin θ cosϕ]

1 − Ak [(c2 − s2)(cos2 θ
2 − sin2 θ

2 ) + 2cs sin θ cosϕ]

)
.

M̂1 M̂k M̂0 = 1

2

(
s2 cos2 θ

2 + cs sin θ cosϕ + c2 sin2 θ
2

s2 sin2 θ
2 − cs sin θ cosϕ + c2 cos2 θ

2

)t (
1 + Ak [(c2 − s2) cos θ + 2cs sin θ cosϕ]
1 − Ak [(c2 − s2) cos θ + 2cs sin θ cosϕ]

)
=

= 1

2
+ Ak [(c2 − s2) cos θ + 2cs sin θ cosϕ][−(c2 − s2) cos θ + 2cs sin θ cosϕ]

2
=

= 1

2
+ (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ)

2
.

��

Theorem 20 Given k and EV1,n, the critical points of the formula in Theorem 8 are
reached for the bases {|0〉, |1〉}, {|+〉, |−〉} y {| + i〉, | − i〉}.

Proof We have to derive the formula of Theorem 8 with respect to both variables. We
should remember to take 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π .

∂ f

∂ϕ
= k(c2 − s2 + 2s2 sin2 θ sin2 ϕ)k−14s2 sin2 θ sin ϕ cosϕ(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ)

2

− (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k8c2s2 sin2 θ cosϕ sin ϕ

2
∂ f

∂θ
= k(c2 − s2 + 2s2 sin2 θ sin2 ϕ)k−14s2 sin2 ϕ sin θ cos θ(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ)

2

+ (c2 − s2 + 2s2 sin2 θ sin2 ϕ)k(8c2s2 cos2 ϕ sin θ cos θ + 2(c2 − s2)2 cos θ sin θ)

2

We notice that s = sin π
2(k+2) , c = cos π

2(k+2) , but 0 < π
2(k+2) < π

4 , which

necessarily implies that 0 < s < 1√
2
, 1√

2
< c < 1, and as a consequence, c > s. This

also means that c2 − s2 + 2s2 sin2 θ sin2 ϕ > 0, so:

∂ f

∂ϕ
= 0 ⇔ sin2 θ sin ϕ cosϕ[k(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ)

−2c2(c2 − s2 + 2s2 sin2 θ sin2 ϕ)] = 0; (A.4)
∂ f

∂θ
= 0 ⇔ sin θ cos θ [2ks2 sin2 ϕ(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ) +

+(c2 − s2 + 2s2 sin2 θ sin2 ϕ)(4c2s2 cos2 ϕ + (c2 − s2)2)] = 0. (A.5)

It is immediate that, if sin θ = 0 ⇒ θ = 0, π , then both partial derivatives are 0
regardless of the value for ϕ. This critical point corresponds with {|0〉, |1〉}. Another
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possibility for ∂ f
∂θ

= 0 is cos θ = 0 ⇒ θ = π
2 . Then

∂ f

∂ϕ
= sin ϕ cosϕ[2ks2 cos2 ϕ − (c2 − s2 + 2s2 sin2 ϕ)] = 0.

If sin ϕ = 0 ⇒ ϕ = 0, π we have the critical point for the basis {|+〉, |−〉}; and if
cosϕ = 0 ⇒ ϕ = π

2 , 3π
2 and the critical point would be {| + i〉, | − i〉}. If none of

both is 0, then

2ks2 cos2 ϕ − (c2 − s2 + 2s2 sin2 ϕ) = 0

2ks2 cos2 ϕ − (1 − 2s2 + 2s2 sin2 ϕ) = 0

2s2(k cos2 ϕ + 1 − sin2 ϕ) = 1

k cos2 ϕ + cos2 ϕ = 1

2s2

cos2 ϕ = 1

2s2(k + 1)
.

However, 2s2(k + 1) ≤ 1, ∀k > 0, which is a contradiction.
The last case for A.5 to be 0 occurs when

2ks2 sin2 ϕ(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ) + (c2 − s2 + 2s2 sin2 θ sin2 ϕ)

(4c2s2 cos2 ϕ + (c2 − s2)2) = 0.

If ∂ f
∂ϕ

in A.4 is also 0, there are three possibilities which lead us to contradictions. If
sin ϕ = 0, then

(c2 − s2)(4c2s2 + (c2 − s2)2) = 0 ⇒ 4c2s2 = −(c2 − s2)2 < 0 #

If cosϕ = 0, then

−2ks2(c2 − s2)2 cos2 θ + (c2 − s2 + 2s2 sin2 θ)(c2 − s2)2 = 0

2s2(−k cos2 θ − 1 + sin2 θ) = −1 ⇒ cos2 θ = 1

2s2(k + 1)
#

Finally, we can have

k(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ) − 2c2(c2 − s2 + 2s2 sin2 θ sin2 ϕ) = 0;
2ks2 sin2 ϕ(4c2s2 sin2 θ cos2 ϕ − (c2 − s2)2 cos2 θ) + (c2 − s2 + 2s2 sin2 θ sin2 ϕ)

(4c2s2 cos2 ϕ + (c2 − s2)2) = 0.

We isolate 4c2s2 sin2 θ cos2 ϕ−(c2−s2)2 cos2 θ in the first equation and substitute
it in the second, obtaining

4c2s2 sin2 ϕ(c2 − s2 + 2s2 sin2 θ sin2 ϕ) + (c2 − s2 + 2s2 sin2 θ sin2 ϕ)
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(4c2s2 cos2 ϕ + (c2 − s2)2) = 0

c4 + 2c2s2 + s4 = 0 ⇒ (c2 + s2)2 = 0 ⇒ 1 = 0 #

��
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